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Abstract

The paper outlines pricing procedures for several interest rate derivatives under the
discrete-time arbitrage-free Nelson—Siegel (DTAFNS) model of Eghbalzadeh et al.
(The discrete-time arbitrage-free Nelson—Siegel model: a closed-form solution and
applications to mixed funds representation, 2022). Derivatives considered include
swaptions, zero-coupon futures, and options on such futures. Formulas for expected
excess returns are also provided for options on futures. Whereas swaption pricing
relies on Monte-Carlo simulation, closed-form formulas are obtained for all other
derivatives.
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1 Introduction

Interest rate risk management is of paramount importance for financial institutions such
as banks and insurance companies. Several financial derivatives can be used for this
purpose, e.g. interest rate swaps, zero-coupon futures, and options on such contracts.
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Developing pricing procedures for these derivatives is therefore essential. Indeed,
the calibration of interest rate dynamics models relies on these pricing procedures.
Furthermore, a strand of literature is interested in studying the risk premium embedded
in option prices, see for example Coval and Shumway (2001), Bakshi et al. (2023),
Bakshi et al. (2022). In the context of interest rate options, Bakshi et al. (2023) recall
the puzzling stylized fact of negative excess returns for both out-of-the-money call and
put options on treasury futures, and propose a pricing kernel model explaining such
feature. The ability to calculate option risk premia implied by interest rate models is
therefore useful to better analyse whether a given model is consistent with observed
properties of option prices.

The main objective of this study is to provide procedures and formulas to obtain
prices for several interest derivatives, namely swaps, swaptions, zero-coupon futures
and European options on such futures. Expected excess return formulas for options
on zero-coupon futures are also provided. The formulas presented are based on the
discrete-time arbitrage-free Nelson—Siegel (DTAFNS) model of Eghbalzadeh et al.
(2022), which is a discrete-time version of the original arbitrage-free Nelson—Siegel
model developed in Christensen et al. (2011). Such model has numerous advantages.
Firstly, being within the family of affine term structure (ATS) models (see Duffie
and Kan, 1996) where spot rates are linear combinations of risk factors, it is highly
tractable. Secondly, it provides a clear interpretation for factors driving term structure
movements: they respectively drive the yield curve’s level, its slope and its curvature.
Finally it ensures absence of arbitrage.

Several other works also study the pricing of swaptions and other interest rate
options in the context of multi-factor or ATS models. We list a few here. The
pioneering works of Black et al. (1990) and Black and Karasinski (1991) show how to
price zero-coupon options based respectively on a one-factor binomial tree model and
a log-normal diffusion model. Munk (1999) demonstrates that the price of a European
option on a coupon bond (e.g. a swaption) is roughly equal to some multiple of the
price of a European option on a zero-coupon bond with maturity equal to the coupon
bond’s stochastic duration. Collin-Dufresne and Goldstein (2002) propose to apply an
Edgeworth expansion to approximate the density of the coupon bond price and obtain
the price of a swaption. Singleton and Umantsev (2002) rely on Fourier inversion
methods to calculate swaption prices in the ATS framework. Schrager and Pelsser
(2006) propose to approximate the swap rate volatility under the swap measure, which
is a low-variance martingale, by its time-zero value. Such strategy leads to a closed-
form formula for the swaption price.

The paper is structured as follows. Section 2 provides a description of the DTAFNS
term structure model. Section 3 presents pricing procedures for swaptions, whereas
Sect. 4 provides formulas for prices and expected excess returns of options on zero-
coupon futures. Section 5 briefly discusses calibration methods for the DTAFNS model
relying on option prices. Section 6 concludes.
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2 The DTAFNS model

This section discusses interest rate dynamics in the DTAFNS model of Eghbalzadeh
et al. (2022). Dynamics are provided under three probability measures: the physical
measure, the risk-neutral measure and the forward measure. All three measures are
required for the computation of prices and associated risk premia of derivatives
considered in this study.

2.1 Risk-neutral dynamics in the DTAFNS model

This section provides a description of risk-neutral dynamics in the DTAFNS interest
rate term structure model. Consider a discrete-time setting with monthly time points
t=0,...,T and time elapse A year between each point. The filtration F = {.’F,}tT=0
characterizes the information flow in the market. The DTAFNS model assumes that
the term structure of interest rates is determined by three factors: the long-term level
of interest rates, the slope of the yield curve and its curvature. The time-¢ short rate
applying over period [t,f + 1) is

r=X"+Xx2, @.1)

with {Xt}[T:0 denoting the term structure factor process, where time-¢ factors are the
triplet X, = [X'V, x®, X7,

Under the risk-neutral measure Q, factors exhibit the following auto-regressive
dynamics:

t 1 t 1+1,1

Xt(;)l _X(l) 00 0 9@ _X(l) 21’1 0 0 Z@
X2 -xP ={04 —a|[62-XP [+] 0 2, 0

1l 1.2 |
(3 3) Q 3) Q 2.2
X - X 00 4 [[of-X 0 0 5 flz8,) @2
—_———
K@ 09-X, P

where scalar A € (0, 1) and matrices 09, k9 and T, with %, ; > 0, represent model
parameters, and {Z;Q;.}:l:l, i=1,2,3 are F-adapted standard Gaussian white noises
with contemporaneous correlation Corr[Zf‘?J, ZSJ] = 1y, =, p;;j represented by corre-

. . 3 . .
lation matrix p = [p,- J] L=l We set 6’? = 0 since such parameter is unused.

As shown in Eghbalzadeh et al. (2022), the time-¢ price of a risk-free zero-coupon
bond paying one dollar on maturity 7 > ¢ is, under the such model,

P(t,T) = A exp [-AB]X)]. 2.3)
where 7 =7—-1,B, = [BV, B?, 3(13)]T and

1—(1=A)°
P

R

B® =
9 T A

(r -1 =),
(2.4)

BY =7 B =
T ’ T
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logA, = —A02(BY - B?) + A07BY + %A%T, 2.5)

with

Ly =2 T D2z -1)

T 1,1 6 ’

e Tl [1==A]  1-(=-dF
=—\7 + >

TR p T—(1- A2

22
oY = {»1}% [T —2+ G (=M%= 1)+ 25(0 - D% e - 1)

—26((1 = A), 7 = 1) = 225, ((1 = D), 7 = 1) + 228, (1 = 27— 1) ],

2

13) _ . (3.1 _ 1
’)(T )= v, = IL{T>1}f’1,321,1z"3,3z

1[/7(r -1
o = o = P1,221,122,2E< ( ' G =4, T)>,

1= =D, 7-D-UA+ DG =4),7-1)

(t —1)
2

— L1 = 4),7 = 1)],

0(72’3) = 053’2) = 1{011P23200253
T =22 =D =), 7= 1)+ (1= D ((1 = HEr—1)
( ?
51 =t =D+ (1= DG (1= T - 1))
+ b
A
(2.6)
and
7—1 .
r—r
Lo(r,7) = ;r” =T @7
7—1
_ . Fr—Trt4+(r— 1)retl
&i(ro) = ; urt = T 2.8)
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T—D2r 2 4+ 22 =2t - Drt =22 4+ P2 4y
-1y '

7—1
&(rr) = 2 Wt = !
! (2.9)

Remark 2.1 For the rest of the paper, the convention Bf)l) = Béz) = 883 ) =0, Ay =1
and v, = 0 is used, which makes (2.3) hold for 7 = 0.

