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Abstract
The literature on incentive-based regulation in the electricity sector indicates that the 
size of this sector in a country constrains the choice of frontier methods as well as 
the model specification itself to measure economic efficiency of regulated firms. The 
aim of this study is to propose a stochastic frontier approach with maximum entropy 
estimation, which is designed to extract information from limited and noisy data 
with minimal statements on the data generation process. Stochastic frontier analysis 
with generalized maximum entropy and data envelopment analysis—the latter one 
has been widely used by national regulators—are applied to a cross-section data on 
thirteen European electricity distribution companies. Technical efficiency scores and 
rankings of the distribution companies generated by both approaches are sensitive to 
model specification. Nevertheless, the stochastic frontier analysis with generalized 
maximum entropy results indicate that technical efficiency scores have similar dis-
tributional properties and these scores as well as the rankings of the companies are 
not very sensitive to the prior information. In general, the same electricity distribu-
tion companies are found to be in the highest and lowest efficient groups, reflecting 
weak sensitivity to the prior information considered in the estimation procedure.
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1 Introduction

Incentive-based regulation in the electricity sector has been introduced in many 
countries during the last three decades. Although there are a wide variety of incen-
tive-based schemes used for electricity utilities (e.g., Jamasb and Pollitt 2001), most 
regulation practices are based on benchmarking (i.e., assessing a firm’s efficiency 
against a reference performance1) in order to promote economic efficiency (e.g., 
productive efficiency, cost efficiency) of regulated firms.2

The size of a country’s electricity sector, defined by the number of companies in 
the electricity value chain, constrains the choice of benchmarking methods, as well 
as the specification of the frontier model (e.g., Haney and Pollitt 2009, 2011, 2013; 
Pollitt 2005; Per Agrell and Bogetoft 2014). Data problems (or lack of data) and 
the size of a country’s electricity sector are among the reasons pointed out by some 
national regulators for not employing frontier approaches (Haney and Pollitt 2009).

Energy regulators employing frontier methods are, in general, associated with 
countries with a large number of regulated companies (e.g., Finland, Britain, Ger-
many). In contrast, there are a number of countries with very few regulated compa-
nies (e.g., Portugal, Slovenia and Panama) that employ frontier methods using inter-
national data. Even in these cases, the sample size may not be enough to allow the 
use of some frontier methods, due to the limited number of appropriate comparators 
that can be identified. Transmission and distribution electricity utilities are heteroge-
neous, in the sense that utilities vary in size and other characteristics that are criti-
cal for regulation, namely ownership, governance, task provision, size of operational 
areas, number of customers, and financial accounting system (e.g., Per Agrell and 
Bogetoft 2014; Cullmann and Nieswand 2016).

The international survey of regulators conducted by Haney and Pollitt (2009) 
indicates that data envelopment analysis (DEA) is strongly preferred to corrected 
ordinary least squares (COLS) and maximum likelihood (ML) with stochastic fron-
tier analysis (SFA) in the electricity sector. For an interesting literature survey on 
the application of DEA to energy (and environmental) issues, please see Zhou et al. 
(2008). There is a latent idea that DEA requires a relatively low number of observa-
tions and this may be one of reasons for the stronger preference for DEA over COLS 
and ML with SFA. Furthermore, there are also the drawbacks of employing COLS 
and ML in extremely small data samples (for instance, it is important to note that 
ML is attractive mainly due to its large-sample properties). Yet, DEA suffers from 
the curse of dimensionality which casts doubts on its results.

Some national regulators have been facing a problem of ill-posed frontier models. 
Ill-posedness of a model may arise from several reasons (e.g., Golan et  al. 1996; 
Golan 2018). In the case of regulation of the electricity sector, an ill-posed model 

1 For a detailed presentation of methods for efficiency measurement, see Kumbhakar and Lovell (2000) 
and Fried et al. (2008), chapter 2, for parametric frontier models and Fried et al. (2008), chapter 5, for 
non-parametric frontier models.
2 Regulation of the electricity distribution sector is changing from an efficiency-oriented instrument to 
one that also includes the provision of service quality (e.g., Cambini et al. 2014).
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arises mainly from (i) limited information available—small sample sizes, incom-
plete data, and when the number of unknown parameters exceeds the number of 
observations; (ii) models affected by collinearity and/or outliers; and (iii) missing 
data (e.g., unobserved heterogeneity). Thus, the question is how to achieve the best 
possible results with an ill-posed model? The answer is not straightforward and the 
choice of a specific methodology is usually controversial. An attractive approach is 
based on some maximum entropy (ME) estimators, which are designed to extract 
information from limited and noisy data using minimal statements on the data gen-
eration process.

The purpose of this study is to show that with generalized maximum entropy esti-
mation, all the available information can be included in the model, without the usual 
need to convert ill-posed into well-posed problems required by traditional estima-
tion techniques. This study proposes a frontier approach, based on stochastic frontier 
analysis (SFA) with the generalized maximum entropy (GME) estimator to measure 
productive (technical) efficiency of a sample of thirteen European electricity dis-
tribution companies. The sample was employed by the Portuguese regulator of the 
electricity sector (ERSE) to set the regulatory parameters for the distribution compa-
nies in the period of 2012–2014 (ERSE 2011). Several possible model specifications 
are considered specifying different returns to scale and, input and output variables. 
SFA with GME and DEA (the most preferred method by national regulators) are 
applied to the ERSE data set and the efficiency results are compared, as well as the 
efficiency rankings.

