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Abstract Westudy the regulation of amonopolistic firm that provides a non-marketed
output based on multiple substitutable inputs. The regulator is able to observe the
effectiveness of the provision, but faces information asymmetries with respect to the
efficiency of the firm’s activities. Specifically, we consider a setting where one input
and the output are observable, while another input and related costs are not. Multi-
dimensional information asymmetries are introduced by discrete distributions for the
functional form of the marginal rate of substitution between the inputs as well as for
the input costs. For this novel setting, we investigate the theoretically optimal Bayesian
regulation mechanism. We find that the first-best solution cannot be obtained in case
of shadow costs of public funding. The second-best solution implies separation of
the most efficient type with first-best input levels, and upwards distorted (potentially
bunched) observable input levels for all other types. Moreover, we compare these
results to a simpler non-Bayesian approach, i.e., a single pooling contract, and hence,
bridge the gap between the academic discussion and regulatory practice. In a numerical
simulation, we identify certain conditions in which a single contract non-Bayesian
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regulation can indeed get close to the second-best solution of the Bayesian menu of
contracts regulation.

Keywords Regulation · Asymmetric information · Mechanism design ·
Non-marketed goods · Substitutable inputs

JEL Classification D42 · D82 · L51

1 Introduction

Numerous goods and services are provided by regulated firms with a monopolis-
tic status. For instance, a single firm is usually responsible for grid infrastructures
in the electricity or telecommunication sector. The service to be delivered by these
firms is typically well-defined and often fixed ex-ante, such that the regulator will
be well aware whether or not it has been provided effectively. For instance, it is
straightforward to verify the number of blackouts in electricity grids or the speed
of the internet in telecommunication networks. In contrast, it is often difficult for the
regulator to judge the efficiency of the firm’s measures to provide the output. Tech-
nical systems are often highly complex and characterized by a production function
with multiple interdependent inputs that are hard to assess. Hence, firms may have an
informational advantage on their internal activities, which clearly complicates efficient
regulation.

In practice, production functions often involve two types of activities or inputs,
respectively, that are substitutable to a certain extent: on the one hand, it needs phys-
ical assets, such as electricity lines or data cables, whose level of deployment is
relatively easy to observe. On the other hand, operational measures are required for
the efficient usage of physical infrastructures, such as data routing or line switching,
which are more difficult to asses (for instance, the number of newly built lines can sim-
ply be counted, while measuring the productivity in using a operational software can
be quite ambiguous). From this setting, different sources of information asymmetry
may arise: First, caused by substantial changes on the demand side or new techno-
logical options, the regulator must assess the necessary level of activity by the firm to
provide the observable output. As an example, consider the rapidly increasing deploy-
ment of renewable energies in the electricity sector or the use of broadband internet
in the telecommunication industry. For instance, in Germany the regulator approves a
detailed electricity grid development plan for the transmission system operators (Net-
zentwicklungsplan 2013), which is elaborated by the operators themselves. There is
control by public consultation and model-based studies; however, the complexity of
expanding and operating the electricity grid precludes elimination of all information
asymmetry about the necessary level of actions. Second, a source of asymmetric infor-
mation exists if the regulator may be unable to verify the unit costs of one or multiple
inputs. As previously stated, this is the case if the effects of operational measures
and hence, related costs are difficult to assess. In the given example of the electric-
ity or telecommunication grid, the regulator can hardly assess how physical assets
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can be (partially) substituted by using efficient operational measures, e.g., intelligent
management of redundancies in the grid.

In theory as well as in practice, such problems of information asymmetry between
the regulator and the firm have been tackled by different forms of regulation. Typical
approaches in regulatory practice range from cost-based regulation to widely applied
incentive regulation (discussed, e.g., in Joskow 2014), or a linear combination of
those two extremes (e.g., Schmalensee 1989). From an academic viewpoint, theo-
retical approaches suggest that the best theoretical solution consists of the regulator
offering the firm amenu of contracts, such that the firm reveals her private information
(e.g., Laffont and Tirole 1993). Even though the dichotomy between such Bayesian
models of regulation (which tend to dominate the academic discussion) and simpler
non-Bayesian models (which are closer to regulatory practice) is well perceived, cor-
responding explanations are rather vague. For instance, as Armstrong and Sappington
(2007) note, “[...] regulatory plans that encompass options are ’complicated’, and
therefore prohibitively costly to implement”.

Against the above background, the goal of this paper is twofold: First, to identify
and investigate the optimal Bayesian regulation for the multi-dimensional problem at
hand, and second, to bridge the gap between the theoretically optimal solution and
simpler regimes applied in regulatory practice. For the latter, we provide a theoretical
as well as computational analysis to identify circumstances under which a simple
regime comes near the optimal solution.

To derive an optimal regulation strategy, we build on the theory of incentives and
contract menus. It is well known that in a simple setting with two types of the firm,
the efficient type is incentivized via a contract with first-best (price) levels along with
some positive rent, while the inefficient type’s contract includes prices above the first-
best and no rent (e.g., Laffont and Tirole 1993). The same logic applies for the case
of one-dimensional continuous type spaces (ibid.).

By analyzing asymmetric information with respect to total factor productivity in a
two-input production function, Besanko (1985) extended this approach and presented
a paper with noticeable similarities to ours. Specifically, he presented a result which
is congruent with the one we obtain in a reduced version of our model.1 However,
there remain several important differences: First, Besanko assumed a model with
distributional welfare preferences while we consider shadow costs of public funding.
Second, the optimal menu in Besanko (1985) consists of the observable input along
with a regulated price for the output, while we build on the observable input along
with a transfer payment. And third, we study a discrete multi-dimensional type space
instead of a univariate continuous distribution.

Multi-dimensional problems of adverse selection have been studied, e.g., by Lewis
and Sappington (1988b),Dana (1993),Armstrong (1999) orAguirre andBeitia (2004).
While Dana (1993) analyzes a multi-product environment, Lewis and Sappington
(1988b), Armstrong (1999) and Aguirre and Beitia (2004) consider two-dimensional
adverse selection with only one screening variable. Specifically, the latter three derive

1 We thank an anonymous reviewer for drawing our attention towards this paper and the results presented
therein.
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optimal regulation strategies in a marketed-good environment (in the sense of Caillaud
et al. 1988) with unknown cost and demand functions. In our paper, unlike Lewis
and Sappington (1988b) and Armstrong (1999), we consider shadow costs of public
funding instead of distributional welfare preferences. Despite technical differences,
this is largely in line with the analysis of Aguirre and Beitia (2004).2 However, in
contrast to all these papers, we solve the two-dimensional adverse selection problem
for a non-marketed good environment and a production process that involves two
substitutable inputs with an uncertain rate of substitution (i.e., isoquant) and input
factor costs.3

With this novel setting of multi-dimensional inputs and a non-marketed output,
we contribute to the general insights from the above literature. We find that expected
social welfare necessarily includes positive rents for some types of the firm, such
that the first-best solution cannot be achieved. While the efficient type is always set
to first-best input levels, the other contracts’ (observable) input levels are distorted
upwards.4 Separation of at least three types is always possible, while bunching of two
types may be unavoidable in case of a very asymmetric distribution of costs or very
flat isoquants.

We then compare the obtained optimal Bayesian regulation to the results of a non-
Bayesian regulation that we obtain by restricting our regulation problem to one single
pooling contract.5 We find that despite the general inferiority, a non-Bayesian cost-
based regulatory regime may indeed be close to the optimal Bayesian solution for
specific circumstances. This especially holds true if the overall input level is likely to
be high, or if the substitutability in the observable input is low (such that its power as
contract variable is weak).

