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Abstract
This paper investigates the effects of the spot underlying commodity price, stochastic
convenience yield, interest rate and counterparty credit risk on the pricing of the
commodity-linked bonds. The stochastic factors or state variables in the model are
the spot price of the underlying commodity follows geometrical Brownian motion
process with a stochastic drift, the net convenience yield and the short-term interest
rate are formulated as a mean-reverting Ornstein–Uhlenbeck stochastic process and
the value of the firm issuing the bonds follows a geometrical Brownianmotion process.
Furthermore, we develop the two- and three-factor(I, II) pricing models for valuing
the commodity-linked bonds. Closed-form pricing formulas of the commodity-linked
bonds are derived based on theMellin transform techniques,which are simply provided
with standard (bivariate) normal cumulative distribution function so that the pricing
and hedging of the commodity-linked bonds can be computed very accurately and
rapidly. At last, numerical analysis compares the results of this four pricing models
with realistic parameter values and demonstrates how the spot underlying commodity
price, convenience yield, interest rate and counterparty credit risk affect the values of
the commodity-linked bonds.
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1 Introduction

Although relatively little research has focused on the pricing of commodity-linked
bonds, efficient modeling and computation of commodity derivatives have been stud-
ied for decades. In a seminal paper, Schwartz (1982) provides a general framework for
valuing the commodity-linked bonds based on the option pricing framework as pio-
neered by Black and Scholes (1973) and extended byMerton (1973) and Cox and Ross
(1976). This very general valuation framework considers the spot commodity price
risk, default risk, and interest rate risk, along with interest payments and dividends,
and takes the form of a second-order partial equation in four variables which governs
the value of the commodity-linked bonds at any point in time, but not to derive the
closed-form solution subject to certain boundary condition. Schwartz states that the
solution to general problem is difficult even by numerical methods. To derive a closed-
form pricing formula, Carr (1987) assumes that a default-free unit discounted bond
follows a third-order geometric Browian motion without referring to any interest rate
dynamics, and by restricting the values of certain parameters in the formula, results
given previously by Schwartz (1982) arise as special cases. Ignoring the default risk,
Yan (2002) gives a closed-form solution for commodity-linked bond under stochastic
volatility and jumps. Rajan and Mundial (1988) apply the binomial model to price
a commodity bond is an effective way in the presence of commodity price risk and
default risk. However, in Schwartz (1982), Carr (1987) and Rajan andMundial (1988)
pricing models, there are no costs of carrying or convenience yield for the underlying
commodity.

The convenience yield of a commodity is defined as the stream of benefits received
by holding an extra unit of the commodity in storage rather than buying the unit from
the futuresmarket. This streamof benefits comes from the fact that holding commodity
in storage enables the holder to respond flexibly and efficiently to supply and demand
shocks. Kaldor (1939) first gives this definition for the convenience yield of a com-
modity in the economic literature, and it is an instructive concept for understanding the
theory of storage in the context of financial markets, because it serves to quantify the
benefit accrued in the form of an incentive to buy and store certain commodities. Fama
and French (1987), Fama and French (1988), Brennan (1991), Miltersen and Schwartz
(1998) and Schoene and Spinler (2017) have proved that the convenience yield play a
central rule in commodity price modeling as it derives the relationship between futures
and spot prices of many commodities. Empirically, several studies have also found
the convenience yield to have economic and statistical significance, such as Gibson
and Schwartz (1990), Schwartz and Smith (2000), Almansour (2016), Lai andMellios
(2016), Mellios et al. (2016), Ewald et al. (2019). Ingersoll (1982) points out that the
convenience yield is a portion of the return on the commodity (asset) not reflected in
the price change and should be considered when pricing the commodity-linked bonds.
Therefore, Miura and Yamauchi (1998) extend the Schwartz (1982) and Carr (1987)
models to include stochastic continence yield and take the approach of Gibson and
Schwartz (1990) and Bjerksund (1991) to express the price change of the reference
commodity in relation to its convenience yield.