2.2 Forward measure dynamics in the DTAFNS model

Prices of financial derivatives are expressed as expected discounted payoffs under
the risk-neutral measure. However, the interaction between the stochastic discount
factor and the derivatives payoff is often non-trivial and complexifies the pricing.
A common technique to ease the calculation of prices in the context of stochastic
interest rates is the change of numéraire (see for instance Geman et al., 1995).
This approach relies on the construction of a new probability measure, called the
forward measure, under which the price of a zero-coupon is used a numéraire for
discounting. This allows directly discounting with zero-coupon bond prices, thus
circumventing the difficulty associated with representing the potentially complex
dependence between the payoff and the stochastic discount factor.

The probability measure using the risk-free zero-coupon bond maturing at time
T as a numéraire is known as the 7 -forward measure and is denoted by Q7. The
Radon-Nikodym derivative allowing to pass from the risk-neutral to the 7 -forward
measure, which is provided by Jamshidian (1996) or Brigo and Mercurio (2007), is

dQ? _ BOP(T.T) _ DO,7)
dQ ~ PO, DB(T) PO, T’

(2.10)

where B(f) = exp(A Z;g r,) is the year-f bank account numéraire under the risk-
neutral measure and D(¢,,t,) = B(t,)/B(t,) is the stochastic discount factor for any

0<t <t, £T. Note that the Radon—-Nikodym derivative allowing to go from the
dQ

-1
forward measure to the risk-neutral measure is — = (ﬁ ) .
dQ? dQ
Let E7[] represent the expectation under the 7 -forward measure. Asset prices
discounted by the zero-coupon price maturing at 7 are martingales under the for-
ward measure (Geman, 1989). As a consequence, as discussed in Brigo and Mercu-

rio (2007), the time-f price H, of an asset providing a payoff H at time 7 is

H, = P(t, DE’[H,|F}|. 2.11)
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The following proposition defines so-called forward measure innovations and out-
lines their dynamics.

Proposition 2.1 Forany 7€ {1,...,T}, t <T and T = T—t, conditional on F,, the
Jorward measure innovation defined as Z, +1 A +1 + Ap2EB._, follows the multivar-
iate Gaussian distribution with mean vector zero and covariance matrix p under the
T -forward measure.

Proof See “Appendix”. O

Corollary 2.1 Since the conditional distribution of ZT with respect F, under the T

-forward measure does not depend on ZIT, Zt , and since the latter variables

characterize the information contained in F,, elements of the sequence {ZJ.T}].=1 are
independent.

Based on the above results, we now provide an expression for the dynamics of
term structure factors {X,}ZT=0 analogous to (2.2), but using instead the 7 -forward
measure innovations. Define

07 =0° «7T=x9, nth AZp¥B, | = AXpZBy,_;. (2.12)
A direct consequence of the application of Proposition 2.1 into (2.2) is that
— T 0T
X =X, —n  +x707-X) +3277 . (2.13)

Representation (2.13), along with some additional lemmas provided in “Appendix”,
allow obtaining the #-conditional distribution of X under the 7 -forward measure.

Proposition 2.2 Under the T-forward measure, conditionally on F, and for
t+n < T, factors Xt nJollow the multivariate Gaussian distribution with mean vec-

. . .13
tor M, = [M(’)] and covariance matrix V,) = [Vg")]ii:l where
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n—1

(M — (D (1)
Mt,n =X~ - n. s
1=0
n—1
1=0

A<nX,(3)(1 Ay 1+97<—( - 24 (1-1)”*)

n—1
— Z(n 1— 1)’1[ (3)(1 )n—l—2>’
=0

M§3n) = Xt(3)(1 - A"+ 9?(1 —(1=A"H- Z n- (3)(1 )n—l—l’

V<1 D= an I
V2D = 52, (1+&((1 = A%, m)) + 22351 = D725 - )%, n)
+2%,,4%53p55(1 = DTG ((1 = % n),

VO = 52 (14 (1 - 2%m),

WD =120 =5 % 001 (1 + 60— 4,m) + A%, 1233/}13%’
WD = VD =5 1305 (1+ &1 = 4,m)),
VD = V3D = 308555 (1 4+ &1 = % m) +12§,3W.

Proof See “Appendix”. O

The following quantities appearing in Proposition 2.2 can be further simplified.

Lemma 2.1 Considering the casen = T—1t,

T-t-1

T (T—-t—=1)(T-1
Z ’7z+(11) AX [21 5

s
42202 (T—1=1-¢(1 = 4, T—1))

T—t—-1- (1450 -4T-1t-1))
A

+Z3,3P1,3<
(= A T—1— 1))].

Moreover, fori = 2,3,
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T-t-1
2 (=T = AT, [21,1171',1‘:1(1 —4T-n
1=0

t+l

Y .
220i2 (L1 = A, T=1 = &((1 = M2 T—1))

A
G = A, T=0) = (1= (0 =% T-1)
+ 23,395,3( 7

A+ DG (A=A T-1- 1))].

Lastly,
T-1—-1
Y (T-t—1- Dy - T2
=0
Az,
=124 <21,1P3,152(1 - 4T-1)
z
2’2/;)2" [6(0 = A, T=1) =&, (1 = 2, T—1)]
LA =AT-1) 1
+ 23303, [‘f -6 =% T=1)
A=D1 =2%T- t)]).
Proof See “Appendix”. O

2.3 Physical measure dynamics in the DTAFNS model

To determine option risk premia and expected excess returns, dynamics of interest
rates under the physical measure P must be specified. The P-dynamics considered in
Eghbalzadeh et al. (2022) are used here since they are shown in that paper to exhibit
natural compatibility with the Q-dynamics model; the form of the pricing kernel
allowing to pass from such P-measure to the Q-measure outlined in Sect. 2.1 is
provided in that paper.

Under the risk-neutral measure [P, factors are assumed to have the following auto-
regressive dynamics:

Xz(l)l _Xt(l) K?l 0 0 933 _Xz(]) 2, 00 Zﬂl 1
3 _ o P Py ’ gl
X,—X 0 x,, P’i 0, — sz + 0 %, O Zﬁ;rm >
3) 3) P
Xt+1 - X 00 K33 93 - X 0 0 X3 Zz+1,3
« “ '\ ~ Ve
kP "X, z

(2.14)
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where k7' € [0, 1), k; € (0, 1), i = 2,3, and {(Z,Z/,,Z}))} ., is again a 3-dimen-
sional Gaussian standard white noise with Corr[Zf’i,ijJ] =1y, =,)pij- The P
-dynamics are slightly more flexible than the Q-dynamics since the components in
the diagonal of x are not required to be either 0 or A. A possibility would be to
impose k7, =0 to replicate the non-stationary dynamics of factor X" under Q.
Nevertheless Eghbalzadeh et al. (2022) argue that not imposing such restriction
provides a better fit for their dataset.

Under the above P-dynamics, Eghbalzadeh et al. (2022) provide the

relationship between the long-term mean parameters ” and < for both measures:
Q_ 41 P gP P gP P Q_ ;-1 P gP
0y = A7 (ky,0, + K330, — 403), 07 = A7 k3,0,

and

Q
A 93
P_ 190/, P P _ Q P
93 = 193 /K3’3, 92 = TP’ 92 - T(K?’,?’ - j.) N
K50 K33

whereas the Kﬁ, i =1,2,3are allowed to vary freely.