Meanwhile, in practical applications the specific results will naturally depend on
the specification of the functions and parameters. For instance, in our exemplary cal-
culations based on a CES production function, we find an exponential increase in
the second-best observable quantities when moving the probability of low isoquants
upwards. With respect to welfare, the simple contract performs close to the optimal
contract if realizations of high input level requirements as well as costs are likely, if
the elasticity of substitution is high, or if the share parameter favors the unobservable
input factor. Hence—depending on the prevailing conditions—a simple contractmight
indeed be a suitable solution in regulatory practice to avoid overly complicated menus

2 Aguirre and Beitia (2004) show the difference between shadow costs of public funding and distributional
welfare preferences based on a model with continuous probability distribution, while we assume a discrete
distribution.
3 Noticeably, with the (discrete) two-dimensional adverse selection problem, our problem setting is tech-
nically closest to the model discussed by Armstrong (1999).
4 Upwards distorted observable input levels coincide with upwards distorted prices for the inefficient
type as shown in Laffont and Tirole (1993). They also agree with the results in a setting with unknown
cost and demand functions as long as shadow costs of public funding are considered (Aguirre and Beitia
2004). Noticeably, the case of prices below marginal costs, as found in Lewis and Sappington (1988b) and
Armstrong (1999), is mainly triggered by using a distributive social welfare function instead of shadow
costs of public funding.
5 We will argue that in our context, this type of regulation is more suitable than other “simple” mechanisms
like rate of return or revenue cap regimes.
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of contracts which might even turn out to be inefficient overall (e.g., when adding
costly planning and coordination processes to the analysis). For instance, in the above
example of electricity networks inGermany, the regulator imposes a cost-based regula-
tion on the responsible firms—and might eventually be close to an efficient regulatory
outcome when considering large budgets and ongoing public discussions about grid
expansion as an indication for the aforementioned circumstances.

The paper is organized as follows: Sect. 2 introduces the model; Sect. 3 presents
the optimal regulation strategy; Sect. 4 compares the optimal regulation to simpler
regimes; Sect. 5 provides additional insights based on our computational analysis;
and Sect. 6 concludes.

2 The model

Consider a single firm that is controlled by a regulator. The firm uses two inputs to
provide an output in terms of a good or service level q that is requested by the regula-
tor. The regulator’s choice of q could, for instance, result from counterbalancing the
economic value of the provided with the related social costs. For simplicity, however,
we assume q to be invariant throughout the paper.6

In our model, probability μ (respectively 1 − μ) leads to a low (high) aggregated
input that is necessary to reach the same requested output q. This could, e.g., be an
exogenous shock induced by the deployment of additional infrastructure, e.g., due
to additional grid necessary for renewable energies or high speed internet etc. From
the firm’s perspective, an output level q can be provided by means of two different
inputs, one of which is observable (x) and one non-observable (y) by the regulator.
The observable input x might be thought as actually physical infrastructure, which is
easily observable. The non-observable input might be something more hidden, e.g.,
more sophisticated operation procedures, optimization of the existing infrastructure
etc. The tradeoff between those two inputs needed to reach output q is commonly
described by a production function q = f (x, y) which can be illustrated by means
of isoquants. We assume smooth and decreasing marginal returns of both inputs,
such that the isoquants are downward sloping, convex and differentiable. Noticeably,
two different isoquants can never cross. An example fulfilling these requirements is
a Cobb–Douglas-type production function. The inverse production function g(q, x)
reflects the necessary level of the non-observable input y needed to reach output q,
given a level of x . We will mostly use this inverse function hereafter. Due to the
exogenous shock leading to a low (l) or high (h) aggregated input necessary for the
envisaged output level q, the inverse function takes one of two possible functional
forms, i.e. gi (q, x), with i ∈ [l, h] and gl(q, x) < gh(q, x).

6 Although this assumption might seem restrictive at first sight, it may indeed fit many relevant cases very
well. For instance, due to the very high societal value of uninterrupted electricity transmission, changes
in costs will hardly affect the desired level of the transmission service quality q. In the same vein, access
to infrastructure in rural areas, e.g., high-speed internet or telecommunication services, may not be cost-
efficient but considered a public service.
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Fig. 1 a Cost variation small compared to isoquant variation. b Cost variation large compared to isoquant
variation. Problem setting with double adverse selection

The optimal rate of substitution between the two inputs minimizing total costs for
reaching the requested output depends on the cost functions of the inputs. We consider
the cost function cx (x) of the the observable input to be fixed and common knowledge,
while the cost function of the non-observable input cyj (y) is subject to a nature draw,
which leads with probability ν (respectively 1 − ν) to a low (high) cost function
(i.e., j ∈ [l, h]). For simplicity, we assume constant factor costs of both inputs, i.e.,
cx (x) = cx and cyj (y) = cyj . The realization of cyj influences the isocost line of the

two inputs and hence, the optimal rate of substitution.7 Hence, depending on the two
random draws for the isoquant and the costs of the non-observable input, there are
four possible first-best bundles of inputs, which we denote by {x f b

ll , y f b
ll }, {x f b

lh , y f b
lh },

{x f b
hl , y f b

hl } and {x f b
hh , y f b

hh }. As a last precondition, we require the expansion path,
i.e. the curve connecting the optimal input combinations of the different isoquants, to
be pointing rightwards as the necessary aggregated input increases.8 In terms of the
first-best input levels, this requires x f b

ll > x f b
hl and x f b

lh > x f b
hh , which again holds true

for a wide range of possible production function specifications, including the above
mentioned Cobb–Douglas type.

Figure 1 provides an intuition of the problem setting with double adverse selection.
Two different cases are depicted: on the left hand side, cost variation is small compared
to isoquant variation, while on the right hand side the opposite is true. Distinguishing
these cases will become relevant for regulatory purposes in Sect. 3.

Under optimal Bayesian regulation, the goal of the regulator is to incentivize the
firm via a suitable contract framework to choose the welfare-optimizing bundle of
inputs, which we will derive based on classic mechanism design entailing truthful
direct revelation. Contrary to the firm, the regulator cannot observe the realizations

7 As it is well known from production theory, the optimal rate of substitution is determined by equating the
marginal rate of technical substitution between the factors (i.e., the slope of the isoquant) with the relative
factor costs (i.e., the slope of the isocost line).
8 For an analysis involving continuous variables, this would require the expansion path to behave like a
function with a unique function value y for each x , or, in other words, an expansion path that is not bending
backwards.
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time
t = 1

Firm learns the
realization of the
two random draws

t = 2

Regulator commits
to the mechanism

and offers a
menu of contracts

t = 3

Firm chooses
one of the contracts

offered by the regulator

t = 4

Firm realizes
input levels;

Output is realized;
Contract is executed

Fig. 2 Timing

of the two random draws, although the possible realizations as well as the occurrence
probabilities are common knowledge. She knows the cost function of the observable
input and can observe the corresponding input level. The output is also observable
and verifiable.9 For an optimal regulation, the regulator offers the firm a menu of four
contracts, each with a level of the observable input xi j and a corresponding transfer
Ti j . Naturally, the contracts can be conditioned on observable parameters only, i.e.,
the output as well as the amount of the observable input used. Both are enforceable by
means of suitably high penalties in case the firmdeviates from the requested/contracted
level.

The timing—as shown in Fig. 2—is as follows. First, the random draws are realized
and the cost function of the non-observable input and the necessary aggregated input
relation (isoquant) are observed by the firm. The firm then chooses between several (in
our case, four) contracts offered by the regulator. She then realizes the input levels to
produce the requested output. The regulator observes one input level (x) and whether
the output is as requested; if those are as agreed upon, the contract is executed and the
transfer realized.