The remainder of the paper is organized as follows. In Sect. 2, a brief literature 
review is presented focusing on the performance of the most common frontier meth-
ods used in the electricity sector. Section 3 presents the radial input distance func-
tion, used to measure technical efficiency, and the GME estimation. The data sample 
on electricity distribution companies is discussed in Sect. 4, as well as the empirical 
results3 obtained from SFA with GME and DEA. Concluding remarks are presented 
in Sect. 5.

2  A brief literature review

The most common benchmarking methods used in the electricity sector are econo-
metric modeling, involving constrained ordinary least squares (COLS) and SFA, 
indexing (e.g., unit costs and total factor productivity indexes), and mathematical 
modeling, using DEA (e.g., Lowry and Getachew 2009). More recently, Kuos-
manen and Kortelainen (2012) propose a two-stage method, called the stochastic 
non-smooth envelopment of data (StoNED), to estimate a frontier model. However, 

3 A very brief discussion of the radial input distance function and GME estimation, using a sample with 
eleven companies, were presented at the Conference EEM 2016 (Silva et  al. 2016). It was a first pre-
liminary study where efficiency scores were generated but there was neither statistical analysis nor a full 
interpretation of the efficiency results. The sample used in this study is different and includes two addi-
tional companies considered as outliers by ERSE.
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there are still some unsolved issues underlying the StoNED (c.f., Andor and Hesse 
2014; Kuosmanen and Kortelainen 2012; Kuosmanen and Johnson 2010; Kuos-
manen 2006), namely: (1) the StoNED model in Kuosmanen and Kortelainen (2012) 
involves one output and multiple inputs; (2) while statistical properties of the uni-
variate convex nonparametric least squares (CNLS) estimator are well established 
(consistency and rate of convergence), the same does not apply to the multivariate 
CNLS estimator; and (3) the composite error term assumptions imported from SFA 
are very restrictive and may be inappropriate.4

Several studies compare the performance of some frontier methods in the context 
of regulating the electricity sector or/and using a Monte Carlo simulation study. In 
particular, those studies report dissimilarities of efficiency estimates among different 
methods and model specifications. Jamasb and Pollitt (2003) discuss the effect of 
the choice of frontier methods (DEA, COLS and SFA models) using an international 
cross sectional sample of 63 regional electricity distribution utilities in six European 
countries. This study indicates that the selection of frontier methods, model speci-
fication, and variables (choice of inputs, outputs and environmental variables) can 
affect not only the efficiency scores but also the ranking of the companies. Addi-
tionally, frontier approaches are sensitive to shocks and errors in the data. This is 
particularly true when cross-sectional data is used and with frontier methods that are 
deterministic, such as the DEA and COLS (Jamasb and Pollitt 2001, 2003).

Farsi and Filippini (2004) attempt to investigate whether the problems presented 
by Jamasb and Pollitt (2003) are due to the limitations associated with cross-section 
data models. The sensitivity of inefficiency estimates to different stochastic paramet-
ric frontier models is evaluated using an unbalanced panel of 59 distribution utilities 
in Switzerland over a time period of 9 years. The individual inefficiency scores and 
ranks vary across different models. These problems are not limited to cross-sectional 
data and cannot be completely overcome through panel data models (Farsi and Filip-
pini 2004). Dissimilarities in efficiency estimates across methods are also reported 
by Estache et al. (2004) for distribution utilities in South America and Farsi et al. 
(2006) for a panel data of distribution companies in Switzerland.

The variation of inefficiency estimates across methods and models is an impor-
tant issue, since the robustness and accuracy of the estimated X-factors can be ques-
tioned. The X-factor is one of the regulatory tools in price or revenue caps regula-
tion, on the basis of which utilities are rewarded or punished.5 Thus, the inefficiency 
estimates can have important financial effects for the regulated firms (e.g., Farsi and 
Filippini 2004).

5 Price (revenue) caps are established on the basis of the general formula RPI – X, that is the maximum 
rate of price (revenue) increase is equal to the inflation rate of the retail price index, RPI, minus the 
expected efficiency savings (X).

4 Due to these unsolved issues underlying the StoNED model, namely the fact that involves only one 
output, this method is not used in this study. The models employed in the empirical application involve 
more than one output.
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3  Distance function and GME estimation

Technical efficiency can be estimated using the radial input distance function, which 
provides an input-based measure of technical efficiency.6 An input-oriented techni-
cal efficiency measure, rather than an output-based technical efficiency measure, is 
considered appropriate for the electricity distribution utilities, since the demand for 
distribution services is a derived demand that is not controlled by the utilities (e.g., 
Giannakis et al. 2005).

Definition 1 The radial input distance function is a function 
D ∶ ℜM

+
×ℜN

+
→ ℜ+ ∪ {+∞} defined as follows:

where x is a N-input vector, y is a M-output vector and V(y) is the input (require-
ment) set for y.

By definition, D(y, x) ≥ 1 ⇔ x ∈ V(y) . Figure 1 illustrates the radial input dis-
tance function in the case of two inputs and one output. Consider the input require-
ment set for yo, V(yo), and the input vector xo. In this case, D(yo, xo) > 1 , and xo is 
technically inefficient.