Remark 2.2 A straightforward possible extension of the model could consist in still
using (2.14) for P-dynamics, but instead considering a physical volatility matrix X"
whose components are different (most likely lower) than those of the risk-neutral
volatility 2. This could help producing negative excess returns for out-of-the-money
options (either calls or put) on zero-coupon futures, which are observed empirically
as documented in Bakshi et al. (2023).

The following proposition, whose proof is in “Appendix”, is analogous
to Proposition 2.2 and provides transition distributions for factors X under the
physical measure PP. Such proposition is used subsequently in the derivation of
option expected excess returns.

.o 1—x? .
Proposition 2.3 Assume K'[;Z + K'gmg and define o = - 32 Under measure P, condi-
3 3 _KZ,?_

tionally on F, and fort +n < T, factors X, , follow the multivariate Gaussian distri-
3 3
I

bution with mean vector an = [M?”l(i)] and covariance matrix Vf = [Vf’(i*j)]iJ_l
: N =

where
MPO = xO(1 — Py +0f.'”<1 -1 - K%")
® -t "
+ ey AKX, — 9?)m(1 - KEZ) 1

and
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VAL { o <1 & = Kﬁl)z’n» ifii, € 0.

nZ?l if KT’] =0,

Ve = 52 (14 61 = k5% m)

P \2n-2
pppr U700 T
37 (1 - )

o2 ((1 = k5 2n) |

2@(1 — kP ) g, @ N
—o (1= x5,)(0 = &53)

—0"¢, ! n
-« -«8)

VO =52 (14 (1 = k5, 7m)

[go(a - Kgfz)—z,n) - Zw”Co(a)(l - Kgg)—z,n)

Vil =% 1500010 [1 + 6o =k = K7), n)]
(1 _ K[IP’l)n(l _ Kgﬂ’z)n—l

l-w

C @ n —Cl)né: 1 n
AR S Na=-xpa-«n™ ) )

1A D VI [1 + 6o = Kﬁl)(l - K&)’ n)],

+ AZ 1235013

Vf@ﬁ) = 297233023 [1 +Go((1 - KEZ)(I - K&% n)]

, (=D = kg 1
+ 152, — ol T "
(1 =3, —k33)

~ry((1=x32n)).

Remark 2.3 Closed-form formulas for conditional moments of X,,, given X, under
P could also be derived in the case Kg) , = K[; 5 However, since such case is very
unlikely to occur in practice, it is omitted.

3 European swaption pricing
This section describes two pricing procedures for European swaptions and

outlines their respective advantages. The first relies on a risk-neutral simulation,
whereas the second uses the forward measure to perform the simulation.
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3.1 Risk-neutral pricing of European swaptions

Swaptions are classified into three types: European, Bermudan, and American,
which differ in their possible exercise dates. Whereas American and Bermudan
swaptions allow the exercise of the option on multiple dates, the European swaption
has a single possible exercise date. We shall focus on European swaptions in this
study. The European swaption considered, which is a payer swaption, is a financial
option that gives the holder the right to enter, at time 7, into a swap with payment
dates T,,, ..., Ty on which the holder pays the strike rate as the fixed rate, and
receives the prevailing floating rate on each payment date.! Typically, the floating
rate is tied to an interbank offered rate, such as LIBOR in the United Kingdom or the
CDOR in Canada.

As shown in Brigo and Mercurio (2007), for ¢t < T,, the time-¢ price of a Euro-
pean payer swaption with maturity 7, strike K, nominal value N and payment dates

{Ti}iﬂ=a+l is
s
PS [t;{Ti}f.’:a;K;N] - E° | D, Ta)<N(Sa’ﬂ(Ta) —k)" Y 5P, T) |7,
i=a+1
3.1
where 6; = T; — T,_,. The time- forward swap rate S, ;(7) is
P, T,) - P(t,Tp)
Sep) = —/—.
a.p (32)
X an SPCT)

The swap rate S, ;(r) corresponds to a value of the fixed rate which would make
the time-f value of the swap nil. The rationale underlying (3.1) is that a market
participant could, while exercising the option, enter without fee into a receiver
swap with the swap rate as the fixed rate. Combining both positions would lead to
a net payment being the difference between the swap rate and the strike rate at each
payment date.

A straightforward approach to obtain the swaption price via (3.1) is to conduct a
Monte-Carlo simulation of the term structure factors under the risk-neutral measure
and to average discounted cash flows, thereby approximating the expectation in
(3.1). Algorithm 1 summarizes this process. The risk-neutral approach for swaption
pricing has the advantage of requiring a single simulation to price multiple
swaptions at once, which could be desirable in a calibration exercise. The drawback
of using such an approach is that it requires simulating the entire path of the term
structure factors, which might not be needed if a single swaption needs to be priced,
as explained in the following section.

! For a payment date Té +» & =a, ..., — 1, the floating rate is determined at the reset date Té.
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Algorithm 1 Calculating a European payer swaption price under the risk-neutral measure
Input: t, XV, X, x® K, N, {T.}_., A, k2, 62, p and &
for me {1,...,M} do > M is the number of simulated paths
Simulate the m'" path of the state variables, X, denoted by { th(j)};‘;Hl,i =123
under the risk neural measure Q
fort' e {t+1,...,T,} do
Calculate the interest rate, r( ,,Xy), through (2.1)
Calculate D(t,T,)
for t" € {Tpy1,...,T5} do
Calculate ,,P(T,,t") through (2.3)
Calculate ,,,Sa3(Tn) through (3.2)
Calculate the payoff for m™ path

nPS (6T 05 K5 N| = Dt TN (mSas( Z 5 mP(T,, T)
i=a+1
S0l mPS [t AT K N]
M

PS [t (T2 K N]

i=a

3.2 Pricing swaptions under the forward measure

Calculating European swaption prices using Algorithm 1 requires simulating
the entire path of risk-free rate factors, which might be numerically cumbersome
in some situations. By applying a change of numéraire, we can obtain a pricing
approach which is more time-efficient. Detailing such an approach in the context of
the DTAFNS model is the objective of this subsection.

Considering the zero-coupon bond maturing at 7= T, as the new numéraire
makes the computation of the swaption price much more convenient. In such case,
the payer swaption price may therefore be rewritten based on (2.11), (3.1) and (3.2)
as

p
PS[t;{Ti}fza;K;N] = P TE" |( N(S,,T) - K)" Y 6P(T,.T) )|7,
i=a+1
ﬁ +
= P, TOE™||N( 1 - P(T,, T - K Z §,P(T,.T) '}"t .
i=a+1
(3.3)

Equation (3.3) involves the 7-conditional expectation of a function of time-T, zero-
coupon bond prices, which are fully characterized by term structure factors

:
XTa = [X(Tlm),X(Ti), X(Ti)] . As aresult, Proposition 2.2 can be used to calculate (3.3).

Algorithm 2 highlights the procedure to price swaptions using such an approach.
When pricing a single swaption, such 7 -forward measure simulation is much
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quicker than the Algorithm 1 based on the risk-neutral measure, which requires
computing expectations over entire paths of the term structure factors.