In the commodity-linked bonds, the bondholders are exposed to potential credit
risk due to the possibility of their counterparty being unable or unwilling to make the
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necessary payments at exercise date, in case of default occurs, and the bondholders
receives a smaller or zero payment. So expectations of possible future losses due
to counterparty credit risk by bond issuer should be reflected from bonds prices. To
model the effect of credit risk when pricing contingent claims, structural approach has
extensively been used in previous studies, in which credit events is assumed to take
place once the value of the assets of the firm is less than some boundary, for example,
Black and Scholes (1973), Merton (1974), Black and Cox (1976), Lee (1981) and
Chance (1990), and many others. The structural approach is intuitive because it links
the default risk to the firm’s economic fundamentals. Based on the default model of
corporate bonds proposed by Merton (1974) and Johnson and Stulz (1987) obtain
a pricing formula under the assumption that the option holder will receive the total
assets of the option writer in default at the expiration date and that the option could be
treated as the only liability in the option writer’s capital structure. Schwartz (1982),
Carr (1987), Johnson and Stulz (1987) and Miura and Yamauchi (1998) adopt the
same approach to modeling the effect of credit risk on bonds prices. But this approach
implies a variable default boundary equal to the value of the option upon the exercise
date, and may not properly measure the credit risk in most business situations. Later,
a more realistic assumption is made in Klein (1996), where the final payout in default
depends on the terminal market value of assets as well as the amount of other equally
ranking liabilities of the writer. By incorporating this more realistic default condition,
the Klein model is able to measure the credit risk more consistent with those observed
in corporate debt markets. Subsequently, many extensions and variants of the models
used by Johnson and Stulz (1987) and Klein (1996) have been proposed, such as Klein
and Inglis (1999, 2001), Hung and Liu (2005), Liao and Huang (2005), Niu andWang
(2015) and Wang et al. (2017).

Up to now, to find the analytic formula for the valuation of financial derivatives,
most of the previous literature has used mainly probabilistic techniques. However,
the pricing of a given financial derivatives with probabilistic approaches requires the
complexity of the calculation. To solve this problem, the Mellin transform approach
has been used to obtain the pricing formulas of the various financial derivatives, we can
refer to Panini and Srivastav (2004), Yoon and Kim (2015), Jeon and Kim (2019), Li
andRodrigo (2017) andMa et al. (2020). TheMellin transform is an integral transform,
which is regarded as the multiplicative version of the two-sided Laplace transform. In
particular, the Mellin transform approach exploits the properties of this transform to
reduce the pricing PDE into an ODE that can be solved easily. The option price is then
recovered by the convolution property. Therefore, thismethodwill help us to obtain the
analytic integral formula of the commodity-linked bonds with stochastic convenience
yield, interest rate and counterparty credit risk more easily and effectively.

In this paper we consider the four sources of uncertain, the spot underlying com-
modity price risk, the instantaneous convenience yield, the spot interest rate and
counterparty credit risk, related to the value of the commodity-linked bonds in terms
of their implication with respect to the valuation of other financial and real assets,
and present the two- and three-factor(I, II) commodity-linked bonds pricing models.
The first model is a simple one-factor model in which the spot price of the underlying
commodity is only uncertain factor and assumes that it follows a geometric Brownian
motion process. In the two-factor model we consider another uncertain source is the
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convenience yield of the underlying commodity and it is assumed to follow a mean
reverting process and positively correlated with the spot underlying commodity price.
1 The third model we consider is a variation of the three-factor Miura and Yamauchi
(1998) model. In this three-factor model, the value of the firm issuing the bonds is also
assumed to follow a geometrical Brownian motion process, and a model of expected
credit loss is replaced by Klein (1996). In the fourth model, we consider interest rate
risk in the three-factor model and allow for stochastic interest rate by specifying the
dynamics of interest rates in Vasicek (1977). For these four models, we derive the
corresponding closed-form solutions for pricing the commodity-linked bonds in each
model using theMellin transform techniques, which are simply providedwith standard
(bivariate) normal cumulative distribution function so that the pricing and hedging of
the commodity-linked bonds can be computed very accurately and rapidly.

The remainder of this paper is structured as follows. Section 2 gives a one-factor
commodity-linked bond model incorporates with the only uncertain source is the spot
underlying commodity price risk. In Sect. 3, we consider the two uncertain risk factors
are the spot underlying commodity price and stochastic convenience yield, derive a
two-factor closed-form pricing formula for valuing the commodity-linked bonds. A
three-factor(I) pricing model together with closed-form solution to the valuation of
the commodity-linked bonds is derived in Sect. 4. Section 5 considers interest rate
risk in the three-factor model and derives a three-factor(II) pricing model with con-
stant convenience yield for valuing the commodity-linked bonds. Section 6 presents
numerical examples to examine if the underlying commodity price, stochastic conve-
nience yield and counterparty credit risk have significant impacts on the values of the
commodity-linked bonds. Finally, Sect. 7 concludes this paper. The detailed proofs
are shown in the “Appendix”.