D(y, x) = sup
𝛽

{𝛽 > 0 ∶ x∕𝛽 ∈ V(y)}, ∀y ∈ ℜ
M
+
,

x2

x0

x0/DI(y0,x0)

x1

V(y0)

///

Fig. 1  Radial input distance function

6 The radial input distance function is developed by Shephard (1953). For an overview of this function 
and its properties, please see Färe and Primont (1995).
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A flexible functional form is used to specify the radial input distance function.7 
Flexible forms, such as the translog, are not employed when the sample size is small 
(due to an excessive number of parameters to be estimated) and to avoid the poten-
tial risk of collinearity among second order terms because of strong correlation 
between outputs (e.g., Farsi et al. 2006). The radial input distance function for the 
case of M outputs and N inputs is specified as a translog function8

where i denotes the ith firm in the sample. Given that the distance function is differ-
entiable, the symmetry restrictions are: �mli = �lmi , m, l = 1,…,M, and �nki = �kni , n, 
k = 1,…,N. Homogeneity of degree (+ 1) in inputs requires the following restrictions: 
∑

n �ni = 1 , 
∑

n �nki = 0 , k = 1,…,N, and 
∑

k �mki = 0 , m = 1,…,M. Also, the restric-
tions to test for separability between inputs and outputs are: �mni = 0 , m = 1,…,M; 
n = 1,…,N.

Choosing input x1 and imposing homogeneity of degree 1 in the inputs, the dis-
tance function in (1) can be rewritten as

or, equivalently,

(1)

ln Di = �0i +

M
∑

m=1

�mi ln ymi +

N
∑

n=1

�ni ln xni +
1

2

M
∑

m=1

M
∑

l=1

�mli ln ymi ln yli

+
1

2

N
∑

n=1

N
∑

k=1

�nki ln xni ln xki +
1

2

M
∑

m=1

N
∑

n=1

�mni ln ymi ln xni,

ln (Di∕x1i) = �0i +

M
∑

m=1

�mi ln ymi +

N
∑

n=2

�ni ln x
∗
ni
+

1

2

M
∑

m=1

M
∑

l=1

�mli ln ymi ln yli

+
1

2

N
∑

n=2

N
∑

k=2

�nki ln x
∗
ni
ln x∗

ki
+

1

2

M
∑

m=1

N
∑

n=2

�mni ln ymi ln x
∗
ni
,

(2)

− ln x1i = �0i +

M
∑

m=1

�mi ln ymi +

N
∑

n=2

�ni ln x
∗
ni
+

1

2

M
∑

m=1

M
∑

l=1

�mli ln ymi ln yli

+
1

2

N
∑

n=2

N
∑

k=2

�nki ln x
∗
ni
ln x∗

ki
+

1

2

M
∑

m=1

N
∑

n=2

�mni ln ymi ln x
∗
ni
+ �i,

7 Flexible functional forms are either second-order numerical or second-order differential approxima-
tions to an arbitrary function and impose considerable fewer restrictions prior to estimation than the tra-
ditional technologies, such as Cobb–Douglas, Leontief and CES. The translog form is a second-order 
numerical approximation of the natural logarithm of an arbitrary function (Chambers 1988).
8 Besides a small sample size, there is a strong correlation between outputs in this study, as discussed 
in Sect. 4. The GME estimator is an adequate information-theoretic method to use under these circum-
stances.
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where x∗
ni
= xni∕x1i and �i = − lnDi , which is the error term.

The ME estimation, also known as information-theoretic estimation, by avoiding 
criticisms and difficulties of DEA and SFA, appears to be a promising approach in 
efficiency analysis (e.g., Campbell et al. 2008; Rezek et al. 2011; Tonini and Pede 
2011; Macedo et  al. 2014; Robaina-Alves et  al. 2015). Traditional distributional 
assumptions for the two-error component in SFA with ML estimation are defined 
reflecting expectations regarding the behaviour of the errors (e.g., Kumbhakar and 
Lovell 2000, p. 74). These formal statistical distributions (truncated normal, expo-
nential, gamma, among others) are not used with GME estimation, which represent 
an important advantage. Moreover, with the strategy used by Macedo et al. (2014) 
that includes the use of DEA to define an upper bound for the inefficiency error 
supports, the main criticism on DEA is used in this context as an advantage. In this 
work only the GME estimator is considered and its features in SFA are briefly dis-
cussed next.

Rewriting the stochastic frontier model in (2) as

where V is the (S × K) matrix of the variables on the right-hand side of (2), including 
the intercept, � is the (K × 1) vector of the parameters in (2) and ε in (2) is defined 
as a composed error term, � = � − u , with ν being a random noise error term and u 
representing technical inefficiency.

The reparameterizations of the (K × 1) vector � , the (S × 1) vector v and the 
(S × 1) vector u follow the same procedures as in the traditional regression model 
(Golan et  al. 1996; Golan 2018). Each parameter is treated as a discrete random 
variable with a compact support and T possible outcomes; each error ν is defined as 
a finite and discrete random variable with J possible outcomes; and each error u is 
defined as a finite and discrete one-sided random variable with L possible outcomes, 
which implies that the lower bound for the supports is zero for all error values (the 
full efficiency case).9 Thus, the reparameterizations are given by � = Zp , with Z 
being (K × KT) a matrix of support points and p a (KT × 1) vector of unknown prob-
abilities; v = Aw , with A a (S × SJ) matrix of support points and w a (SJ × 1) vector 
of unknown probabilities; and u = B�, with B a (S × SL) matrix of support points 
and � a (SL × 1) vector of unknown probabilities.