Algorithm 2 Calculating a European payer swaptions price under the forward measure

IHPUt: t7 Xl(l)) X(,(2>? X/@)a K1 AN? {Ti}?:aa A7 "ZQ’ 9@1 Ps and ¥

Calculate P(t,T,) with (2.3) and 7, 07 using (2.12)
for me{l,...,M} do > M is the number of simulated paths

Simulate mX%I) , mX(Ti), ngi) from multivariate Gaussian distribution with mean vector
M, 1~ and matrix variance-covariance Vr, _, defined in Proposition 2.2
forie{a+1,...,6} do

Calculate the zero coupon bond price, ,,P(T,,T;) through (2.3)

Calculate the payoff for m*" path
8 +
mPS |:fy {,-Tt}fzav](v N:| = P(fyTa)N (1 - sz(T‘(nI‘yS’) - K Z 51 !ILP(T()H:Z—;))
i=a+t1

S, P8 [t (T} K]
M

PS [tATY o K N| ~

4 Zero-coupon futures and options on futures

This section discusses calculation steps for prices and expected excess returns
associated with European options on risk-free zero-coupon futures.

4.1 Futures price

Consider a futures contract with maturity 7, on a zero-coupon bond maturing on 7.
Its time-7; price Fy. 7. 7. is given by

Fr 5z, =E [P(T,%) le],
see for instance Bjork (2009). Such expression can be calculated in closed-form, as
indicated by the following theorem whose proof is found in “Appendix”.

Theorem 4.1 The time-1, price of a zero-coupon bond futures whose maturity is 7,
and whose underlying risk-free zero-coupon bond matures at T is

FTI’TZJTZ = ATZ’T3 eXp —-A

13

20 (i)
B, Xz 4.1)

3
=1

withty =T, =T, 73 = Ty = 1), V, being defined in Proposition 2.2 and
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N @ (pQ _ 0 .
oy = AT3 exp [78131}12873 - ABT3 (02 - 93 X1 —=(1-=2)"7)

S —A,+1)

_ (2) 19Q
AB® 265 < —

-5,(1 - A)Tr‘)
~ ABPOF(1— (1~ /1)’2)],

BV =8Y, BY =821 -2, BY=BY1-2"+Bin1- "

4.2 Price for options on futures

The closed-form solution for futures prices leads to a Black-Scholes-type
formula for the price of options on the zero-coupon futures. Indeed, denote by
Call, . 7, 7,(K) the time-7 price of a European option with strike K maturing at 7,
on a futures maturing at 7, whose underlying asset is a zero-coupon maturing at
.

Recall the following result, see for instance Lemma A.1 from Godin (2019) for
a proof. Suppose Y is a Gaussian random variable with mean y and standard devi-

2 - — y— G2 = . .
ation 0. Then E[e"1y, ] = e"*"“ﬂfb(”’T”) where @ is the survival function

(i.e. one minus the CDF) of the Gaussian distribution.

Lemma 4.1 Suppose Y is a Gaussian random variable with mean u and standard
deviation o. Then,

E[max(0, e" — K)] =E[¢'1 (75100} ] — KELL (ys10g(6))]

=eu+62/z¢<w> _ Kd,(log(K) - u>_

(e o

The following result is obtained by combining Proposition 2.2 with (4.1).

Lemma 4.2 The forward measure Q"1 distribution of time-T, the log-futures price
log Fiy- 1. 7. conditional on time-t information is Gaussian with mean v, . 7. and

variance ¢*

T T where

3
_ i B A 1)
ViT T, T, —logATz,T3 - A Z Br3Mz,rl ,

i=1
2 ARV F
Sir1,7, =AB V. B,
.
, - (1) 52 53
witht, =71, —tand B, = [B( ' B?, B )] .
T T T

Using Lemma 4.1, the time-¢ call option price is
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Call, 7. 7. 7.(K) =P(t. T)E7 [max(0, F7 7. 7. — K)|F}]

log(K) — -2
=P(tT,)[e"’fl’ﬁjﬁﬂfﬂ-fzfs/z(i)( 2K) = v, 1 1.1, Gz,ﬂ,@,ﬂ)

SLTLT,

B K&) 10g(K) - Vl,’T],Tz,']g ] .
S1T,.1,.T,

Furthermore, denoting by Put, 7- 7 7.(K) the corresponding European put option, the
put-call parity leads to

Put, 7 7, 7.(K) = Call, 1 7 7.(K) = (ET[Fy, 1. 7 | F] = K)P(t, Ty)

where Lemma 4.2 leads to

T, 2
BN Fg 1,71 7] = exp (Vt,Tl,Tz.Ts + gt,TpTsts/z)'

4.3 Price for quadratic options on futures

2
. . . . F
A quadratic option on futures with time-7, payoff <% - 1> can also be

11Ty
considered. Such option bears resemblance to a straddle option since it is more likely to
produce higher payoffs in higher volatility environments for interest rates. Using
Lemma 4.2, its time-f price is given by

2
F’T T, T,
Quad, 7 7 7 =P(t. THE"| [ =2 — 1 ' 7
Fin,

exp(2log Fr 7 7.) 5 exp(log F7. 7, 7,)

2

I3 +1
17,1, 11,73

=P(t,T,)ED l

d

2
exp <2v,!71’72‘73 + ZQI,TI,Tz,%)

2
Fig,

=P(t,7))

2
eXp (\/[,71’72,7; + gllevTZv?s/z)

-2 +1

F |

Fr1,

@ Springer



186 F. Godin et al.

4.4 Option expected excess returns

Consider a European-type derivative whose time-f price is Price, and whose time 7,
payoff is Payoffy. Its (periodic) expected excess return (EER) could be calculated in
two ways:

E” [Payoff, | F,
EER;Xgproachl _ 1 log [ ‘ T, t] _ S(t,']'l),
A T, -t Price,
N (4.2)
Approach 2 1 lEP [D(t’ 7rl )Payofle |]:t]
EER, T =7 log ; )
’ | —t Price,

where the risk-free spot rate is obtained through s(t,7,) = —T;_t log P(t,7;). The

first formulation relies on a future value perspective, whereas the second sees the
expected excess return through the lens of a present value. The second approach has
the conceptual advantage of producing an exactly null premium if P = Q.
Nevertheless, it is more cumbersome to compute and as such we consider (4.2) in
this work. Bakshi et al. (2023) also use a formulation similar to (4.2) in their work.

The expected excess return for the European call, the European put and the
quadratic options presented above are therefore respectively

P .
EERCall K) = 1 P23 - I,T , .
&) 7 og Call,; 7 7 (K) s, 7)),  (4.3)
P .
1 E [max(O,K - FT,T,T)LE]
EERPut K) = 1 L - I,T 5 44
() 7 loe e s, 7)), (4.4)
. 2
[EIF" l( ;'177'2:3 _1> f‘;|
EERQuad (K) _ 1 log t1. 13 _ S([ T) (45)
11T, T, -1 Quad, 7. 7, 7.(K) o

The following result is obtained by combining Proposition 2.3 with (4.1).