2 One-factor commodity-linked bonds valuemodel

This section gives a one-factor model of the commodity-linked bonds. The stochastic
factor or state variable in the model is the spot price of the underlying commodity.
To develop the one-factor model, we first assume that the spot price of an underlying
commodity, S(t), proposed by Brennan and Schwartz (1985), satisfies the following
stochastic differential equation (SDE, hereafter):

dSt = μs Stdt + σs StdWs
t , (1)

where σs represents the volatility of proportional price changes, μs denotes the
expected rate of price changes, dWs

t is the increment to a standard Wiener process.
To obtain the risk-neutral processes for the spot price of the underlying commodity,

Brennan and Schwartz (1985) substitutes μs by the risk free interest rate r deducts

1 Schwartz (1997) states that the positive correlation between changes in the spot price underlying com-
modity and changes in the convenience yield of the underlying commodity is induced by the level of
inventories. When inventories of the underlying commodity decrease, the spot price should increase since
the underlying commodity is scarce and the convenience yield should also increase since futures prices will
not increase as much as the spot price, and vice versa when inventories increase.
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the net convenience yield δ as the risk adjusted drift of the commodity price process.2

Therefore, the stochastic process for the spot price under the equivalent martingale
measure can be expressed as:

dSt = (r − δ)Stdt + σs StdW ∗s
t , (2)

wheredW ∗s
t is the increment to a standardWiener process, r is the risk-free interest rate

and δ represents the current marginal net rate of convenience yield(assumed constant),
defined as convenience yield minus physical storage costs, and the convenience yield
can be interpreted as the flow of services that accrues to the holder of the physical
commodity, but not to the owner of a commodity-linked bond contract for future
delivery of the commodity.3

This paper makes a similar assumption of Carr (1987) that there are no payouts
from the firm to bondholders before the maturity date of the bond, that is to say no
dividends and coupons. Then commodity-linked bonds have promised payment of the
bond is equivalent to the face value of a bond F for sure plus a call option, which gives
the bearer an option to buy the reference commodity bundle at a pre-specified exercise
price K . This payoff structure is an important characteristic of the commodity-linked
bonds. Therefore, the payoff of a commodity-linked bond at maturity T is defined as
follows:

h(ST ) = F + max{ST − K , 0}, (3)

where F and K are constants.
By the risk neutral pricing rule, the no-arbitrage price of a commodity-linked bond

at the time to maturity τ under measure Q can be written as

B(S, τ ) = e−rτ EQ
t [h(ST ) | St = S], (4)

satisfies a PDE given by

∂B
∂τ

= 1
2σ

2
s S

2 ∂2B
∂S2

+ (r − δ)S ∂B
∂S − r B, (5)

with τ = T − t and the terminal condition B(T , S) = h(ST ).
In this model the underlying commodity is treated as an asset that pays a continuous

dividend at a rate equal to the underlying commodity price S times the net convenience
yield δ. Thus, based on the diffusion in Eq. 2, Black and Cox (1976) solve for the
commodity option price and obtains the well-known one-factor cost-of-carry formula
as follows:

C(S, τ ) = e−δτ SN (d1) − e−rτ KN (d2), (6)

where N is the standard normal cumulative distribution as

N (d) = 1√
2π

∫ d

−∞
e− 1

2 x
2
dx,

2 Expressing convenience yield as a fraction of the commodity price, i.e. convenince yield = δSt , see
Brennan and Schwartz (1985).
3 See Brennan (1991) and Brennan and Schwartz (1985).
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where d1 and d2 are given by

d1 = ln( S
K ) + (r + 1

2σ
2
s − δ)τ

σs
√

τ
,

d2 = ln( S
K ) + (r − 1

2σ
2
s − δ)τ

σs
√

τ
.

Then, we give a closed-form formula for the one-factor commodity-linked bonds
price. The price of the one-factor commodity-linked bonds, defined by Eq. 4, is
expressed by

B(τ, S) = e−δτ SN (d1) − e−rτ KN (d2) + e−rτ F, (7)

where d1, d2 and N are given by Eq. 6.

3 Two-factor commodity-linked bonds valuemodel

In this section, we adopt a two-factormodel of commodity prices analyzed in Schwartz
(1997) is based on the model developed in Gibson and Schwartz (1990) and derive the
corresponding formula for valuing the commodity-linked bonds. The stochastic factors
or state variables in the model are the spot price of the underlying commodity follows
a geometrical Brownian motion process with a stochastic drift4 and the instantaneous
convenience yield is formulated as a mean-reverting Ornstein–Uhlenbeck stochastic
process.5

3.1 Themodel formulation

To stat with, we define our stochastic variables and deduce a PDE for valuing the
commodity-linked bonds. Let St be the spot price of the underlying commodity, δt
represents instantaneous net marginal convenience yield rate. Under the equivalent
martingale measure, the joint stochastic process of the two state variables in Schwartz
(1997) is given by

dSt = (μs − δt )Stdt + σS StdW ∗s
t , (8)

dδt = κ(θ∗ − δt )dt + σδdW ∗δ
t , (9)

where σS and σδ are constant volatility,6 κ > 0 is the speed of adjustment, θ∗ =
θ − λδσδ