The GME estimator in Golan et al. (1996) extended to the SFA context is given 
by

subject to the model constraints

and the set of additivity constraints

(3)− ln x1 = V� + v − u,

(4)argmax
p,w,�

{

−p� ln p − w� ln w − �� ln �
}

(5)− ln x1 = VZp + Aw − B�

9 The supports are defined as closed and bounded intervals in which each parameter or error is restricted 
to lie.
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where ⊗ represents the Kronecker product. The support matrices Z and A are defined 
by the researcher based on prior information. When such information does not exist 
for the parameters of the model, symmetric supports around zero with wide bounds 
can be used without expecting extreme risk consequences (Golan et al. 1996; Golan 
2018). On the other hand, the traditional 3-sigma rule with some scale estimate for 
the errors is usually considered to establish the supports in matrix A. Finally, con-
cerning the support matrix B, i.e., the supports for the inefficiency error component, 
although the traditional specific distributional assumptions with ML estimation are 
not considered here, as previously mentioned, the same beliefs in the distribution of 
technical inefficiency estimates are expressed in the model through the error sup-
ports (e.g., Campbell et al. 2008; Macedo et al. 2014; Moutinho et al. 2018). It is 
important to note that, as mentioned by Rezek et al. (2011), while this information 
defines expectations on efficiency estimates, it does not predetermine any outcome 
beforehand, which represents an important feature of GME estimation in this con-
text. Additionally, an efficiency prediction from DEA is used in SFA with GME 
estimation to define an upper bound for the supports, which means that the main 
criticism on DEA (it does not account for noise; all deviations from the production 
frontier are estimated as technical inefficiency) is used here as an advantage, since it 
provides a possible worst case scenario to establish the bound for the supports. The 
details are presented in Sect. 4.

4  Data and empirical results

The data sample of this study was employed by the Portuguese regulator of the elec-
tricity sector (ERSE) to set the regulatory parameters for the distribution companies 
in the period of 2012–2014 (ERSE 2011). “Appendix A” reports the data.10 The data 
consist of a cross-section sample with thirteen European distribution companies 
that are suitable comparators with respect to operational expenses (OPEX)11 and 
the main cost drivers. OPEX are costs controlled by the companies and calculated 
on the basis of 2009 constant prices. In the case of ESB (Ireland) and SP distribu-
tion (UK) whose year of the data is not 2009, OPEX is calculated considering the 

(6)1K = (IK ⊗ 1�
T
)p,

(7)1S = (IS ⊗ 1�
J
)w,

(8)1S = (IS ⊗ 1�
L
)𝜌,

10 The Serbian EPS and Croatian HEP-ODS are considered outliers by ERSE (ERSE 2011).
11 In the regulatory period of 2012–2014, ERSE attempts to improve the methodology employed in the 
distribution activity, with the objective of decreasing OPEX, without harming investment. As a result, 
the price-cap methodology is applied only to OPEX, where capital costs (CAPEX) are analyzed sepa-
rately. Excluding CAPEX to set the price-cap, the company is required to propose and accomplish an 
amount of investment for the regulatory period, avoiding, in this way, the effects of excessive investment. 
Moreover, this implies remunerating the accepted investment at the company’s cost of capital (ERSE 
2011).
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inflation rate of those countries. The OPEX of each country is calculated in US$ 
PPP. The number of customers and energy delivered (GWh) are cost drivers in all 
models specified below. Network length (km) is considered a cost driver in two of 
the models, while in the other two it is specified as a fixed input.

Table 1 reports the Pearson product-moment correlation coefficient between each 
pair of variables. There is a high correlation namely between the main cost drivers, 
indicating a positive linear dependence between them and an expected severe collin-
earity problem in the estimation of model (2).

Regarding the model specification, four models are considered specifying differ-
ent returns to scale and variables specification. The four models are

Model 1 CRS, x1 = OPEX, y1 = energy delivered, y2 = number of customers, 
y3 = network length;
Model 2 CRS, x1 = OPEX, x2 = network length, y1 = energy delivered, y2 = num-
ber of customers;
Model 3 VRS,  x1 = OPEX,  y1 = energy delivered,  y2 = number of customers, 
y3 = network length;
Model 4 VRS, x1 = OPEX, x2 = network length, y1 = energy delivered, y2 = num-
ber of customers;

where CRS and VRS represent, respectively, constant returns to scale and variable 
returns to scale.12

Network length is specified in some empirical studies as an output variable with 
the purpose of measuring the difficulty of topology (Pollitt 2005). In other studies, 
network length, as part of the physical inventory of existing real capital, is consid-
ered a proxy for capital stocks or asset utilization (Jamasb and Pollitt 2003; Lins 
et al. 2007). In models 1 and 3, network length is defined as an output; in models 2 
and 4, network length is a fixed input factor.