Lemma 4.3 Assuming k3, # K , the P-distribution of time-T, the log-futures price
log F'7. 1. 7, conditional on time-t information is Gaussian with mean v d

variance (gf)T T
321,49

P
an
7.5, T;
T )2, where
243

3
P _ 1 (1) P,@i)
Vir gz =logA, . —A Z B M

tr
i=1

P 2 _AfAl 7
op 7,7 =AB.V; B,
.

with s, =T, rand B, = [B, B, 87
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Again, using Lemma 4.1, the time-¢ European call and put option expected pay-
offs are respectively

P P 2 2
EP[max(0, F1 7 7. — K)|F] =[ev’le’Tz«T3+(g'«71sz,T3) 12

P P 2
. <log<K> ~Veran ~ Cnn) >

P
ST

P
_ K(i)(—log(K)[p KAk >]
LT,

EP[max(0,K — Fr. 7 7)|F] =E*[max(0, F1 1 7. — K)|F,1 = (€ [Fr 7 7| F] - K)

where, from (4.2),

ElFr g 7 = ex (fol,fz,z +Grnm)/ 2)'

Moreover, the quadratic option’s expected payoff under P is

2
el ((Fren
Firg,

.7:[ . lexp(Z log FTI ,7—2,7—3) B Zexp(log FquTzﬂTS) +

2
F;,Tz,qg Fﬂ'ﬂ%

lft]

P P 2
exp <2vt’Tl,szT3 + 2(gt371372373) )

2
F 1,113

P P 2
P (Vrmm + Cnnn/?) 1
- +
Fiz, 1,

7

Substituting the above formulas in (4.3)-(4.5) provides values for the option’s
expected excess return.

5 Methods for the calibration of the DTANFS model to option prices

While a full-blown calibration of the model to interest rate derivatives prices is
left out-of-scope, we briefly highlight potential approaches for such a purpose.
Assume a set of d derivatives prices Y, = [Y,(I), . Y,(d) ] is available on any period
t, each of which are associated with a set of deterministically chosen strike prices
K, = [Kt(l), ,Kt(d)].2 Observed derivatives prices are assumed to be a noisy version

2 To produce more homogeneous errors N,, it might be desirable to fix the moneyness of options rather
than their strike price.
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of their true prices, and thus we can consider the following system of equations to
depict the dynamics of derivatives prices:

Y, =GX,K)+N,, X, =a+bX,+ZZ,, t=0,..,T, 5.1

where G is the non-linear function mapping risk factors and strikes into option
prices, and the process N = {Nt}tho is assumed to be a Gaussian d-dimensional
white noise. Furthermore, a = k”” and b = I — x" with I being the 3 x 3 identity
matrix.

Since (5.1) involves a non-linear transformation G of the Gaussian latent factors,
the conventional Kalman filter cannot be applied. Nevertheless, the unscented
Kalman filter (UKF) developed in Julier and Uhlmann (1997) can be used, as
the non-linear system (5.1) is a special case of their equations (1)-(2). The UKF
is a generalization of the Kalman filter allowing to tackle non-linearities through
a deterministic sampling method leading to a better approximation of filtered
moments of the observable quantities. An alternative approach consists in using
particle filters, which instead apply stochastic sampling of latent quantities. See for
instance Del Moral (1997), Creal (2012) or Remillard (2013) for more information
about particle filters. Both the UKF and particle filters have been applied to term
structure models estimation in the literature, for instance by Christoffersen et al.
(2014).

6 Conclusion

This paper describes how to calculate prices of swaptions and European options
(either conventional or quadratic) on zero-coupon futures under the DTAFNS model.
Expressions for the option expected excess return associated with the European
options are also provided. Whereas Monte-Carlo simulation is used for swaptions,
closed-form solutions are provided for the zero-coupon futures options. All pricing
expressions are obtained after deriving exact formulas for transition distributions
of risk factors underlying the term structure dynamics under the following three
respective measures: the physical measure, the risk-neutral measure and the forward
measure. A potential future work could consist of studying option risk premia
produced by the DTAFNS model and determining whether or not they are consistent
with empirical stylized facts outlined for instance in Bakshi et al. (2023). Tackling
American options could also be an interesting subsequent work.

Appendix: Proofs

Before proving Proposition 2.1, several lemmas are presented.
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Lemma 6.1 Fori=1,2,3 and any integer t > 1,

ii

= B(ri)_l( — ALisyy) = Ljimgy (1 = i

Proof of Lemma 6.1 See Lemma A.2 of Eghbalzadeh et al. (2022).

Lemma 6.2 The following recursive relationship between the time-t and time-t + 1
zero-coupon bond prices presented in (2.3) holds for any integer T > 0:

A
P(t+ 1,1+ 1) = P(t, + 7)e™" exp [10g<A > AB! | («®0% +2Z7 )|

Proof of Lemma 6.2 The case T = 1is trivial. For 7 > 1, using (2.1) and (2.3) for the
first equality, and then Lemma 6.1 for the third one,

3
P+ 1,t+7) B x®
10g< P(t,1+7) >_Ar’ 10g< ) Z( B X

i=1

3
(B - 1)X) + A ZX}” —AKY + xP)

. [ BY-1
(1) (i) T (@) (3)
= log ( > A Z B <Xl+1 ( e >X > + AX]

7—1
( A(B® x® _ ( B(s) —1) X,(3)>

—1""1+1

= log < > A z B2, (%2, = (1-£2)x7) + ax?

- (aB2x0 - (AB?_H(I ~ == )X

7—1""1+1

3
A )
;1> -AY BY <Xf'+)1 - (1 - K;ff)x}’))
T i=1

_ (1 _ /1)1‘—1 )Xt(3)

A
= log < = > - AB!_ | (k90% +322 ) + A(l —(1=n" - Bf’jlz)x}”

1_1> - AB] (k%% +32° ).

Therefore,

A
P(t+ 1,14 7) = P(t, 1+ 7)™ exp [log ( ;1 > - AB!_ (k9% + ZZSI)]

T

O
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Lemma 6.3 Consider any integer = > 0 and any real number r. Using the conven-
tion 0° = 0, for functions {y(r, 7), {,(r, 7) and &, (r, T) defined in (2.7)—~(2.9),

Go(r = 1) =&l = =r*7, (6.1)

Lt =D =& =—r"l(z - 1), 6.2)

Lr =D =G0 =~ =12 63)

Proof of Lemma 6.3 This result is a direct consequence of the sum representations of
Co(r, ), &, (r, 7) and {,(r, 7) provided in (2.7)—(2.9). O

Lemma 6.4 The following recursive connection holds for the quantity v, defined in
(2.6) for any integer > 0:

v, =Bl Zp(B]_ D) +o,_,. (6.4)
Proof of Lemma 6.4 The case T = 1is trivial as it leads to 0 = 0. For = > 1, first,
Bl 2p(Bl_ %) = 2 Z B BY 5.5 p.
i=1 j=
Moreover, based on (2.6),
33
= Z Za ])Z prl,],
i=1 j=1

with a(lJ) ( (iJ) (h/) )/(21 lz]Jpl ])
To complete the proof we now show that o' = B(’) B(’) (foranyi,j=1,2,3.
First, fori =j =1,

0D = t-D2r-1) (-D(-2)Q27— 3)'

6 6
_ rt—-DQ2—7-272+771-6)
B 6
=(r -1y
(1) (D)
Br IBr 1°
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Secondly, fori = 1 and j = 2, using (6.2),

a<71,2) _ %(r(rz— DA G- A7) — (T_l)ziz) +40-A1— 1))
_ z-1DH—-01- /1)7_1(1 -1
B A
=B(¢1-)1B?-)1'

Thirdly, consider i=1 and j=3. For 7=2, a"” =B"BY=0 since
oY = o = 0. For z > 2, using (6.1), (6.2), and (6.3),

-1
a(1,3) _ l (T )

( ST G- AT =D =+ DG - A - 1)

- AL - At — 1)_W

+1+&(0-4,7-2)
+A+ 24U =4Lt=2)+ (1= A7 — 2)]
=11 =AD"= =D2(c =2+ )= A1 = D)2z =2)

T—1-(1=A"2=-1=-A)"2(r-1-D1+4)

— (=D =D -1-1

=2|r=1-(1=A2(c =D+ 1)
+ A1 =A== D2 =D =D+ A1 =)z =1=-1)

T—1

=— [l—(l—/l)T_z—A(l—ﬁ)T_Z(r—Z)

-5V g?