κ
is the long-runmean yield, λδ are themarket prices of risk for the convenience

4 Gibson and Schwartz (1990) show that the assumption of constant convenience yield is very restrictive.
5 Empirical studies find that the convenience yield should be specified by a mean-reverting process, for
example, see Fama and French (1988) and Brennan (1991).
6 Since convenience yield risk cannot be hedged, the market price of convenience yield risk has to be
incorporated in the risk neutral process of convenience yield.
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yield, and dW ∗s
t and dW ∗δ

t are correlated increments to standard Browian processes
and dW ∗s

t dW ∗δ
t = ρsδdt . ρsδ denotes the positively correlation coefficient between

the two Browian motions. From the no-arbitrage condition, the risk-adjusted drift of
the price process is r − δ.7

Commodity-linked bonds have the same payment structure as the one-factor model.
Therefore, by the risk neutral pricing rule, the no-arbitrage price of a commodity-linked
bond at the time t under measure Q can be written as

Bt (τ, S, δ) = e−rτ EQ
t [h(ST ) | St = S], (10)

satisfies a PDE given by

−∂B

∂τ
+ 1

2
σ 2
S S

2 ∂2B

∂2S
+ 1

2
σ 2

δ

∂2B

∂2δ
+ ρsδσsσδS

∂2B

∂S∂δ

+(r − δ)S
∂B

∂S
+ κ(θ∗ − δ)

∂B

∂δ
= r B, (11)

with τ = T − t and the terminal condition B(T , S, δ) = h(ST ).

3.2 Derivation of two-factor price formula

In this subsection, we derive the closed-form formula of the two-factor commodity-
linked bonds price Bt (t, S, δ) by solving the PDE (11) through the Mellin transform
technique. Then, by using Proposition 1, reported in “Appendix A”, Eq. 11 yields

−∂ B̂

∂τ
+ [1

2
σ 2
Sω(ω + 1) − (1 + ω)r + δω]B̂ + [κ(θ∗ − δ)

−ρsδσsσδω]∂ B̂
∂δ

+ 1

2
σ 2

δ

∂2 B̂

∂δ2
= 0, (12)

with B̂(0, ω, δ) = ĥ(ω) which is the Mellin transform of h(S).
To simplify (12), we let

B̂(τ, ω) = exp

{[
1

2
σ 2
s ω(ω + 1)

]
τ

}
f̂ (τ, ω, δ), (13)

then Eq. 12 is transformed into the following PDE for f̂

− ∂ f̂
∂τ

− [(1 + ω)r − δω] f̂ + [κ(θ∗ − δ) − ρsδσsσδω] ∂ f̂
∂δ

+ 1
2σ

2
δ

∂2 f̂
∂δ2

= 0, (14)

with f̂ (0, ω, δ) = B̂(0, ω, δ) = ĥ(ω).

7 See Gibson and Schwartz (1990) and Hilliard and Reis (1998).
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To solve Eq. 14, we let f̂ (τ, ω, δ) = ĥ(ω)L(τ, ω)e−H(τ )((1+ω)r−δω) with terminal
condition f̂ (0, ω, δ) = ĥ(ω). By substituting this function form into (14), we get the
following ODEs with respect to L(τ, ω) and H(τ )

⎧⎪⎨
⎪⎩

−∂L

∂τ
+ [κθ∗ω − ρsδσSσδω

2 − κ(1 + ω)r ]HL + 1

2
σ 2

δ ω2H2L = 0,

∂H

∂τ
+ κH − 1 = 0,

(15)

where L(0, ω) = 1 and H(0) = 0. By solving (15), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(τ, ω) = exp

{
σ 2

δ

2κ2 (τ − H(τ ) − κ

2
H2(τ ))ω2 + [θ∗ω − γ1ω

2

−(1 + ω)r ](τ − H(τ ))

}
,

H(τ ) = 1 − e−κτ

κ
,

where γ1 = ρsδσSσδ

κ
. Then, by substituting L(τ, ω), H(τ ) and f̂ (τ, ω, δ) into (13), we

have
B̂(τ, ω, δ) = ĥ(ω) exp{Q̂(τ, ω, δ)}, (16)

where

Q̂(τ, ω, δ) = M(τ )ω2 + 1

2
σ 2
s ω(ω + 1)τ + (θ∗ω − γ1ω

2)(τ − H(τ ))

− (1 + ω)τr + δωH(τ ),

M(τ ) = σ 2
δ

2κ2 (τ − H(τ ) − κ

2
H2(τ )).

Therefore, the price of the two-factor commodity-linked bonds is given

B(τ, ω, δ) = 1

2π i

∫ c+i∞

c−i∞
ĥ(ω) exp(Q̂(τ, ω, δ))S−ωdω. (17)

Let

ϕ(τ, S, δ) = 1

2π i

∫ c+i∞

c−i∞
exp(Q̂(τ, ω, δ))S−ωdω

= 1

2π i

∫ c+i∞

c−i∞
ec

∗
exp{E(τ )(ω + G2(τ )

2E(τ )
)2}S−ωdω, (18)
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where

E(τ ) = M(τ ) + 1

2
σ 2
s τ − γ1(τ − H(τ )),

G2(τ ) = 1

2
σ 2
s τ + θ∗(τ − H(τ )) + δH(τ ) − τr ,

c∗(τ ) = − (G2(τ ))2

4E(τ )
− τr .