The rent of the firm Ri j given a realization i ∈ [l, h] and j ∈ [l, h], results from
the transfer Ti j minus the private cost of the firm’s activities:10

Ri j = Ti j − cx xi j − cyj gi (q, xi j ) (1)

The regulator maximizes expected social welfare, defined as the sum of expected
social utility and firm surplus, by adjusting the observables, i.e.:

max
xi j ,Ti j

W = E

⎡
⎢⎢⎣Sq − (1 + λ)Ti j︸ ︷︷ ︸

Net social utility

+ (Ti j − cx xi j − cyj gi (q, xi j ))︸ ︷︷ ︸
Firm’s rent (Ri j )

⎤
⎥⎥⎦ (2)

where Sq is the gross social utility from reaching output q, and λ denotes the shadow
costs of public funding, i.e., the costs due to raising and transferring finances through
public channels (for a discussion, see, e.g., Laffont and Tirole 1993). As discussed
previously, we assume q—and hence also gross social utility Sq—to be invariant and

9 Stochastic deviations due to force majeure are supposed to be detectable and excludable from the contract
framework.
10 It goes without saying here that the firm is characterized such that she tries to maximize her rent.
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independent of the random draws, yielding.11

max
xi j ,Ti j

W = Sq − E

⎡
⎢⎢⎣(1 + λ)Ti j︸ ︷︷ ︸
Transfer costs

− (Ti j − cx xi j − cyj gi (q, xi j ))︸ ︷︷ ︸
Firm’s rent (Ri j )

⎤
⎥⎥⎦ (3)

As an important consequence of Eq. (3), we see that the optimization problem of
the regulator can be reformulated in terms of a cost-minimization problem, essentially
stating that the desired output shall be reached at minimal expected social costs:

min
xi j ,Ti j

C = E
[
Ci j

] = E

⎡
⎢⎢⎢⎢⎣

λ Ri j︸︷︷︸
Firm’s rent

+(1 + λ)

⎛
⎜⎜⎜⎜⎝

cx xi j︸ ︷︷ ︸
Costs of

observable input

+ cyj gi (q, xi j )︸ ︷︷ ︸
Costs of

non-observable input

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

(4)

While choosing xi j and Ti j such that social costs are minimized, the regulator is
restricted by several participation and incentive constraints for the firm’s rent:

Ri j ≥ 0 ∀i, j (5)

Ri j ≥ Ri ′ j ′ + cyj ′gi ′(q, xi ′ j ′) − cyj gi (q, xi ′ j ′) ∀ pairs i, j and i ′, j ′ (6)

Equation (5) ensures that all types of firms have a non-negative profit and therefore
participate. We allow no shutdown of a firm due to the essential service the firm
offers to society (e.g., electricity or telecommunication infrastructure). In line with
the revelation principle, Eq. (6) provides the firm with the incentive to truthfully
report the realized isoquant and non-observable input costs.

3 Optimal regulation

3.1 Preparatory analysis

As a first preparatory step in the analysis we shall check whether the contract variable
x is actually suitable to provide incentives to the firm to reveal her true type. To this

11 This is the reasonwhy q appears as a subscript here. In case of amore complexmodelwith an endogenous
demand, q would be a variable for the regulator, and Sq be replaced by S(q) (with ∂S

∂q > 0), indicating
that social utility is increasing as the regulator chooses higher output q. The additional first order condition

would write as ∂W
∂q = 0 → ∂S(q)

∂q = cyj
∂gi (q,x)i j

∂q , expressing the optimal balance of the social value
of the provided output and the related social costs. In our model, this would involve the complexity of
one additional choice variable and the associated emergence of a continuum of isoquants. Qualitatively,
the efficiency of all results obtained in our model would need to be checked against their social value,
and adjusted in case of a mismatch. Starting from the requested output in the first-best case, a second-best
solution would thus entail the need to reduce the requested output.
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end, we investigate whether the incentive to choose another type’s contract regarding
one of the two random draws is impacted by an adjustment of x , as reflected in the
firm’s rent Ri j (x). This is often referred to as “single crossing” conditions. For the
incentive to choose another type’s contract regarding the realized input cost, we find
that12

∂

∂x
(Rih(x) − Ril(x)) = (

cyl − cyh
)
g′
i (q, x) for i = l, h, (7)

which is clearly greater than zero due to ch > cl and g′
i (q, x) < 0. Hence, by an

upwards distortion of x , we are able to reduce the incentive for the firm to choose the
contract of a high cost type instead of truly revealing the realized low cost type.

Similarly, for the incentive to choose a contract for an isoquant different from the
realized one, we find that

∂

∂x
(Rhj (x) − Rl j (x)) = cyj (g

′
l(q, x) − g′

h(q, x)) for j = l, h (8)

which is greater than zero as long as g′
h(q, x) < g′

l(q, x). Recalling from Sect. 2 that
we have assumed rightwards pointing expansion paths, this condition will always hold
true. Hence, upwards distorting x will provide a possibility to reduce the incentive for
the firm to choose the contract with a high isoquant instead of truly revealing the
realized low isoquant.13

The effect of changing incentives following a distortion of x helps us to derive
a first characterization of the optimal solution of our regulatory problem. In fact, in
order to comply with the incentive constraints (6) (which need to be fulfilled for the
optimal solution anyway), input levels xi j need to follow a certain ordering. Note that
for each pair of types there are two relevant incentive constraints. Adding those and
using the above single crossing conditions, the necessary ordering can be obtained as
follows:

xll ≤ xlh ≤ xhh (9)

xll ≤ xhl ≤ xhh (10)

Moreover, from the incentive constraints follows that only the participation con-
straints of the high cost types (i.e., lh and the hh-type) may remain relevant for further
analyses. In contrast, the other two participation constraints are implicitly fulfilled if
these two incentive constraints hold.

So far unclear from the above analysis, however, is the ordering of the intermediate
cases xlh and xhl , which depends on whether the term Rhl(x) − Rlh(x) is increasing
or decreasing in x within the relevant range (i.e., the range covered by x in the optimal

12 Here and in the following, a prime denotes derivation with respect to x .
13 Note that if Eq. (8) does not hold, the effect is reversed: incentives for the l j-types to claim higher
isoquants could then be reduced by a downwards distortion of x . For the sake of conciseness, we omit
further discussions of this particular case.
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contract). Differentiating with respect to x yields

∂

∂x
(Rhl(x) − Rlh(x)) = (cyh g

′
l(q, x) − cyl g

′
h(q, x)) (11)

which is increasing in x as long as

cyh
cyl

<
gh(q, x)

gl(q, x)
, (12)

and decreasing in x otherwise.14 Together with the two constraints relating the types
lh and hl we infer that if the cost variation is small compared to the isoquant variation,
then xlh ≤ xhl . If the aggregated input level variation is small compared to the cost
variation, then xlh ≥ xhl . For an intuition, recall Fig. 1. If the aggregated input level
variation and hence the distance between the isoquants is large, x f b

hl is larger than

x f b
lh . If the cost variation, and hence, the vertical distance between the corresponding

first-best solutions is large, x f b
lh is larger than x f b

hl .
The results of our preparatory analysis are summarized in the following two Lem-

mas.

Lemma 1 Participation is only an issue for the high-cost types. Hence, the partici-
pation constraints for the high cost types are relevant, whereas the ones for the low
cost types are implicitly fulfilled.

Lemma 2 In order to reach incentive compatibility, input levels xi j must be ordered
as follows:

(A) If the cost variation is small compared to the isoquant variation, then Rhl(x) −
Rlh(x) is increasing in x and requires

xll ≤ xlh ≤ xhl ≤ xhh . (13)

(B) If the cost variation is large compared to the isoquant variation, then Rhl(x) −
Rlh(x) is decreasing in x and requires

xll ≤ xhl ≤ xlh ≤ xhh . (14)

3.2 Full information benchmark

If the regulator had no information deficit, she would observe the realized isoquant
as well as the realized isocost line. Differentiating all possible realizations of the
social cost function Ci j with respect to the observable input levels xi j shows that

14 Note that Condition (12) (or its inverse) is a precondition for the subsequent analysis. We assume it
holds unambiguously within the entire relevant range covered by the contract variable x . In more practical
applications, this will depend on the (parametric or non-parametric) specification of the functions gl (q, x)
and gh(q, x).
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all of them are single-peaked with a unique minimum at g
′
i (q, xi j ) = − cx

cyj
, which is

necessarily realized at xi j = x f b
i j . The regulatorwould easily derive the first-best levels

of inputs to supply the requested output at minimal social costs, i.e., {x f b
i j , y f b

i j }, by
equating the known realized marginal rate of technical substitution of the inputs with
the realized isocost line.Moreover, she would be able to enforce the implementation of
the first-best due to the full observability. The corresponding optimal transfers would
be T f b

i j = cx x f b
i j +cyj y

f b
i j , leaving all types of the firmwith zero rent. In the case of full

information, social costs amount to C f b
i j = (1 + λ)T f b

i j = (1 + λ)(cx x f b
i j + cyj y

f b
i j ),

corresponding to thewelfare-optimizing first-best solution that could thus be obtained.