—1"7-1"

Fourthly, fori =j =2,

T _ _ 1)\2t _ _ -1
a<2,2>=%<f_2[1—(1—,1)]+1 (1-2) _T+1+2[1 1=2) ]

- 7 1—(1-Ap p
1— (1= 22D
1= (1-Ap
= %(1 —2(1 = AT 4 (1 = D)
= B(rz—)llg(rz—)l'

Fifthly, consider i=2 and j=3. For 7=2, a®® = 6(12)8(13) =0 since

23
o7V = o> = 0. For 7 > 2, using (6.1) and (6.2),
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o FT27C- NG -Ar-D+0 =D =%t -1)
[ A2
L Tl -dr-D+d -2 (=% -1)
A
T=3-Q2=D1 - ALt=2)+ 1 =D ((1 - %7 -2)
A2
L= A=)+ (1= ((1 - %7 -2)
A
1-Q2-A1 =D+ = - p*?
= =
LU= D=2+ =D =D -2)
A
(1= = H™2)" + 40 = H2(1 = (1 = H2)
A2
(1= A2 =2 (1=~ =1)
* 7
(1-A=D"H)(1-0=H"21=-2) A-H2r=-(A-H""=1)
+
2 A

_ oyl _ — 2
_1-a-4 (1 a-4a -(1—,1)"2(1—2)>

A A
—B? g®

—1"7-1"

Lastly, consider i =j = 3. For 7 =2, a(23’3) = 8(13)6(]3) = 0 since 0(23’3) = v§3’3) =0.
For = > 2, using (6.1), (6.2), and (6.3),

a®d = % t=2+5(0 =02t =1)+ 225(A -V -1)

=281 = Az =1 =225(1 = At =D +225 (1= D7 -1)
—t43-5(A - Hhr-2) = 225(A - VT -2)

+260(1 = A7 = 2) +248,(1 = A, 7 —2) = 244, ((1 —/1)2,7—2)]

= % L4+ 1 =22 4 221 = DD =2)2 —2(1 — A2

— 221 = A2 (r =2) + 24(1 = XDz — 2)]

- % (1= (1= H™2)7 + 22(1 = 2Dz = 272

=201 =" -2)(1-(1 - /1)’—2)]

= % (1-Q=p"2= 20 = N2 - 2))2]
-_ _ 2 2

- <—1 (1/1 DT _q —A)T*2(T—2)>

= 8(7331813—)1'
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O

Lemma 6.5 For i =1,2,3 and any integer = > 0, the following recursive relation-
ships between B(Ti) and B(T')_l hold:

BO =BY +1,
B(z) 28(2) + (1 _ /1)1:—1’

T 7—1

BY =BV +(1 - )z - ).

Proof of Lemma 6.5 The case 7 =1 is trivial. For 7 > 1, based on (2.4),
B(Tl) =7—1+1=BY +1.Furthermore,

7—1

Bag%-lﬂz(l—i)lggﬁl

T

=B? -1+ - +1=82 +1-"".

Lastly,
_ _ 7—1
z’s‘f):—1 (1/1’1) —1+1=(z=2+ D=1

L 1-(1-4" | =2 1 g2

=(1 A)( 7 + 13 (r=2)(1-=2) (1=2
1 _

=B§3_>,+m—(1—/1)72

—1+0=1"2= % + AT =2)A = A2+ A1 = )2

=B2 + (1 - )2 - D).
O

Lemma 6.6 The following recursive relationship holds for quantity A, defined in
(2.3) and any integer T > 0:

A=A, exp (3A%BLZp(BL, D)7 - ABT x%°).

Proof of Lemma 6.6 For t = 1, the proof is trivial. For = > 1, using Lemma 6.4,
Lemma 6.5 and (2.4) to substitute into (2.5),
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A
log < ! ) ~ ABT k9% = —a62(BY, - BY + BY - B2 )

+802(BY, - BY) - AB] x%° - 20%(0, —,.,)

=—A0T (-1 +(1—D7") = A6F(1 - )P Ar - 1)
- ABI_IKQQD - %AZ(UT -v,)

= A02ABY | — AOR A1 — 2z — 1) — ABP A2 - 62) — ABY 169
- %Az(vr - vT_l)

= —AOS A1 = )72 — 1)+ AAZ B - BY ) - AQBT Zp(B]_ )"
1
= —EAzBI_lﬁp(BI_IZ)T.
O
Proof of Proposition 2.1 The proof relies on calculating the moments generating
function of innovations under the 7 -forward measure. Consider the row vector

I'=[I',I,,I3]withI'; € Rfori=1,2,3. Then

] = [ET[exp(rz@ +FApEBT_1)’.7-",]

[ET[CXP(F +1) r+1
7

dQ”

EQ FZ TApEB,_
[eXp( ,+TAp )d@

Wl

EQ [exp(F

P(t+ 7.t + 7)B(0)

’+1)P(0, t+17)B(t+ 1) j:’]
7]

Pit+rz,t+71)
© BG+1)
! P(0,1+ 1) P(t,t+ 1)
P(0, 1+ 7)B(t)
Pit+z,t+ 1)
B(t + 1)

ol
where the fourth and fifth equalities rely on the fact that % is a @-martingale.
Define

= exp [FApZBT_l]

o| PU+7T,1+ 7)B(0)
PQO,t+ 7)B(t + 7)

E@ [exp(FZ+1)

= exp [FApZBT_

B(1)

— Q Q
= exp [rpAZBT_l]P(mJr )[E [e xp(TZ ) E [

7|

-

) B Pt+1,t+71)
*UPtt+1) Bt+1)

= exp [[ApZB,_|E? [exp(r
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A,
Yz )=rz2 +log< " > AB! | (x%0% + 2277

t+1 l+l)

Using Lemma 6.2 therefore leads to

[ET[exp (rz7,) ]

where, given F,, Y(ZQI) follows the Gaussian distribution with conditional mean
and variance

.7:] = exp [FApZB ][E@ [exp (Y(Z+1))

[Y(Z+1) ] log <A ) AB!_ k909,
[Y Z2) ] =Tpl'" + AB]_ Zp(AB]_ %) — 2T'ApEB,
Thus,
[CXP(F TONF ] ( —-ABT_ k90? + %ABZ_IZp(ABI_IZ)T>x

exp ( %FpFT > .