Due to the extremely small size of the sample (thirteen observations), it is not 
recommended to use COLS or SFA with ML. Thus, DEA and SFA with GME are 
employed in this study. The DEA models, employed in this study, are presented in 
“Appendix B”.

Table 1  Pearson product-moment correlation coefficient

Number of 
customers

Energy delivered Network length OPEX

Number of customers 1
Energy delivered 0.9907 1
Network length 0.9790 0.9676 1
OPEX 0.9117 0.9171 0.9331 1

12 VRS is the most relaxed form of returns to scale in the sense that allows not only constant returns to 
scale but also increasing returns to scale and decreasing returns to scale (Fried et al. 2008, chapter 1).
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Table 2 reports the DEA efficiency scores as well as the rankings of the com-
panies (presented in parenthesis). The sensitivity of the efficiency scores is high to 
the specification of network length as an output variable or a fixed input variable. 
The efficiency scores either increase or remain constant when the network length 
changes from the specification of an output variable to a fixed input. In fact, the 
mean and the median of the efficiency scores are greater in model 2 (model 4) than 
in model 1 (model 3).

Moreover, the rankings of the companies change, in general, across models 
(Table 2). The rankings are very sensitive to the specification of the network length 
as an output variable or a fixed input. Regarding the hypothesis of returns to scale, 
the rankings of the companies change substantially. EPS, Vÿchodoslovenská, and 
Sibelga are the least efficient in models 1 and 2; EPS, Vÿchodoslovenská and ESB 
are the least efficient companies in models 3 and 4. HEP-DOS is fully efficient in all 
models.

Adding the constraint 
∑

zj ≤ 1 in the DEA model in “Appendix B”, efficiency 
scores are generated under the hypothesis of non-increasing returns to scale. These 
efficiency scores are equal to the ones generated with CRS (models 1 and 2), which 
indicate that electricity distribution companies are operating at increasing returns to 
scale.13

Our DEA results are, in general, consistent with the findings in some previous 
studies (e.g., Farsi and Filippini 2004; Jamasb and Pollitt 2003). “Our experience 
in Europe shows, however, that different versions of a DEA model will give quite 

Table 2  DEA efficiency scores and rankings

Company Model 1 Model 2 Model 3 Model 4

East 0.2980 (2) 1.0000 (1) 1.0000 (1) 1.0000 (1)
EDP 0.1189 (7) 1.0000 (1) 0.3305 (7) 0.8826 (8)
Endesa 0.0917 (8) 1.0000 (1) 0.2854 (8) 1.0000 (1)
Enel Distribuzione 0.0670 (9) 1.0000 (1) 0.1746 (9) 1.0000 (1)
ESB 0.0573 (10) 0.3428 (9) 0.0965 (12) 0.1529 (12)
NEDL 0.2537 (3) 0.3039 (10) 1.0000 (1) 1.0000 (1)
PPC 0.1216 (6) 1.0000 (1) 0.4247 (6) 1.0000 (1)
Sibelga 0.0528 (11) 0.1453 (11) 0.1724 (10) 1.0000 (1)
South East 0.1899 (5) 0.4507 (7) 0.6479 (5) 0.8239 (9)
SP Distribution 0.1970 (4) 0.4298 (8) 0.6106 (11) 0.8205 (10)
Vÿchodoslovenská 0.0354 (12) 0.1343 (12) 0.1060 (13) 0.5309 (11)
EPS 0.0173 (13) 0.0866 (13) 0.0363 (11) 0.0513 (13)
HEP-ODS 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1)
Mean 0.1924 0.6072 0.4527 0.7894
Standard deviation 0.2576 0.3928 0.3631 0.3339
Median 0.1189 0.4507 0.3305 1.000

13 For details on this procedure, see Fӓre et al. (1994), chapter 3.
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different results and that there is no way to tell which set of results is most reliable.
(…)” This finding from Shuttleworth (2003, p. 45) is also evident in this study.

Before discussing the estimation procedures of SFA with the GME estimator, as 
well as the results from this method, it is important to state that these are ill-posed 
models, namely ill-conditioned (the collinearity problem revealed by the analysis of 
Table 1) and under-determined (the number of parameters to estimate exceeds the 
number of observations available in some models). Therefore, the use of traditional 
estimation techniques in SFA should be avoided in this empirical application and 
ME estimators are recommended.

As mentioned previously, the support matrices Z and A are defined by the 
researcher based on prior information. In this work, the supports in Z are defined 
through [− 10,10] for all the parameters of the models (wide bounds; the impact 
on the estimates using supports of higher amplitude were negligible; e.g., Preckel 
2001), and the supports in the matrix A are defined by [− 4,4] and [− 2,2] consider-
ing the standard deviation of the noisy observations and the 3-sigma rule as a guide. 
The supports in matrix B are established accordingly to Macedo et al. (2014), where 
the upper bound of each support is given by − ln(DEAn) , being DEAn the lower effi-
ciency estimate obtained by DEA.14 Five points in the supports (T = J = L = 5) of 
each support matrix are considered (a usual value in literature).

Tables 3 and 4 present the estimated coefficients of the input distance function 
with its corresponding standard errors using bootstrap by resampling residuals in 
1000 trials. The median of each estimated coefficient is generated as the median of 
the 1000 estimates obtained by bootstrapping residuals.