By setting

σ̂ 2
s (τ ) = σ 2

s − 2ρsδσsσδH(τ ) + σ 2
δ H

2(τ ),

we then have

1

2

∫ τ

0
σ̂ 2
s (t)dt = 1

2

∫ τ

0
σ 2
S − 2ρsδσSσδ

1 − e−κt

κ
+ σ 2

δ

(1 − e−κt )2

κ2 dt

= M(τ ) + 1

2
σ 2
s τ − γ1(τ − H(τ ))

= E(τ )

≥ 1

2

∫ τ

0

(
σS − σδ

(1 − e−κt )

κ

)2

dt > 0

holds for τ > 0. Therefore, by using Proposition 4, reported in “Appendix A”, we
have

ϕ(τ, S, δ) = 1
2
√

πE(τ )
S

G2(τ )

2E(τ ) ec
∗− (ln S)2

4E(τ ) . (19)

Because ĥ(ω) and exp{Q̂(τ, ω, δ)} are theMellin transforms of h(S) andϕ(τ, S, δ),
respectively. Applying Proposition 2, reported in “Appendix A”, we have the following
result:

B(τ, S, δ) =
∫ ∞

0
h(u)ϕ(τ,

S

u
, δ)u−1du

=
∫ ∞

K
(F + u − K )ϕ(τ,

S

u
, δ)u−1du +

∫ K

0
Fϕ(τ,

S

u
, δ)u−1du. (20)

Now we give a closed-form formula for the two-factor commodity-linked bonds
price.

Theorem 1 The price of the commodity-linked bonds, defined by Eq. 10, is expressed
by

B(τ, S, δ) = P(τ, δ)SN (d1) − e−rτ KN (d2) + e−rτ F, (21)

where N is the standard normal cumulative distribution as

N (d) = 1√
2π

∫ d

−∞
e− 1

2 x
2
dx,
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and

P(τ, δ) = A(τ ) exp(−δH(τ )),

A(τ ) = exp

{
(θ∗ + γ1 − σ 2

δ

2κ2 )(H(τ ) − τ) − σ 2
δ

4κ
H2(τ )

}
,

σ̂ 2
s (τ ) = σ 2

s − 2ρsδσsσδH(τ ) + σ 2
δ H

2(τ ),

H(τ ) = 1 − e−κτ

κ
,

γ1 = ρsδσSσδ

κ
,

d1 = ln( S
K ) + rτ + 1

2

∫ τ

0 σ̂ 2
s (t)dt + ln(P(τ, δ))√∫ τ

0 σ̂ 2
s (s)ds

,

d2 = ln( S
K ) + rτ − 1

2

∫ τ

0 σ̂ 2
s (t)dt + ln(P(τ, δ))√∫ τ

0 σ̂ 2
s (s)ds

.

Proof See “Appendix B”. ��

4 Three-factor commodity-linked bonds valuemodel under constant
interest rate

This section presents a three-factor model of the commodity-linked bonds. The
stochastic factors or state variables in the model are the spot price of the underly-
ing commodity, the value of the firm and the instantaneous convenience yield. Given
that our proposed three-factormodel can be seen as a reformulated version of theMiura
and Yamauchi (1998) model by replacing a model of expected credit loss proposed
by Klein (1996) in this paper.

4.1 Themodel formulation

Let Vt designate the total value of the assets of the firm issuing the bonds and follow a
geometrical Brownianmotion process. Then the joint stochastic process for the factors
St , Vt and δt under the equivalent martingale measure can be expressed as:

dSt = (μs − δt )Stdt + σS StdW ∗s
t , (22)

dδt = κ(θ∗ − δt )dt + σδdW ∗δ
t , (23)

dVt = (μv − λvσV )Vtdt + σV VtdW ∗v
t , (24)

where σS , σδ and σV are constant volatility, λv is the market prices of risk for the
value of the firm, θ∗ is the long-run mean yield, and W ∗s

t ,W ∗v
t and W ∗δ

t are the
stand Wiener processes and their correlation are such that dW ∗s

t dW ∗v
t = ρsvdt ,
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dW ∗s
t dW ∗δ

t = ρsδdt and dW ∗δ
t dW ∗v

t = ρδvdt . Also, the correlation coefficients ρsv ,
ρsδ and ρδv are constant parameters satisfying

0 < ρsv < 1, 0 < ρsδ < 1, 0 < ρδv < 1, ρ2
sv + ρ2

sδ + ρ2
δv − 2ρsvρsδρδv − 1 < 0.