3.3 Asymmetric information

In the case of asymmetric information, the only two observables for the regulator are
the output q and the observable input x . In addition, she can choose an appropriate
level of transfer payment T . As q is invariable and observable, its implementation can
be enforced by means of suitably high penalties in case the firm deviates. Hence, x
and T are the two variables the regulator will condition her contracts on. The general
idea for the regulator’s optimal regulation strategy is to offer a menu of contracts with
optimized variables {x∗

i j , T
∗
i j }, such that expected social costs are minimized (as stated

in Eq. (4)), and participation (Eq. (5)) and incentive constraints (Eq. 6) fulfilled. Hence,
we restrict our attention to incentive compatible contracts ensuring that the firm always
reveals her true type. Under these conditions, the revelation principle requires that the
solution found (if any) is a Bayesian-Nash equilibrium (Myerson 1979; Laffont and
Martimort 2002).

Note that the contractual combinations of inputs and transfers are closely inter-
linked. Therefore, theymay be interpreted asminimumquantity constraints, rewarding
the firm conditional on the realized input. For instance, the regulator offers the firm
a revenue of T ∗

hl conditional on the utilization of at least a certain input quantity x∗
hl ,

which in turn translates into a minimum output level. In our example of electricity
grid infrastructure, this could correspond to some minimum reliability standard (such
as the n-1 criterion).15

3.3.1 One-dimensional asymmetric information

We shall first investigate a simplified problemwith one-dimensional asymmetric infor-
mation only, i.e., isoquant or cost uncertainty. Eliminating the isoquant uncertainty
(by setting μ = 0, μ = 1 or gl j = ghj ), we are left with two constraints binding: the
participation constraint of the high cost type and the incentive constraint from the low
to the high cost type. This leads to the simplified cost function:

C =ν
[
λ

(
gi (xih)(c

y
h − cyl )

) + (1 + λ)
(
cx xil + cyl gi (xil)

)]

15 We thank an anonymous reviewer for pointing out this interpretation.
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+ (1 − ν)
[
(1 + λ)

(
cx xih + cyh gi (xih)

)]
(15)

Derivating with respect to xi j , j ∈ l, h yields the following first order conditions:

∂C

∂xil
= 0 ⇔ g′

i (x
∗
il) = −cx

cyl
, (16)

∂C

∂xih
= 0 ⇔ νλ(cyh − cyl )g′

i (x
∗
ih)︸ ︷︷ ︸

<0

+ (1 − ν)(1 + λ)(cx + cyh g
′
i (x

∗
ih))︸ ︷︷ ︸

=0 for xih=x f b
ih

<0 for xih<x f b
ih

>0 for xih>x f b
ih

= 0 (17)

Equation (16) shows that in case of no isoquant uncertainty, the observable input
levels of the low cost type are first-best. In contrast, Eq. (17) depicts an upwards
distortion of the high cost type: as the first part is strictly smaller than zero, the second
part needs to compensate to achieve the first order condition which in turn can only
be true when the high cost type is distorted upwards.

Similarly, in case of no cost uncertainty, the observable input levels of the low
isoquant type are first-best, whereas the high isoquant type observable input level is
distorted upwards:16

Lemma 3 In case of asymmetric information about either costs or isoquants, the
observable input level of the respective l-type is set to first-best, while it is distorted
upwards compared to its first-best for the h-type.

Note that the result of an adverse selection problem with one-dimensional informa-
tion asymmetry on costs is well-known from the literature (e.g., Baron and Myerson
1982 or Sappington 1983). For the more specific case of one-dimensional asymmetric
information regarding total factor productivity in a two-input production function, it
was derived by Besanko (1985) (based upon a model with continuous distribution
of types). Also note that the results concerning isoquant uncertainty are strikingly
different compared to the one-dimensional demand uncertainty with non-decreasing
marginal costs which is studied by Lewis and Sappington (1988a) and shows simi-
larities with the isoquant uncertainty in our setting. They find that the first-best can
be achieved in the one-dimensional case of demand uncertainty, due to the fact that
rent extraction from the high-demand type by means of reduced transfer payments is
both feasible and optimal. The low-demand type is therefore never attracted by the
contract for the high-demand type. In contrast, the fact that we study a non-marketed
good with fixed input factor costs excludes the regulator from being able to reduce the
transfer in the high-demand contract without letting the high-demand type firm run at
a loss. Therefore, the only possibility to reduce the attractiveness of the high-demand
contract is to distort its quantity in an upwards direction.

16 Due to the symmetry of the problem, we omit the detailed calculation here.
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Fig. 3 Constraints considered
binding for Case (A)

Isoquant (gi(q, x))

In
pu
tc
os
ts
(c

y j)
hl

l

h

3.3.2 Two-dimensional asymmetric information

Solving the full optimal regulation problem requires minimization of social costs,
subject to all imposed four participation and twelve incentive constraints. Due to
the large number of constraints, we approach the optimization by solving a relaxed
problem where only a subset of the constraints is considered. To this end, we need to
come up with an educated guess about the binding constraints in the optimum. If we
can later show that the remaining constraints are fulfilled at the solution of the relaxed
problem, we will have obtained the solution of the full problem.

We already know from Lemma 1 that the participation constraints of the high-cost
types are the only relevant ones. Furthermore, it generally seems to be a good approach
to assume the “upwards” incentive constraints, i.e., from low to high isoquant, and
from low to high costs, to be binding. Moreover, it seems plausible to assume binding
incentive constraints from the most efficient to an intermediate type (i.e., lh or hl),
and from an intermediate type to the least efficient type. If we consider the isoquant
variation more relevant than the cost variation, assuming the incentive constraints
according to the ordering shown in Lemma 2, Case (A), to be binding appears to be
the most educated guess we can come up with.17 Hence, we assume that incentive
constraints ll → lh, lh → hl, and hl → hh are fulfilled with equality. In addition, we
assume the participation constraint of the hh-type to bind since this is the only type
remaining that is not attracted by any other type. Figure 3 illustrates with arrows the
binding incentive constraints, such that the former type is not attracted by the latter
type-contract. Diamonds mark the binding participation constraints.