Most of the parameter estimates of models 1 and 3 are not statistically signifi-
cant for both set of supports, namely for the set [− 10,10] and [− 4,4]. Yet, most of 
the parameter estimates of models 2 are statistically significant for both set of sup-
ports. Estimation results for model 4 indicate that there is separability between out-
puts (number of customers and energy delivered) and the fixed input factor (network 
length).15 Note that the parameter estimate of network length in models 2 and 4 is 
statistically significant at the 1% level, contrasting with the statistical insignificance 
of the parameter estimate of the network length in models 1 and 3, where this vari-
able is specified as an output.

In summary, SFA with GME results indicate that model 2 seems a stable speci-
fication of the technology. This means that the specification of network length as 
a fixed input may be more appropriate than as an output variable and CRS may be 
more adequate than the hypothesis of VRS. However, the choice of network length 
as an input variable or an output variable deserves further research work.

Tables 5 and 6 present the efficiency scores and the rankings of the companies 
(presented in parenthesis) generated by SFA with GME for each set of supports. 

14 Another strategy based on Campbell et al. (2008) was implemented to define the supports in matrix 
B. Although the efficiency estimates are different, the rankings in terms of efficiency are equal and the 
elasticities computed at the mean values of inputs and outputs are identical.
15 Separability between the outputs and the fixed input factor implies that the marginal rate of transfor-
mation between the two outputs does not depend on the network length.
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Although there are differences in the standard deviation, for every model the effi-
ciency scores are not very sensitive to the set of supports in terms of central ten-
dency. The average (median) of the efficiency scores, for example, in model 1 is 

Table 5  SFA with GME efficiency scores and rankings, [− 10,10], [− 2,2]

Company Model 1 Model 2 Model 3 Model 4

East 0.4984 (4) 0.8297 (2) 0.5485 (4) 0.6118 (3)
EDP 0.4378 (5) 0.5678 (7) 0.4407 (10) 0.4662 (10)
Endesa 0.4104 (8) 0.5519 (8) 0.5226 (7) 0.4849 (9)
Enel Distribuzione 0.3016 (11) 0.4630 (10) 0.4960 (8) 0.6182 (2)
ESB 0.3672 (10) 0.4614 (11) 0.5265 (6) 0.5680 (7)
NEDL 0.3695 (9) 0.7709 (3) 0.4509 (9) 0.5914 (5)
PPC 0.4242 (6) 0.5706 (6) 0.4135 (11) 0.4225 (11)
Sibelga 0.4140 (7) 0.5242 (9) 0.5375 (5) 0.5926 (4)
South East 0.5864 (3) 0.7035 (4) 0.5967 (3) 0.5469 (8)
SP distribution 0.6399 (2) 0.6906 (5) 0.6365 (2) 0.5737 (6)
Vÿchodoslovenská 0.1434 (13) 0.2872 (12) 0.2977 (12) 0.3072 (12)
EPS 0.1841 (12) 0.2635 (13) 0.2807 (13) 0.2886 (13)
HEP-ODS 0.8624 (1) 0.9193 (1) 0.8049 (1) 0.8819 (1)
Mean 0.4338 0.5849 0.5043 0.5349
Standard deviation 0.1887 0.1955 0.1379 0.1514
Median 0.4140 0.5678 0.5256 0.5680

Table 6  SFA with GME efficiency scores and rankings, [− 10,10], [− 4,4]

Company Model 1 Model 2 Model 3 Model 4

East 0.4809 (4) 0.6928 (3) 0.5455 (3) 0.5770 (2)
EDP 0.4474 (5) 0.6026 (7) 0.4949 (8) 0.5344 (9)
Endesa 0.4215 (8) 0.5935 (8) 0.5056 (7) 0.5203 (10)
Enel Distribuzione 0.3826 (11) 0.5614 (10) 0.4870 (9) 0.5570 (4)
ESB 0.4169 (9) 0.5278 (11) 0.5213 (5) 0.5515 (7)
NEDL 0.4223 (7) 0.6990 (2) 0.4857 (10) 0.5537 (5)
PPC 0.4390 (6) 0.6101 (6) 0.4820 (11) 0.5180 (11)
Sibelga 0.4033 (10) 0.5638 (9) 0.5083 (6) 0.5516 (6)
South East 0.4891 (3) 0.6543 (4) 0.5386 (4) 0.5511 (8)
SP Distribution 0.5127 (2) 0.6459 (5) 0.5553 (2) 0.5650 (3)
Vÿchodoslovenská 0.2933 (13) 0.5034 (12) 0.3992 (13) 0.4385 (12)
EPS 0.2985 (12) 0.4469 (13) 0.4066 (12) 0.4370 (13)
HEP-ODS 0.6721 (1) 0.7232 (1) 0.6675 (1) 0.7105 (1)
Mean 0.4369 0.6019 0.5075 0.5435
Standard deviation 0.0960 0.0814 0.0671 0.0668
Median 0.4223 0.6026 0.5056 0.5515
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0.4369 (0.4223) in the case of the set of supports being [− 10,10] and [− 4,4] and 
0.4338 (0.4140) when the supports are [− 10,10] and [− 2,2].