(25)
Commodity-linked bonds have the promised payment on the bonds at the maturity

such that the bondholder has right to receive, in case of no default, the face value F
of the bonds plus an option to buy the reference commodity bundle at a pre-specified
exercise price K . The promised payment can only be made if the value of the firm
VT at maturity is greater than that amount D∗. Otherwise, in case where the default
is considered, following Klein (1996), a credit loss occurs if the value of the firm at
maturity is less than some amount D∗. This amount is not set to the value of the bond
but roughly corresponds the amount claims D outstanding at maturity. D∗ may be
less than D due to the possibility of a bond issuer continuing in operation even while
VT is less than D. Once a credit loss occurs at maturity, the recovery rate is (1−α)VT

D ,
where αVT represents the deadweight costs due to the bankruptcy or reorganization,
and the remaining value of (1− α)VT is paid to the bondholders and other liabilities.
The payoff of a commodity-linked bond at maturity is defined as follows:

h(ST , VT ) = (F + max{ST − K , 0})[1{VT ≥D∗} + 1{VT <D∗} (1−α)VT
D ]

= max{F + ST − K , F}[1{VT ≥D∗} + 1{VT <D∗} (1−α)VT
D ], (26)

where F and K are constants.
By the risk neutral pricing rule, the no-arbitrage price of a commodity-linked bond

at the time to maturity τ under measure Q can be written as

B(τ, S, V , δ) = e−rτ EQ
t [h(ST , VT ) | St = S, Vt = V , δt = δ], (27)

satisfies a PDE given by

∂B
∂τ

= 1
2σ

2
s S

2 ∂2B
∂S2

+ 1
2σ

2
v V

2 ∂2B
∂V 2 + 1

2σ
2
δ

∂2B
∂δ2

+ ρsvσsσvSV
∂2B

∂S∂V

+ρsδσsσδs
∂2B
∂S∂δ

+ ρδvσδσvV
∂2B
∂δ∂V + (r − δ)S ∂B

∂s + (r − λvσv)V
∂B
∂V+κ(θ∗ − δ) ∂B

∂δ
− r B,

(28)

with τ = T − t and the terminal condition B(T , S, V , δ) = h(ST , VT ).

4.2 Derivation of three-factor price formula

In this subsection, we derive the closed-form formula of the commodity-linked bonds
price Bt (τ, S, V , δ) by solving the PDE (28) through the double Mellin transform
technique. Then, by using Proposition 1, reported in “Appendix A”, Eq. 28 yields

− ∂ B̂
∂τ

+ [ 12σ 2
Sω1(ω1 + 1) + ρsvσsσvω1ω2 + 1

2σ
2
v ω2(ω2 + 1) − (1 + ω1 + ω2)r

+δω1 + λvσvω2]B̂ + [κ(θ∗ − δ) − ρsδσsσδω1 − ρδvσδσvω2] ∂ B̂
∂δ

+ 1
2σ

2
δ

∂2 B̂
∂δ2

= 0,
(29)
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with B̂(0, ω1, ω2, δ) = ĥ(ω1, ω2) which is the double Mellin transform of h(S, V ).
To simplify Eq. 29, we let

B̂(τ, ω1, ω2, δ) = exp{[ 12σ 2
s ω1(ω1 + 1) + ρsvσsσvω1ω2

+ 1
2σ

2
v ω2(ω2 + 1)]τ } f̂ (τ, ω1, ω2, δ),

(30)

then Eq. 29 is transformed into the following PDE for f̂

− ∂ f̂
∂τ

− [(1 + ω1 + ω2)r − δω1 − λvσvω2] f̂ + [(κ(θ∗ − δ)

−ρsδσsσδω1 − ρδvσδσvω2] ∂ f̂
∂δ

+ 1
2σ

2
δ

∂2 f̂
∂δ2

= 0,
(31)

with f̂ (0, ω1, ω2, δ) = B̂(0, ω1, ω2, δ) = ĥ(ω1, ω2).
To solve (31), we let f̂ (τ, ω1, ω2, δ) = ĥ(ω1, ω2)L(τ, ω1, ω2)

e−H(τ )((1+ω1+ω2)r−δω1−λvσvω2) with terminal condition f̂ (0, ω1, ω2, δ) = ĥ(ω1, ω2).
By substituting this function form into (31), we get the following ODEs with respect
to L(τ, ω1, ω2) and H(τ )

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∂L

∂τ
+ [κθ∗ω1 − ρsδσSσδω

2
1 − ρδvσδσvω1ω2

−κ(1 + ω1 + ω2)r + κλvσvω2]HL + 1

2
σ 2

δ ω2
1H

2L = 0,
∂H

∂τ
+ κH − 1 = 0,

(32)

where L(0, ω1, ω2) = 1 and H(0) = 0. By solving the ODEs (32), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(τ, ω1, ω2) = exp