Under the constraints considered binding for Case (A) the social cost function (4)
becomes

C = μν
[
λ

(
gh(xhh)

(
cyh − cyl

) + cyl gh(xhl) − cyh gl(xhl) + gl(xlh)
(
cyh − cyl

))

+ (1 + λ)
(
cx xll + cyl gl(xll)

)]

17 The ordering and solution of Case (B) is reversed, but similar. The corresponding discussion can be
found in the “Appendix”.
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+ μ(1 − ν)
[
λ

(
gh(xhh)

(
cyh − cyl

) + cyl gh(xhl) − cyh gl(xhl)
)

+ (1 + λ)
(
cx xlh + cyh gl(xlh)

)]

+ (1 − μ)ν
[
λ

(
gh(xhh)

(
cyh − cyl

)) + (1 + λ)
(
cx xhl + cyl gh(xhl)

)]

+ (1 − μ)(1 − ν)
[
(1 + λ)

(
cx xhh + cyh gh(xhh)

)]
. (18)

To derive the optimal observable input levels, we need to derive the above equation
with respect to each of the four possible xi j . Minimizing C with respect to xll yields

g′
l(x

∗
ll) = −cx

cyl
, (19)

which implies that x∗
ll = x f b

ll . Derivations of C with respect to xlh , xhl and xhh take
the following forms:

∂C

∂xlh
= μνλ(cyh − cyl )g′

l(xlh)︸ ︷︷ ︸
<0

+μ(1 − ν)(1 + λ)(cx + cyh g
′
l(xlh))︸ ︷︷ ︸

=0 for xlh=x f b
lh

<0 for xlh<x f b
lh

>0 for xlh>x f b
lh

(20)

∂C

∂xhl
= μλ(cyl g

′
h(xhl) − cyh g

′
l(xhl))︸ ︷︷ ︸

<0

+ (1 − μ)ν(1 + λ)(cx + cyl g
′
h(xhl))︸ ︷︷ ︸

=0 for xhl=x f b
hl

<0 for xhl<x f b
hl

>0 for xhl>x f b
hl

(21)

∂C

∂xhh
=(μ + (1 − μ)ν)λg′

h(xhh)(c
y
h − cyl )︸ ︷︷ ︸

<0

+(1− μ)(1 − ν)(1+λ)(cx + cyh g
′
h(xhh))︸ ︷︷ ︸

=0 for xhh=x f b
hh

<0 for xhh<x f b
hh

>0 for xhh>x f b
hh

.

(22)

We find that this set of assumptions does indeed lead us to the optimal regulation
strategy. The results are summarized in the following Proposition 1.

Proposition 1 For Case (A),

(i) Optimal regulation is achieved under the following set of observable input levels:

x∗
ll = x f b

ll (23)

x∗
lh ≥ x f b

lh (24)

x∗
hl ≥ x f b

hl (25)

x∗
hh ≥ x f b

hh , (26)

while respecting x∗
ll < x∗

lh ≤ x∗
hl ≤ x∗

hh.
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(ii) The most efficient (ll) type can always be separated. Moreover, separation of
at least three types is always possible, while bunching of the lh and hl types is
unavoidable in case of ν → 1. The hl and hh types may need to be bunched in
case of g′

l(q, x) → 0 together with cyl being large.

Proof See “Appendix”. 
�
Corollary 1 For λ = 0, the optimal solution is first-best. All input levels amount to
x∗
i j = x f b

i j , and expected social costs to C = C f b.

Proof Follows immediately from the solution of Case (A) when setting λ = 0. 
�
According toCorollary 1,with no shadowcosts of public funding, all input levels x∗

i j
are first-best. The regulator optimizes overall welfare, but has no preference regarding
the distribution of social surplus. Hence, she can give the firm an arbitrarily high budget
at no social costs, and the firm maximizes her rent by setting efficient input levels.
In this case, the maximization of the firm and the maximization of social welfare
coincide, i.e., there is no problem of aligning the activities of the firm with social
interests. Of course, larger parts of the welfare are then given to the firm.

For the general case of λ > 0, observable input levels of all types besides the ll-one
are distorted above first-best levels, leading to a second-best solution only. Naturally,
the overall level of inefficiency increases in λ, but also for decreasing μ and ν (i.e.,
when there is a high probability for “costly” outcomes of the random draws) as well
as for cyh − cyl and gh(q, x) − gl(q, x) getting large. In contrast, however, the less
significant the cost variation becomes compared to the isoquant variation, the more
efficient the solution will be.

Due to keeping the most efficient (ll) type at first-best level combined with the
ordering according to Lemma 2, the type can always be separated in the contract
framework. Moreover, we find that at least three types can always be separated, while
bunching of two types may be unavoidable in case of vanishing isoquant or cost
uncertainties, or if the isoquant variation becomes extremely large. As a last remark,
it is worth mentioning that the ordering of rents is (and must be) as depicted in Fig. 3,
i.e. 0 = R∗

hh < R∗
hl < R∗

lh < R∗
ll .

The results for Case (B) are symmetric but structurally identical to Case (A), i.e.,
the ll-type is incentivized to first-best input levels while the other types show upwards
distortions of xi j . However, roles of isoquants and costs are interchanged, reflected
in the inverse occurrence of the terms gi ↔ cyj and μ ↔ ν. At the same time, as
imposed by Lemma 2, Case (B), the sequence of the “intermediate” types is now
hl → lh. Hence, the ordering of observable input levels xlh and xhl as well as rents
Rlh and Rhl need to be reversed to obtain an optimal regulatory contract framework.18

Considering a distributional preference of the regulator (e.g., as in Besanko 1985)
instead of shadow costs of public funds, we find that our general findings remain valid.
The optimal solution with distributional preference still sets first best levels for the
ll-type’s observable input levels. In contrast, the upwards distortion of the other types
will increase because the regulator considers social costs related to the firm’s rent more

18 See the “Appendix” for a detailed discussion and the corresponding proposition and proof.
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important than social costs stemming from input levels. Or—in other words—for these
types the regulator will need to readjust the basic tradeoff between rent extraction and
input efficiency.

4 Comparing the optimal regulation to simpler regimes

In contrast to the optimal Bayesian menu of contracts studied in the previous section,
regulatory authorities often apply alternative, simpler approaches, i.e., non-Bayesianor
single contracts instead of applying Bayesian contracts in terms ofmenus of contracts.
In electricity networks, England,Wales and theUK are the only examples formenus of
contracts being applied in regulatory practice (Joskow 2014). In contrast, examples of
simpler regimes are manifold. For instance, German system operators get reimbursed
for their costs related to self-formulated grid expansion plans.

In practice, regulators (and the firm) may prefer simple mechanisms for the sake of
easier implementation and execution, and to avoid the need to calibrate the different
parameters of our stylized model. In fact, estimating the shape of the isoquants, costs
as well as the corresponding probabilities to build a suitable menu of contracts might
be a challenging and resource-consuming task. Therefore, extended planning and
coordination processes might even turn the provision of a menu of contracts into a
third-best solution. In contrast, pooling contract regimes, revenue caps or rate-of-return
regulation—specifically addressing only a simplified set of contract variables while
being aware of distorting effects—might indeed be advantageous overall.

In case of a rate-of-return regulation conditioned on the observable input, the
regulator would simply pay a rate on the claimed observable input level. This would
incentivize the firm to always opt for the hh-type, as this ensures the highest level
of observable input and thus, the highest profit. The regulator would have no other
choice than to accept this claim regarding the unobservable high input level, and
to pay the related unobservable input costs. In our model, this leads to an extreme
Averch-Johnson-effect, and thus renders the mechanisms rather unfavorable.

With a revenue cap, the regulator allows the firm the budget to cope with the most
adverse situation, i.e., to cover the costs of themost inefficient type (hh), and leaves the
firm with the discretion to realize the (efficient) input levels. Meanwhile—depending
on its type—the rent of the firm can be very high. This is socially undesirable especially
if shadow costs of public funding are substantial. Moreover, the regime also requires
the regulator not to take away the realized rent ex-post.

Yet another alternative is constituted by a single pooling contract, where the reg-
ulator defines one observable input level which the firm shall realize. Optimization
ensures that the best possible single-input level is chosen. Moreover, to ensure partici-
pation, a transfer needs to be provided sufficient to cover the high isoquant case given
the fixed level of observable input.

In addition to the above, a comparison between the revenue cap and a pooling
contract reveals benefits for the latter in the following relevant aspects: First, the
regulator knows and commits to a specific level of observable input. In the context
of electricity grid infrastructure, investment projects (i.e., the observable input) often
face noticeable public opposition, such that enhanced control and planning reliability
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is highly desirable. Moreover, compared to a revenue cap, the pooling mechanism
allows the regulator to restrict the range of rents that can be realized by the firm. In
fact, the only uncertainty left for the regulator (and the public) is whether the firm
faces a high or low isoquant. If the isoquant is low, the low unobservable quantity
will be realized, thus leaving the firm with a rent. For the high isoquant the firm is
forced to implement the plan and gets no rent. In contrast to the possible outcomes
under a revenue cap regime, this is not only more efficient in case of large shadow
costs of public funding, but might also be aligned with distributional preferences of
the society.