As DEA efficiency scores, the GME efficiency scores are also sensitive to the 
specification of the network length as an output variable or a fixed input variable. 
Consider, for example, the supports [− 10,10] and [− 2,2].16 The efficiency scores 
increase, in general, when the specification of network length changes from an out-
put variable to a fixed input (compare models 1 and 2, and models 3 and 4).

Although the rankings of the companies change across models, there are a few of 
companies that are in the highest and lowest efficiency groups in all models: HEP-
DOS is the most efficient company and EPS and Vÿchodoslovenská are the least 
efficient for both set of supports. Interestingly, the DEA rankings indicate, as men-
tioned before, that HEP-DOS is fully efficient and EPS and Vÿchodoslovenská are 
the lowest efficient companies in all models.

Table 7 presents the Pearson correlation coefficient between the DEA efficiency 
scores and the SFA with GME efficiency scores generated with supports [− 10,10], 
[− 4,4] (denoted by GME4) and [− 10,10], [− 2,2] (denoted by GME2), as well as 
between GME2 and GME4. Moreover, results from the Kruskal–Wallis and the 
median tests are also reported in this table. Both are nonparametric tests, the first 
one with a null hypothesis that different populations have an identical distribu-
tion, and the second with a null hypothesis that different populations have identical 
medians.

The correlation between DEA and each of the SFA with GME efficiency scores 
is positive and very strong in model 1. For the other models, the correlation is 

Table 7  Pearson correlation coefficient and non-parametric tests on efficiency scores

*, **, ***Correlations statistically significant at 10%, 5% and 1% respectively

Model 1 Model 2 Model 3 Model 4

Pearson correlation
 DEA, GME2 0.806*** 0.466* 0.592** 0.514**
 DEA, GME4 0.861*** 0.486** 0.659*** 0.521**
 GME2, GME4 0.984*** 0.981*** 0.978*** 0.978***
 Kruskal–Wallis test p value = 0.0003 p value = 0.936 p value = 0.562 p value = 0.013
 Median test p value = 0.001 p value = 0.488 p value = 0.663 p value = 0.007

Table 8  Spearman correlation 
coefficient on efficiency 
rankings

*, **, ***Correlations statistically significant at 10%, 5% and 1% 
respectively

Model 1 Model 2 Model 3 Model 4

DEA, GME2 0.797*** 0.526** 0.552** 0.597**
DEA, GME4 0.890*** 0.488** 0.525** 0.466*
GME2, GME4 0.962*** 0.995*** 0.967*** 0.945***

16 For the set of supports [-10,10] and [-4,4], the results are similar.
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moderately positive. However, the correlation between GME2 and GME4 is very 
strong in each model (as expected).

The following decisions on Kruskal–Wallis and median tests can be performed, 
for example, at 2% significance level. The null hypothesis that the DEA and the 
two SFA with GME efficiency scores originate from the same distribution (i.e., the 
three populations have equal distribution) is rejected in models 1 and 4; yet the null 
hypothesis is not rejected when it considers that the GME2 and GME4 population 
efficiency scores originate from the same distribution. Results for the median test 
are similar in the sense that the null hypothesis considering that the DEA and the 
two GME population efficiency scores have the same median is rejected in models 
1 and 4. However, the hypothesis that the GME2 and GME4 population efficiency 
scores have the same median is not rejected.

Table 8 reports the Spearman correlation coefficient on the efficiency rankings 
obtained by DEA and SFA with GME. Results indicate a significant positive mono-
tonic trend between each pair of efficiency rankings, namely between the ones gen-
erated with GME2 and GME4, in all models.

5  Conclusions

The main purpose of this study is to propose an alternative stochastic fron-
tier approach that can be used by national regulators of electricity utilities. Some 
national regulators have been facing a problem of ill-posed frontier models. In the 
case of regulation of the electricity sector, an ill-posed model arises mainly from 
(i) limited information available—small sample sizes, incomplete data, and under-
determined models; (ii) models affected by collinearity and/or outliers; and (iii) 
missing data. Information-theoretic methods, where generalized maximum entropy 
is included, are useful in the estimation of such ill-posed models.

The empirical study involves a sample data on thirteen European electricity dis-
tribution companies used by the Portuguese regulator of the electricity sector to set 
the regulatory parameters for the distribution companies in the period of 2012–2014. 
SFA with GME and DEA methods are employed and the estimates of technical effi-
ciency are compared, as well as the efficiency rankings.

Considering the SFA with the GME estimator, it is important to note that the 
models are ill-posed. Additionally, the number of parameters to be estimated is 
greater than the number of observations in some models. The results from SFA with 
the GME indicate that model 2 seems a stable specification of the technology. This 
has two implications in the technology specification of the electricity distribution 
utilities: the specification of network length as a fixed input rather than an output 
variable may be more appropriate, as well as the hypothesis of constant returns to 
scale. Yet, further studies are needed addressing in particular the specification of 
network length as an output or an input variable.

The SFA with GME and DEA efficiency scores as well as the rankings of the 
companies are very sensitive to model specification, namely to returns to scale and 
the specification of the network length as an output variable or a fixed input. The 
Kruskal–Wallis and the median tests indicate that DEA and the two SFA with GME 
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efficiency scores do not originate from the same distribution and do not have the 
same median. However, those statistical tests indicate that the two SFA with GME 
efficiency scores originate from the same distribution and have the same median. 
Also, the correlation between the two SFA with GME efficiency scores is very 
strong and there is a significant positive monotonic trend between each pair of effi-
ciency rankings in all models.