{
σ 2

δ

2κ2 (τ − H(τ ) − κ

2
H2(τ ))ω2

1 + [θ∗ω1 − γ1ω
2
1

−γ2ω1ω2 − (1 + ω1 + ω2)r + λvσvω2](τ − H(τ ))

}
,

H(τ ) = 1 − e−κτ

κ
,

where γ1 = ρsδσSσδ

κ
and γ2 = ρδvσδσv

κ
. Then, by substituting L(τ, ω1, ω2), H(τ ) and

f̂ (τ, ω1, ω2, δ) into (30), we have

B̂(τ, ω1, ω2, δ) = ĥ(ω1, ω2) exp(Q̂(τ, ω1, ω2, δ)), (33)
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where

Q̂(τ, ω1, ω2, δ) = M(τ )ω2
1 +

[
1

2
σ 2
s ω1(ω1 + 1) + ρsvσsσvω1ω2 + 1

2
σ 2

v ω2(ω2 + 1)

]
τ

+ [
θ∗ω1 − γ1ω

2
1 − γ2ω1ω2

]
(τ − H(τ )) − (1 + ω1 + ω2)τr

+ λvσvω2τ + δω1H(τ ),

M(τ ) = σ 2
δ

2κ2

(
τ − H(τ ) − κ

2
H2(τ )

)
.

Therefore, the price of the three-factor commodity-linked bonds is given

B(τ, S, V , δ) = 1

(2π i)2

∫ c1+i∞

c1−i∞

∫ c2+i∞

c2−i∞
ĥ(ω1, ω2) exp(Q̂(τ, ω1, ω2, δ))S

−ω1V−ω2dω1dω2.

(34)
Let

ϕ(τ, S, V , δ) = 1

(2π i)2

∫ c1+i∞

c1−i∞

∫ c2+i∞

c2−i∞
exp(Q̂(τ, ω1, ω2, δ))S

−ω1V−ω2dω1dω2

= 1

(2π i)2

∫ c2+i∞

c2−i∞
ec

∗
[∫ c1+i∞

c1−i∞
exp

{
E(τ )

(
ω1 + G2(τ ) + G(τ )ω2

2E(τ )

)2
}

·S−ω1dω1

]
V−ω2dω2, (35)

where

E(τ ) = M(τ ) + 1

2
σ 2
s τ − γ1(τ − H(τ )),

G(τ ) = ρsvσsσvτ − γ2(τ − H(τ )),

G2(τ ) = 1

2
σ 2
s τ + θ∗(τ − H(τ )) + δH(τ ) − τr ,

c∗(τ ) = − (G2(τ ) + G(τ )ω2)
2

4E(τ )
− τr + 1

2
σ 2

v τω2
2 +

(
1

2
σ 2

v + λvσv − r

)
τω2.

Because E(τ ) > 0 holds for τ > 0, so by using Proposition 4, reported in
“Appendix A”, we have

∫ c1+i∞

c1−i∞
exp

{
E(τ )

(
ω1 + G2(τ ) + G(τ )ω2

2E(τ )

)2
}
S−ω1dω1

= 1

2
√

πE(τ )
S

G2(τ )+G(τ )ω2
2E(τ ) e− (ln S)2

4E(τ ) ,
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then Eq. 35 becomes

ϕ(τ, S, V , δ) = e− (ln S)2

4E(τ )

2
√

πE(τ )
S

G2(τ )

2E(τ )
1

2π i

∫ c1+i∞

c1−i∞
ec

∗
S

G(τ )ω2
2E(τ ) V−ω2dω2. (36)

Let

ψ(τ, V , δ) = 1

2π i

∫ c2+i∞

c2−i∞
ec

∗
S

G(τ )ω2
2E(τ ) V−ω2dω2

= eC(τ ) 1

2π i

∫ c2+i∞

c2−i∞
exp

{
(G1(τ ) − G2(τ )

4E(τ )
)

[
ω2

+G1(τ ) + G3(τ ) − G(τ )(G2(τ )−ln S)
2E(τ )

2(G1(τ ) − G2(τ )
4E(τ )

)

]2}
V−ω2dω2, (37)

where

G1(τ ) = 1

2
σ 2

v τ,

G3(τ ) = (λvσv − r)τ,

C(τ ) = −τr − G2
2(τ )

4E(τ )
−

(
G1(τ ) + G3(τ ) − G(τ )(G2(τ )−ln S)

2E(τ )

)2

4(G1(τ ) − G2(τ )
4E(τ )

)
.

In order to apply inverse Mellin transform of exponential function, the condition

(G1(τ ) − G2(τ )
4E(τ )

) > 0 needs to be guaranteed. Therefore, we first introduce the fol-
lowing lemma which is useful in our analysis.