Therefore, using Lemma 6.6 leads to

i
[exp(F +1) ] = exp (EFpF )
O
Lemma 6.7 Assume (2.13) holds. Fort = T andn=0,...,7T—1t,
Xip, =X =]y + KjefZ(l KD 4z, Z (=D
=1
(6.5)

+ Z Z KT(HT X(I)l 1)(1 T)(n h _ Z ’7, (l)(l z;)n—l—l'

I=1 j#i

Proof of Lemma 6.7 This proof is analogous to that of Lemma A.1 from Egh-
balzadeh et al. (2022), which is based on induction. We apply the convention
Z[_:lo X = Z?:l x; = 0. The case n = 0 is therefore trivial. Then, assume (6.5) holds
for some n < 7—t — 1. Using (2.13), forany i = 1,2, 3,
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(i) (i) TinT () T.30)
XH’”‘H XH’” + Z K (9 XH'") + E” tn+1,i Hin
3
(@) T T T T/nT () T.3i)
= X0, =Dy +xl0T+ Y kO - X0+ 228 -l

J#

Applying (6.5) in the latter equality yields

lll

() —_ y® Lyt TnT Dyt T\(n+1-1
Xionen =X (L= )" +x,,0; 2(1 M )+2”2 fa (1= k=D
=1

+ 2 2 K_’T(HT X(/)l ])(1 T)(n+1 ) + K'THT 2 ”T(l) Kg)n—l

i l+l
=1 j#i
TpT () T.()
+ Z (9 Xt+n) + le t+n+1,i ’1I+n
J#

n+l n+1

— Xt(l)(l T)n+1 + KTQTZ(I T)(n+1 1) + Z” Z H—ll Kg)(n+l—l)

L1

n+l1
TpT 0 T\(n+1-1) _ T(t) Tyn—I
+ 2 2 TLC R IR (C el My (1=K )"
=1 j#i
thereby finishing the induction. O
Lemma 6.8 Forn=0,...,7—t, the factors X;Jr)n can be expressed in terms of X, and

innovations { l+l} as follows

n—1

) 0 T(1)
Xt+n X + z:I 1 Z 41,1 z My >
1=0

X3 =xP(1 - "+ O - 6D(1 - (1 - ") +3,, Z z%,, (1= D
=1

1—(1 -2
+ /1<nxf3)(1 -t 93T<—( (/1 " _ n(l - ,1)"-')
n—1
+ 235 Z(n — k(1 =zl Z(n — k=0 - A)"*H)
— Z n;z;(lz) A)n—l—l’

X2 =xP1 - "+ 07(1—(1—,1)")+233Z SOl

7.3 —1-
Zn[+(1) A)n 1 I.
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T _ T T ’T _ T _ T _
Proof of Lemma 6.8 From (2.12), K| =K =K =K =k =k, = 0,
T T

Ky, = K35 = Aand K‘ZS = —A. When placed into (6.5), this leads to

e
)] D (D)
Xipw =X+ 20 Z +,1 Z Mt

X7 =x2(1 - 2y + 267 2(1 P ’>+2222 Z2,=0"" (6.6)
n—1
—ﬂZwT X = 2070 = B = ayt

X5, =xP1 - "+ /1672(1 N 43, 2 Z%, (1= D
6.7)

7(3) —1-1
- Z rlr+l — A" :
Furthermore,
n n—1
3) - 3)
;(1 - [Xx+l 1 Z(l - lXz+1

n—1
= 31—yt 1[ X9 - /1)1+MTZ(1 _

=0 k=1

-1
-k -1k 7(3)
+35, Zz,m(l - HEH 2(1 Ak }

— 1— n—I—1 _ 1— n—1
=nX(1 - " + /19372 a-4 - d-5
1=0

n—1n— n—1n—1

1
n 273
+233[z:,)211k<z ,+k3(1—/1)"k] ;)/;)l{kdl (1= "*2y ()

k=1
—_ —_ 7
:nX§3)<1—/1>"‘1+9;f<—1 (lﬂ 2 —n(1-/1)”">

n—1 n—1
233 zzm Z“ O _gg"ﬁf) Y (1 -y

I=k+1

=nxP1 -+ 9{(—_ A=A _,q- 1)“")

A
n—1

+255 Y (= k(1 = A1ZE Z(n — k=D - a2,
k=1
(6.8)
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Using (6.8) in (6.6),
X2 =xP0 =" +671 - (1 - ") +2,, sz(l A

-65(1 = (1= 4"
+/1<nXt(3)(1 )"1+97<—(A 2 (1—1)"‘1)

n—1

+ 253 Z(ﬂ —k(1 -z t+k3 Z(n —k— Dy (3)(1 )n—k—2>

T (2) n—1-1
I+l A) :

Moreover, using (2.7) in (6.7) leads to

X2 =x91 -2y + 97(1—(1—/1)”)+23322+13(1 2D

oM —1-1
2 gy (L=

O

Proof of Proposition 2.2 The joint normality of X,,, given F, is a direct consequence
of Lemma 6.8, which expresses X, as a linear combination of the F-measurable
elements of X, and of jointly Gaussian innovations Z” ,thn that are independ-

SRTRTE
ent of ;. The composition of M, , is also a dlrect consequence of Lemma 6.8, and
of the null expectation of innovations ZZH, .. t o given Fu.

Components of V, are also obtained through Lemma 6.8 and (2.7)—(2.9):

n

VI = var(X( 1 F) = 32 Y Var'(Z], ) =n2}

=1

V2D = Var (X, |1 F) =33, ) (1 = A2 Dvar'(Z2, )
=1

+ 4252, Z(n—l)z(l DOvar(ZE )

n—1
+2%,,A%, Z(n — (1 = 221 CovT(ZT
I=1

=25, (1+ & = % m) + 425,01 = D751 = H%n)
+ 259, A% 30,51 = 7' ((1 = A n),

t+l 2’ +l,3)

VO = Var (X1 7) =22, D (1= 2 DVar'(Z2 ) = 22 (14 &o((1 = A% )
=1
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and

n
|F) =212, 2(1 - »ricovi(zl, . Z%, )
=1

VELLZ) — V;Z,l) — COVT(X(l) x@®

+n’“t+n

n—1
+ A% 245 Z(n D - yreov(Z], 2 )
=1
Cl(l - )'s n)

= Z1,122,2»01,2(1 + (1 — /1’”)) +AZ; 1255013 )

n

VI = V0D = CovIX\,), XD 1 F) = 2,255 D (1= A" 'Cov(Z], . 22 )

t+n’> ““t+n
=1

=3, Z3303(1 + &0 - A.m)),
YeI =162 = ¢ (X2 X9 |F)

+n’“t+n

s

n

=290%33 2(1 - ﬂ)z(ll_l)COVT(ZZrz,z’Zt7+-z,3)
I=1
n—1

+ 222, ) (= DA = DX Var(Z] )
=1

15

51 =A% n)
=3,,%530,5 (1 + &((1 = A% m) + AzgjllT.
O
. T.0) _ 3 ()
Proof of Lemma 2.1 From, (2.12), for i=1,2,3, ;7" = A% Z,‘:] EijiJBT—t—l'

Therefore,

T-1—1 T-1—1

3
(1) _ ()
Ny =AZ szJle Z By, i
=0 = =0

3 T-1-1
)
=A%, Y iny ) B
=1

=1
(T—t-1D)([T-1 + 252012
2 A
T—t—1-(1+{A - AT-1=1))
A

= AT, [zm (T-t-1-=¢(1=4,T-1))

+23,3/’1,3<
— (1= A T—1— 1))].

Moreover, fori =2, 3,
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T-t-1
Z nt (1)(1 A)T—l—l—l
T-1-1
T—t-1-1 (1) (2)
= A%, D U= (500 B + 500008,
=0
(3)
aspisBr, 1)
T-1-1
/ (1) (2) (3)
= AY; Z (I=2 (Zl,lpiJB[ + 200008 + 233038, )
=1

=A2i3i[21!1pi,14‘1(1—A,T—t)+ “p’z(cjo(l— LT—=1)—= (1= )% T-1))

U= A T-0— (1= D7 ((1- D% T—1)
+ 23303 7

A+ DG (=D T—1— 1)>].
Lastly,

T-t-1
2 (T—t—k= DO — HT+2

T-t-1
Z (T-1-k- 1)A23322Jp3JB(/)t (1= T2

T-1-1 3
=A%y ) k)T 0B (1= A
=0 =1
T-1-1 3 '
=A% Y Y Eue kB (1= 2!
k=1 j=1
AZ33 E221021
=1 <21 13161 = A, T-0+ (61— A4,T-1)

=6 (=22, T-1)]
1-4,7-
+ 233031 [% - %Cl (A=D"T-1)

—(1="G (-3 T- t)]).