In the following, we will implement a simple non-Bayesian pooling mechanism
into our modeling approach to explore and compare its features (we will take our
analysis further in our computational analysis in Sect. 5). To do so, we need to limit
the set of regulatory choice variables to one single contract with contract variables x̄
and T̄ , such that the objective function of the regulator (in contrast to Eq.(4) as in the
case of optimal regulation) becomes:

min
x̄,T̄

C̄ = E

⎡
⎢⎢⎢⎢⎣

λ R̄i j︸︷︷︸
Firm’s rent

+(1 + λ)

⎛
⎜⎜⎜⎜⎝

cx x̄︸︷︷︸
Costs of

observable input

+ cyj gi (q, x̄)︸ ︷︷ ︸
Costs of

non-observable input

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

(27)

In contrast to the solution of the optimal regulation, this minimization is only
subject to the participation constraints (5). With a sole contract and hence, only one
observable input x̄ for all types, the regulator has no possibility to separate types, which
makes the incentive constraints obsolete. As before, the only participation constraint
holding with equality is the one of the hh-type. Considering that this type gets full cost
reimbursement but cannot be distinguished from the other types, it becomes clear that
all other types must then necessarily receive a positive rent. The following proposition
summarizes the solution of this non-Bayesian regulatory approach.19

Proposition 2 Under a single contract cost-based regulationwith quantity restriction,
the optimal input level x̄∗ represents the expected value of the first-best solutions of
the four possible types,20 adjusted by some upwards distortion in case of λ > 0.
As an expected average, it lies between the extreme types’ first-best input levels, i.e.
x f b
ll < x̄∗ < x f b

hh .

Proof See “Appendix”. 
�

19 Note that the solution for a pure cost-based regulation without quantity restriction would simply reim-
burse the costs of the observable input. This would incentivize the firm to choose infinitely high values of
x (known as the gold-plating effect). Assuming that the regulator restricts her set of choices by an upper

level of x̄ = x f b
hh in order to limit excessive (socially costly) rents, all types would then choose this level. In

contrast to this very simple approach, the regulatory regime considered in this section makes use of being
able to use the observable input x as a contracting variable.
20 I.e., the point where the ratio of the expected costs equals the expected slope of the isoquants.
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Table 1 Fixed parameters
cx cyl cyh θl θh q

20 10 11 2 1 10

Note that it is easy to show that the optimal solution of the single contract is a
feasible solution of the menu of contracts problem. Due to the fact that the solution for
the menu of contracts, as stated in Proposition 1, is both optimal and different from
the one in Proposition 2, it must necessarily be superior.

Further characteristics of the simple regulatory regime as well as a detailed com-
parison with the optimal menu of contracts will be presented in the next section, based
on our computational analysis.

5 Computational analysis

In order to gain further insights into the previously developed theoretical insights, we
shall now present a computational analysis around an exemplary constant elasticity of
substitution (CES) production function which is defined as follows:

q = θi [axρ + (1 − a)yρ] 1
ρ , (28)

where θi is the factor productivity, ρ the elasticity of substitution, and a the share
parameter. Note that the CES production function complies with all the necessary
assumptions discussed in Sect. 2 as long as ρ < 1.21

The inverse function can easily be derived as

y = gi (q, x) =
(

1

1 − a

) 1
ρ

[(
q

θi

)ρ

− axρ

] 1
ρ

, (29)

just as its derivative

∂gi (q, x)

∂x
= −a

(
1

1 − a

) 1
ρ

xρ−1
[(

q

θi

)ρ

− axρ

] 1−ρ
ρ

. (30)

For the sake of traceability,wewill assume certain parameters to be fixed throughout
the subsequent numerical analysis, as listed in the following Table 1.

Note that these assumptions ensure that Condition (12) is fulfilled in the relevant
range of the contract variable x , thus implying xlh ≤ xhl , or, in other words, that Case
(A) holds.22

To exemplify the schematic figure given in Sect. 2, Fig. 4 illustrates exemplary
inverse production functions g(q, x) for the above assumptions and the case of a = 0.5

21 Otherwise, the isoquants are no longer strictly convex.
22 For the sake of brevity, we leave out a computational analysis of Case B.
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Fig. 4 Inverse production
functions for two levels of θ

and ρ = 0.1, e.g., to verify their compliance with the necessary characteristics (i.e.,
downward sloping, convex and differentiable behavior).

In the following, we will proceed in showing the results of our numerical results
for the following parametric ranges: λ ∈ {0, 0.5, 1}, a ∈ [0.1, 0.9], ρ ∈ [0.1, 0.9],
μ ∈ [0.1, 0.9] and ν ∈ [0.1, 0.9]. Specifically, we will first focus on the impact of
the exact numerical specification of the production function (i.e., a variation of a and
ρ), and then turn our attention to the impact of the random draw probabilities (i.e., a
variation of μ and ν).

This will allow to illustrate our theoretical findings and to develop a better under-
standing of the orders of magnitude, and thus, to gain further insights.

5.1 Impact of the production function specification

Figure 5 shows the numerical results of the optimal solution for the observable input
level x∗

i j in comparison to their first-best levels x f b
i j , given λ = 0.5 and a range of

parameters defining the (inverse) production function, i.e., different a and ρ. The full
set of results with three different levels of λ is shown in the “Appendix”, Fig. 10. In
addition, the optimal level of the observable input level in the simple contract, x̄∗, is

(a) (b)

Fig. 5 a x versus a. b x versus ρ. Numerical results of x , for different a and ρ, and λ = 0.5
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(a) (b)

Fig. 6 a C versus a. b C versus ρ. Numerical results of the expected costs C , for different a and ρ, and
λ = 0.5

also shown. For reading the following figures without color printout, recall that it must
hold that xll ≤ xlh ≤ xhl ≤ xhh .

As expected, there is no upwards distortions of any xi j for the case of λ = 0. In the
same vein, the ll-type is never distorted, independent of λ. Furthermore, it can be veri-
fied that the simple contract variable x̄∗ is an adjusted expected average of the different
types, and thus lies within the range opened up by x∗

i j , as found in Proposition 2.
For increasing a, i.e., a relative shift of productivity from the non-observable (y) to

the observable input (x), all x show a clear tendency to increase. However, while x̄∗ is
increasingmonotonically, x∗

i j as well as x
f b
i j show a peak at high a and a decrease after,

due to the fact that the functions ∂g
∂x for different a can indeed cross. In contrast, an

increasing elasticity of substitution ρ (right hand side in Fig. 5) implies monotonically
decreasing x , due to the fact that input factor x is more costly than y.

Bunching of two types occurs for a large range of parameters a and ρ. While all
types must be clearly separated for λ = 0, the hl and hh-types are bunched for λ = 0.5
and λ = 1 across the entire range of a (given ρ = 0.1), as well as for the most part of
ρ (given a = 0.5).

Furthermore, note that the upwards distortion of xlh is always small, whereas it can
be significant for xhl and xhh , driven by the fact that we are dealing with the case here
where cost uncertainty is relatively small compared to the isoquant uncertainty.

Based on these insights, we can shift our focus to the related cost efficiency of
the numerical analysis. Figure 6 presents expected costs for the different regulatory
regimes and parameter constellations (again, the full set of results with three different
levels of λ is shown in the “Appendix”, Fig. 11).

As found in Corollary 1, the optimal regulatory regimes achieves first-best results
for λ = 0. Interestingly, a maximum occurs in the first-best expected costs for a being
approximately at the ratio cx : cy , due to the fact that even though input factor costs
increase for an increasing usage of the (then more productive) observable input factor
x (compare Fig. 5)23, overall expected costs can be decreased at after the cost ratio of
the two input factors has been reached because more rents can then be extracted.