Furthermore, the empirical results indicate that (i) the SFA with GME efficiency 
scores and rankings are not very sensitive to prior information (set of supports) and 
have similar distributional properties; (ii) SFA with GME using different prior infor-
mation rank the electricity distribution utilities in approximately the same order; and 
(iii) SFA with GME using different prior information find mostly the same electric-
ity distribution companies to be in the highest and lowest efficiency groups. The 
empirical results of this study indicate that it may be useful for national regulators 
of distribution electricity companies, namely in countries with very few regulated 
companies, to employ SFA with GME to set price controls within incentive-based 
regulation.

In this empirical study, quality of service in distribution networks, such as techni-
cal quality, is not considered. Additionally, high penetration of renewable distributed 
generation (DG) puts new challenges which has not been understood and incorpo-
rated homogeneously in distribution regulation across Europe. The connection of 
renewable DG to distribution networks has a double impact on costs: network costs 
and energy losses. The situation across EU is that not all member states regulators 
consider renewable DG as a cost driver, at least explicitly (Cossent et al. 2009).

The research issue of this study is crucial for national regulators and the electric-
ity sector. The SFA with GME approach allows national regulators, namely the ones 
that regulate a few firms, to set price controls using this frontier method. Moreover, 
the GME estimation can be extremely useful and a robust empirical methodology 
for investigating the nexus between the incentive-based regulation and investment 
behavior of electric utilities, an issue recently debated in the literature in different 
countries (e.g., Cambini and Rondi 2010; Cullmann and Nieswand 2016; Huang and 
Söder 2017). Investment in the electricity sector, in general, and in the electricity 
distribution, in particular, is increasingly important with the energy transition, which 
involves installing new capacity and replacing existing assets. Investments are also 
induced by new loads such as electric vehicles, and the widespread use of smart 
metering systems which imply very large investments for the distribution utilities. 
Given that distribution utilities are regulated, the design of incentive mechanisms 
becomes crucial for the energy sector (e.g., Cambini et  al. 2014; Banovac et  al. 
2009; Cullmann and Nieswand 2016).
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Appendix A

See Table 9.

Appendix B: DEA models

DEA is a non-parametric, mathematical programming-based method to generate the 
efficient frontier in a given data set and measure the efficiency of each firm relative to 
the frontier. It fully envelops the data and makes no accommodation for noise (Fried 
et al. 2008, chapter 1).

The DEA model, assuming CRS, to generate technical efficiency for each firm i, is 
given as:

TE(yi, xi) = (1∕D(yi, xi)) = min
λ,z

{

λ ∶ λxi ∈ V(yi)
}

= min
λ,z

{

λ ∶

J
∑

j=1

zjyj
m
≥ yi

m
, m = 1,… ,M;

J
∑

j=1

zjxj
n
≤ λxi

n
, n = 1,… , N;

zj ≥ 0, j = 1,… , J
}

,

Table 9  International data on electricity distribution utilities. Source: ERSE (2011)

Company Country Year Number of 
customers

Energy 
delivered 
(GWh)

Network length 
(km)

OPEX (PPC 
USD)

East UK 2010 2,223,548 34,719 30,160 100,724
EDP distribuição Portugal 2009 6,119,805 46,146 218,226 335,630
Endesa Spain 2009 11,786,168 115,476 312,336 1,088,632
Enel Distribuzi-

one
Italy 2009 30,000,000 240,900 1,095,868 3,106,148

EPS Serbia 2009 2,310,811 27,157 142,195 1,354,942
ESB Irland 2006 2,063,925 24,874 165,771 375,589
HEP-ODS Croatia 2009 2,310,811 14,701 132,938 12,708
NEDL UK 2010 1,600,000 15,540 15,540 52,959
PPC Greece 2009 7,554,289 54,400 222,072 386,646
Sibelga Belgium 2009 211,001 5342 6307 87,476
South East UK 2010 2,229,279 22,135 45,000 100,724
SP Distribution UK 2009 2,310,811 20,321 63,752 89,165
Vychodoslov-

enska
Slovakia 2009 609,554 3386 23,500 94,621
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where yi and xi are, respectively, the M-output vector and the N-input vector of firm 
i, z is a J × 1 intensity vector, where J is the total number of firms in the data set. λ 
is a scalar whose optimal value is the technical efficiency score of firm i, TE(yi, xi) , 
which, in turn, is equal to the inverse of the value of the radial distance function.

In the minimization problem, technical efficiency of firm i is assessed in terms 
of its ability to contract its input vector subject to the efficient frontier. If a radial 
contraction of the input vector is possible for firm i, its optimal λ < 1 (i.e., firm i 
is technically inefficient), while if the radial contraction is not possible, its optimal 
λ = 1 (i.e., firm i is technically efficient).

For model 1, M = 3 and N = 1. For model 2, M = 2 and N = 2, where network 
length is considered a fixed input. Models 3 and 4 are similar to, respectively, mod-
els 1 and 2, except that the former models assume VRS. This assumption is modeled 
by adding the convexity constraint 

∑

j z
j = 1 in the minimization problem, presented 

above.
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