Lemma 6.9 Under the risk-neutral measure Q, conditionally on F,, factors X, fol-

low the multivariate Gaussian distribution with mean vector M, = [Mfl:l] and
’ Mli=1

covariance matrix V, = [V;’*’)] =1 where
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MY =
M2 =X = "+ 02 - 691 - (1 - )"
1—An+1
ﬂ(nX,G)(l -+ 62 <% —n(l - ,1)"—1>>,
MY =X = Ay +62(1 - (1 - 1)),

Proof of Lemma 6.9 The proof is analogous to that of Proposition 2.2, replacing for-
ward measure superscripts 7 by Q and setting the process 7 to zero. O

Proof of Proposition 2.3 From (2.14), Fort=0,...,Tandn=0,...,T —1,

Xipw =X = kE)" + k567 Z(l K+ E Z ZAROE
n (6.9)
+ Z Z KP(HP _ X(I)l 1)(1 qf';)(n—l).

=1 j#i

Indeed, steps for the proof of (6.9) are identical to these for the proof of Lemma 6.7,
setting the process # to zero. This leads to

X(l)

O = X001 - Py + 9?(1 — (-« ) + 2,, 1= By, =13,

l+l i

(6.10)
and

n n
) @) P P P P \(n-]) P P (=)
X =X (1 — Kz,z)n +K;,0, 2(1 = K3,) U+, Z Zo(l = x55) "
=1 =1

_AZ(QP Xo)l D=k 22)(;1 .
6.11)

—_
=

—K.

Furthermore, assuming k5 , # K , and denoting w = —
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— Z(l _ K;F‘:z)n—l<
=1

(3)
Xt+l 1

)=

Z(l -y (6F - X))

n—1

=Y -x5) I[X(3)(1 Ky = 05 (1 — k5,
1=0
+ 235 Z HTEIC ng)(l_k)]
1 -o" -
= X7 =0T (L= k5!
n—1 n—1 (1_K[F°)n—l
22
+ 255 Lt Zopgs® ——5
,z;‘kz;‘ T =KD
1 -o" -
= —9””)—1 —( k3"
(1 _ Kzz)n 1 n—-1
+Z332 k31 P vk Zwl
- K3 &
@3) 1-
= (G =)= K5,)" !

( _Kzz)n la)"—a)
+Z
332 t+k,3 K3,3)k l—w

Substituting (6.12) into (6.11) leads to

x®@ —

+ <(x§” 9"”’)

t+n Xt(Z)(l 22)n +9P<1 -(I= Kzz)n> +2, 2 +12(1 - Kzz)(n )

6.12)
n—1 (1 _K[FD )n—l ] n
. 2,2 w —w
(1—)(22) l+23”§z t+1,3 (I—KP)I l-w >
33
(6.13)

Combining (6.10) and (6.13) directly yields expressions for Mf;l(i). Additionally,
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VD = v (XD | 7y = 5 Z(I—K O™ (Z], )

t+n

_ [ (1ra@-xf ) itk e,
nx? if K?l =0,

Vf,(z,z) — VarP(X(z)

t+n

\F) =122, 2(1 = k5, IVa® (28 )

1= xf, !

2
A2 W =@\ PP
’ 32( T A

n—1 !
el 1 w
2542, ) (1= w5 ) _w(l — )

=1

!
" 1 P 7P
1 —w<1 P ) Cov(Zy10 Zi1)

33

(1- K‘gmz)zn_z n-l 0¥ — 2 4 2
=23, (141 = k52w + 453, ’

(l _a))Z =1 (1 _K:[;pj:v,)y

n—1 !
+2p23)’22 2233 |]:n )(2" D Z
o (1—r<22)<1—:< )

A A
(1- ngz)(l - KES)

- 2572(1 +&((1 - KPZ)Z,I’!))
)2n 2

+ ,122;3(1(1_—) [go((l kD)) = 206 (@(1 = kT n)

+a)2"¢’0((1 - ngj3)_2, n)]

P23AZ 5353 .
+2—>1- ng)(z D¢ %,n
l-w (1 - x5,)(1 = k33)

—"{ ;n
Na=-xpa-«5)" )|

VRGOS = var (X0 |1 F) = 32, D (1 = k5 )2 Var® (25, )
=1

- 233(1 41— Kg’jS)z,n))

and
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A2 _ VP2 _ ey y @
VA2 20D = cov® (XL XD | F)

t+n’“"t+n
n

=%,5,, 2(1 =k = KDV (2E, L 28 )

=1
n—1 (1 _ K.[P’ )n—l ! n
_ 2,2 @ — W P, 5P P
+ A%, 555 ) (1=« ! CovP(Z8 . 7P )
; 1,1 (1 _ Kgij)l 1—w 41,17 T1+1,3

=3 500015 [1 + 61 =P (1 - KDy, n)]
(1- Kﬁl)”(l — Kf”z)”‘1

l-w

¢ @ n|—-w"¢ ! n
\a - &P —«P)’ \a — &P P’ ’

VP,(L?’) — VP,(?!,I) - COV[FD(X(I) X(3) LE)

n n +n’“"t+n

+ AZ 1233013

n
P (-1 P (-1 P, P P
=223 2(1 - K1,1)(n (1 - ’(3,3)(’Z "Cov 10213
=1

= 2, S0 |1+ G - k701 = k5.,
Vf’(2’3) — V'r]:’»(lz) — COVP(X(Z) X(3) |]_~[)

t+n’ ““t+n
n
- _ P ol _ P il PP P
= 2,233 2(1 Ky0)" (L= k33)" " CoviZ, . 2, 5)
=1

n—1 (1 _ KP )n—l | "
22 @ —w -
+ A%; : (1 -5 Var™(Z}, )
33 ; a- Kg13)1 1—w 33 t+1,3

= 29223303 [1 +&o((1 = k3,1 = Kk34), n)]

L =kl = kEyy |
+A%2, — |
( - KZ,Z)( - K3’3)

~ o ((1 - K;P:S)_Z,Yl)).

O

Proof of Theorem 4.1 Using Lemma (6.9), the futures prices can be obtained from
the moment generating function of the normal distribution:
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Fr 7,7, =E° [P(T,%)

al

=E2 [AT3 exp [—ABZ}XTZ]

7|

3
N = () A2 T
=A,exp [-A Y BIMY  + =BV, B,
i=1
This implies
3
A 72(0) 3 (i)
FITIV/TP,TS = AT2,‘[3 exp —A Z B_L_}X,]l—l
i=1
where

77,73

2
=A, exp [%BLVHBQ - AB(T?(GS — 01 — (1 - 1)™)

1-A1,+1
_ AB(T?)ﬂ?(CO(]—?) —7,(1- ,1)Tz—1>>

~ABP6I(1 (1~ /1)72)],
Bl(ll) — qul)’ Biz) — 822)(1 _ /1)", Bf) — Bf)(l _ ﬂ)n + Bf)in(l _ /1)”_1.
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