23 Recall that input factor x was assumed to be more expensive than y.
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(a) (b)

(c)

Fig. 7 a xlh . b xhl . c xhh . Numerical results of x , for different μ and ν, and λ = 0.5

In line with Proposition 1, λ > 0 implies upwards distortions and rents of the
firm, and thus higher expected costs than in the first-best case. Interestingly, however,
optimal regulation may still approach first-best efficiency when a becomes large, i.e.,
when productivity in the observable input is high and the unobservability of y thus not
so relevant. In contrast, the simple mechanism can never approach first-best results,
and is always worse than the second-best optimal regulation, however, can be identical
with the latter for small a (i.e., when productivity in the observable input x becomes
irrelevant, such that its usability as contract variable is very weak), as well as for high
ρ (essentially following the same logic as for a).24

5.2 Impact of the random draw probabilities

We now discuss the impact of the random draw probabilities on our numerical results.
Figure 7 contains the regulated observable input quantities x for differentμ and ν when
λ = 0.5 (results for all λ are in the “Appendix”, Fig. 12). Recall that for λ = 0, all
second-best quantities are first-best, independent of μ and ν. As there is no variation,

24 Technically, both specifications result in low values of ∂g
∂x .
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Fig. 8 Numerical results of C ,
for different μ and ν, and
λ = 0.5

the figures for λ = 0 are not included. Meanwhile, the different first-best quantities
are included as a reference in Figs. 7 and 12.

For all xi j it holds true that the upwards distortion is increasing in λ, while the
general pattern remains identical. x∗

lh is independent of the isoquant probability μ as
the relevant binding incentive constraint prevents the ll-type from claiming the lh-type
contract which is on the same isoquant. In contrast, lower probabilities for high costs
(i.e., high ν) result in higher upwards distortions of the lh-type, as the expected costs
of the upwards distortion then get a lower weight.

In a similar vein, the upwards distortions of the hl and hh-types increase at an
increasing rate for increasing μ, and can be substantial compared to the one of the
lh-type (due to the fact that we are in Case A). Meanwhile, increases in ν now lead
to decreasing upwards distortions. The results for the hh-type are largely driven by
the often occurring need to bunch it with the hl-type. In fact, they are bunched for
the entire range of μ for ν = 0.1, as well as for μ < 0.3 (μ < 0.7) when ν = 0.5
(ν = 0.9) which may be recognized in the actual numbers as well as in a slight kink
in the curves for x∗

hh . Note that this also causes the curves for x
∗
hh to cross for different

ν.
As a last step in our computational analysis, we investigate and compare the

expected costs for the different regulatory approaches for varying random draw prob-
abilities, as presented in Fig. 8 (and 13 for all three levels of λ).

Naturally, the costs monotonically decrease in the probability for low input factor
needs (i.e., high μ), just as in the probability for low input factor costs cyl (i.e., high
ν). As in Fig. 6, expected costs of the optimal regulation are first-best for λ = 0,
while the simple mechanism must always perform worse. The difference between the
regulatory regimes becomes more relevant for increasing λ and μ. Meanwhile, in line
with our finding in Sect. 4, the performance of the simple mechanism is similar to the
optimal regulatory regime for λ large and μ small.

Furthermore, Figs. 7 and 8 reveal a remarkable dependency of the results on μ and
ν individually, but also on their specific combination. This may be seen as a strong
argument for our two-dimensional analysis and provides insights complementary to
Besanko (1985). Specifically, while the effect of ν on distorted quantities is negligible
for small μ, values nearly double for the considered range of ν when μ is high.
The effect is lower for total costs, but still clearly visible. Consequently, the specific
conditions of the two-dimensional uncertainty may have a significant impact, and
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should thus be evaluated carefully by the regulator before deciding on the suitability
of such mechanisms.

Transferring the above discussion to regulatory practice, one may indeed come to
the conclusion that practically applied non-Bayesian regulatory approaches could be
close to the optimal second-best strategy. For instance, it is likely that the large-scale
penetration of renewable energies requires strong reinforcements in the electricity
infrastructure. Meanwhile, renewable energies also elevate the costs for electricity
generation, such that consumers might be increasingly skeptical vis-a-vis a redistribu-
tion of welfare towards the firm—which in turns yields higher costs of the financing
process. In the end, however, reasons for the chosen regulation are probably man-
ifold, and might also include preferences of the regulator, commitment problems25

or the prohibitively high costs of implementing a ’complicated’ regulatory regime
(Armstrong and Sappington 2007).

6 Conclusion

We considered a regulated firm providing a non-marketed output with substitutable
inputs. We presented the optimal Bayesian regulation in terms of a menu of contracts
when the regulator faces information asymmetries regarding the aggregated input level
needed to provide the output aswell as the realized optimalmarginal rate of substitution
between the inputs. Finally, the optimalBayesian regulationwas compared to a simpler
non-Bayesian approach, i.e., a single pooling contract, which appears to be closer to
regulatory practice.

We found that in the optimal Bayesian regulation, the first-best solution cannot be
achieved under the considered information asymmetries and shadow costs of public
funding. This implies a strictly positive rent for the firm. The second-best solution
that we then characterized depends on the relative importance of the information
asymmetries. However, the most efficient type is always set to first-best, while the
levels of the observable input are distorted upwards for all other types. At least three
types can always be separated, while bunching of two types may be unavoidable in
case of a very asymmetric distribution of costs or very flat isoquants. These results are
structurally similar to the solutions for multi-dimensional adverse selection problems
in the literature (e.g. Lewis and Sappington 1988b; Armstrong 1999 or Aguirre and
Beitia 2004). However, in contrast to existing results, our model explains upwards
distortions of input levels rather than prices. Hence, we obtained important insights
regarding the optimal mechanism design in the context of a regulated monopolistic
firm producing a non-marketed good with multi-dimensional inputs.

25 Noticeably, a commitment problem of the regulator might impede the implementation of an incentive-
based approach, which would be welfare-superior compared to a cost-based regulation. If the firm gets

an unconditional payment representing the pay-off of the hh-type, i.e., T̃ = cx x f b
hh + cyh gh(q, x f b

hh ),

she will realize first-best input quantities {x f b
i j , y f b

i j }. In this case, the realized rent of the firm becomes

Ri j = cx x f b
hh + cyh gh(q, x f b

hh ) − cx x f b
i j − cyj gi (q, x f b

i j ). However, due to the (observable) separation of
types via the realized input x , the regulator might be tempted to adjust the regulatory contract ex-post, and
hence, jeopardize the regulatory success if the firm anticipates this behavior.

123



Regulation of non-marketed outputs and substitutable inputs 197

Our theoretical and computational comparison to a single contract cost-based
approach, as it is often applied in regulatory practice, showed that the menu of con-
tracts is welfare superior. However, there are situations in which the performance of
the approaches converge. This is the case if the overall input level is likely to be high,
or if the substitutability in the observable input is low, such that its power as contract
variable is weak. Moreover, the pooling contract avoids the possibly complicated and
costly design of menus of contracts, and allows the regulator to commit to a specific
observable input level and to restrict the range of rents that can be realized by the
firm. These circumstances and features may indeed prevail in some cases,26 possi-
bly explaining the gap between the theoretically optimal Bayesian approach and the
simpler non-Bayesian regulation applied in practice. However, as demonstrated in
our computational analysis, prevailing conditions should first be revised carefully to
investigate the their impact on the optimality of regulatory regimes.

Lastly, we note that our general approach as well as our insights might also be
applicable to other industries that show similar characteristics, such as public works or
administrative services. Besides investigating such areas of application, future research
could relax the participation assumption and hence, allow for a shut down of firms.
Another expansion could allow the good to bemarketed,whichwould trigger a demand
reaction of the regulator (or consumers) and possibly lead to interesting variations of
the conclusions derived in this paper.

Appendix

Proof of Proposition 1

Proof (i) From Eq. (20), we see that ∂C
∂xlh

is strictly smaller than 0 for xlh = x f b
lh and

monotonically increasing in xlh , which implies that x∗
lh > x f b

lh must always hold.
The same logic applies for x∗

hl and x∗
hh .

(ii) From the fact that x f b
ll < x f b

lh and the strict upwards distortion of all other types,
it follows that the ll-type can always be separated. In order to investigate whether
the types lh, hl and hh can be separated or need to be bunched, we proceed as
follows: For each of the possible pairs lh−hl, hl −hh and lh−hh, we check the
derivative of C with respect to the former type at the optimal level of x∗ of the
latter type (derived from the first order condition). If the change in C is greater
than 0 we can conclude that we have already surpassed the optimal level of the
former type, which then must be smaller than the optimal level of the latter type.
In other words, we check the level of upwards distortion for the lh, hl and hh
types while considering the necessary ordering of the types according to Lemma
2. For the pair lh-hl, we find that x∗

lh may surpass x∗
hl in case of ν → 1, while

they are otherwise clearly separated from each. For the pair hl-hh, bunching may
occur for g′

l(q, x) → 0 together with cyl being large. Furthermore, we find that

26 E.g. the cost-based regulation of German TSOs, where the necessary is suspected to be high, but the
German public heavily discusses the related costs for consumers.
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lh-hh can always be separated, implying that at most two types (i.e., either lh-hl
or hl-hh) may be bunched under certain parameter constellations.

Lastly, it is straightforward to check that the remaining constraints are satisfied
under the obtained solution of the relaxed problem. Hence, we have indeed obtained
to optimal solution for the full regulatory problem we are facing in Case (A). 
�

Proof of Proposition 2

Proof Written explicitly, Eq. (27) becomes

C̄ = μν
[
λ

(
cyh gh(x̄) − cyl gl(x̄)

) + (1 + λ)
(
cx x̄ + cyl gl(x̄)

)]

+ μ(1 − ν)
[
λ

(
cyh gh(x̄) − cyh gl(x̄)

) + (1 + λ)
(
cx x̄ + cyh gl(x̄)

)]

+ (1 − μ)ν
[
λ

(
cyh gh(x̄) − cyl gh(x̄)

) + (1 + λ)
(
cx x̄ + cyl gh(x̄)

)]

+ (1 − μ)(1 − ν)
[
(1 + λ)

(
cx x̄ + cyh gh(x̄)

)]
. (31)

Deriving the abovewith respect to x̄ yields, after a fewcalculations,E(g′
i (x̄

∗))E(cyj )+
cx + λ(cyh g

′
h(x̄

∗) + cx ) = 0. Hence, for λ = 0, E(g′
h(x̄

∗)) = − cx

E(cyj )
. 
�

Two-dimensional asymmetric information, Case (B): cost variation large com-
pared to isoquant variation

To solve the second case following from Lemma 2, we need to apply a different
educated guess with respect to the binding constraints. However, we apply a similar
reasoning as in Case (A), but take account of the fact that now, cost variation is more
relevant than isoquant variation. Hence, we choose a symmetric setting and imply
incentive constraints ll → hl, hl → lh and lh → hh to be binding. Again, we
assume the participation constraint of the hh-type to be binding. Figure 9 illustrates
this setting.

Fig. 9 Constraints considered
binding for Case (B)
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After having determined the results and checked all remaining constraints, we find
the setting of binding constraints as in Fig. 9 indeed to be optimal for Case (B). Results
are summarized in the following Proposition 3.

Proposition 3 For case (B),

(i) Optimal regulation is achieved under the following set of observable input levels:

x∗
ll = x f b

ll (32)

x∗
lh ≥ x f b

lh (33)

x∗
hl ≥ x f b

hl (34)

x∗
hh ≥ x f b

hh , (35)

while respecting x∗
ll < x∗

hl ≤ x∗
lh ≤ x∗

hh.
(ii) The most efficient (ll) type can always be separated. Moreover, separation of

at least three types is always possible, while bunching of the hl and lh types is
unavoidable in case of μ → 1.The lh and hh types may be bunched in case of cyl
being small and g′

h(q, x) large.

Proof (i) Under the constraints considered binding for Case (B)—as discussed and
shown in Fig. 9—the social cost function (4) becomes

C = μν
[
λ

(
cyh (gh(xhh) − gl(xhh)) + cyh gl(xlh) − cyl gh(xlh)

+ cyl (gh(xhl) − gl(xhl))
) + (1 + λ)

(
cx xll + cyl gl(xll)

)]

+ μ(1 − ν)
[
λ

(
cyh (gh(xhh) − gl(xhh))

) + (1 + λ)
(
cx xlh + cyh gl(xlh)

)]

+ (1 − μ)ν
[
λ

(
cyh (gh(xhh) − gl(xhh))

) + cyh gl(xlh)

− cyl gh(xlh) + (1 + λ)
(
cx xhl + cyl gh(xhl)

)]

+ (1 − μ)(1 − ν)
[
(1 + λ)

(
cx xhh + cyh gh(xhh)

)]
. (36)

Minimizing C with respect to xll yields

g′
l(x

∗
ll) = −cx

cyl
, (37)

which implies that x∗
ll = x f b

ll . Derivation of C with respect to xlh , xhl and xhh
yields:

∂C

∂xlh
= μλ(cyh g

′
l(xlh) − cyl g

′
h(xlh)︸ ︷︷ ︸

<0

+μ(1 − ν)(1 + λ)(cx + cyh g
′
l(xlh))︸ ︷︷ ︸

=0 for xlh=x f b
lh

<0 for xlh<x f b
lh

>0 for xlh>x f b
lh

(38)
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∂C

∂xhl
= μνλ(cyl g

′
h(xhl) − cyl g

′
l(xhl))︸ ︷︷ ︸

<0

+ (1 − μ)ν(1 + λ)(cx + cyl g
′
h(xhl))︸ ︷︷ ︸

=0 for xhl=x f b
hl

<0 for xhl<x f b
hl

>0 for xhl>x f b
hl

(39)

∂C

∂xhh
= (μ + (1 − μ)ν)λcyh (g

′
h(xhh) − g′

l(xhh))︸ ︷︷ ︸
<0

+ (1 − μ)(1 − ν)(1 + λ)(cx + cyh g
′
h(xhh))︸ ︷︷ ︸

=0 for xhh=x f b
hh

<0 for xhh<x f b
hh

>0 for xhh>x f b
hh

. (40)

From Eq. (38), we see that ∂C
∂xlh

is strictly smaller than 0 for xlh = x f b
lh and

monotonically increasing in xlh , which implies that x∗
lh > x f b

lh must always hold.
The same logic applies for x∗

hl and x∗
hh .

(ii) From x f b
ll < x f b

lh and the strict upwards distortion of all other types, it follows
that the ll-type can always be separated. x∗

hl may surpass x∗
lh in case of μ → 1. If

the low costs cyl are small and g′
h(q, x) becomes large, lh and hh types may need

to be bunched, without impacting the separation of the other types.
The remaining constraints are satisfied under the obtained solution. 
�
As in Case (A), the first-best solution can be obtained for λ = 0, while the solution

is second-best and incurring an increasing level of inefficiency for increasing levels
of λ. Also again, the most efficient type can always be separated, while bunching of
the hl and lh types (lh and hh types) may occur for very high occurrence probability
of low isoquants, or if gh(q, x) is very steep and cyl small.

Impact of the production function specification: numerical results for different
levels of λ

See Figs. 10 and 11.
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Fig. 10 Numerical results of x , for different λ, a and ρ
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C vs. Ca vs. ρ
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Fig. 11 Numerical results of the expected costs C , for different λ, a and ρ

Impact of the random draw probabilities: numerical results for different levels
of λ

See Figs. 12 and 13.
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Fig. 13 Numerical results of C ,
for different λ, μ and ν
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