Lemma 1 If ρsv , ρsδ and ρδv are constants satisfying conditions (25), then G1(τ ) −
G2(τ )
4E(τ )

> 0 is satisfied for τ > 0.

Proof See “Appendix C”. ��

Therefore, using Proposition 4, reported in “Appendix A”, we have

ψ(τ, V , δ) = eC(τ )

exp

⎧⎨
⎩− (ln V )2

4

(
G1(τ )− G2(τ )

4E(τ )

)
⎫⎬
⎭

2

√
π
(
G1(τ )− G2(τ )

4E(τ )

) V

G1(τ )+G3(τ )− G(τ )(G2(τ )−ln S)

2E(τ )

2

(
G1(τ )− G2(τ )

4E(τ )

)
.

(38)
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Combining (34), (36) and (38) together, we obtain the following explicit result of
ϕ(τ, S, V , δ)

ϕ(τ, S, V , δ) = eC(τ )S
G2(τ )

2E(τ ) V

G1(τ )+G3(τ )− G(τ )(G2(τ )−ln S)

2E(τ )

2(G1(τ )− G2(τ )
4E(τ )

) e
− (ln S)2

4E(τ )

2
√

πE(τ )

exp

⎧⎨
⎩− (ln V )2

4

(
G1(τ )− G2(τ )

4E(τ )

)
⎫⎬
⎭

2

√
π(G1(τ )− G2(τ )

4E(τ )
)

.

(39)
Because ĥ(ω1, ω2) and exp{Q̂(τ, ω1, ω2, δ)} are the double Mellin transforms

of h(S, V ) and ϕ(τ, S, V , δ), respectively. Applying Proposition 3, reported in
“Appendix A”, we have the following result

B(τ, S, V , δ) =
∫ ∞

0

∫ ∞

0
h(u, w)ϕ(τ,

S

u
,
V

w
, δ)u−1w−1dudw

=
∫ ∞

K

∫ ∞

D∗
(F + u − K )ϕ(τ,

S

u
,
V

w
, δ)u−1w−1dudw

+
∫ K

0

∫ ∞

D∗
Fϕ(τ,

S

u
,
V

w
, δ)u−1w−1dudw

+1 − α

D

∫ ∞

K

∫ D∗

0
w(F + u − K )ϕ(τ,

S

u
,
V

w
, δ)u−1w−1dudw

+1 − α

D

∫ K

0

∫ D∗

0
wFϕ(τ,

S

u
,
V

w
, δ)u−1w−1dudw. (40)

Setting

η = −τr − G2
2(τ )

4E(τ )
,

θ1(u) = −

(
G1(τ ) + G3(τ ) − G(τ )(G2(τ )−ln( S

u ))

2E(τ )

)2

4(G1(τ ) − G2(τ )
4E(τ )

)
,

θ2(u, w) =
(
S

u

) G2(τ )

2E(τ )
(
V

w

) G1(τ )+G3(τ )−
G(τ )

(
G2(τ )−ln

(
S
u

))
2E(τ )

2(G1(τ )− G2(τ )
4E(τ )

) e−
(
ln
(
S
u

))2
4E(τ )

2
√

πE(τ )

exp

{
−

(
ln
(
V
w

))2

4
(
G1(τ )− G2(τ )

4E(τ )

)
}

2

√
π
(
G1(τ ) − G2(τ )

4E(τ )

) .

Then Eq. 40 yields

B(τ, S, V , δ) = eη
∫ ∞
K

∫ ∞
D∗ eθ1(u)(F + u − K )θ2(u, w)u−1w−1dudw

+eη
∫ K
0

∫ ∞
D∗ eθ1(u)Fθ2(u, w)u−1w−1dudw

+eη 1−α
D

∫ ∞
K

∫ D∗
0 eθ1(u)w(F + u − K )θ2(u, w)u−1w−1dudw

+eη 1−α
D

∫ K
0

∫ D∗
0 eθ1(u)wFθ2(u, w)u−1w−1dudw

= I 1B(S, V , δ, τ ) + I 2B(S, V , δ, τ ) + I 3B(S, V , δ, τ ) + I 4B(S, V , δ, τ ).

(41)
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Now we give a closed-form formula for the three-factor commodity-linked bonds
price.

Theorem 2 The price of the commodity-linked bonds, defined by Eq. 27, is expressed
by

B(τ, S, V , δ) = P(τ, δ)SN2(a′
1, b

′
1, ρ) + e−rτ (F − K )N2(a′

2, b
′
2, ρ)

+e−rτ FN2(−c′
2, d

′
2,−ρ)

+ (1−α)V
D (P ′(δ, τ )Se(r+ρsvσsσv−λvσv)τN2(e′

1,− f ′
1,−ρ)

+e−λvσvτ (F − K )N2(e′
2,− f ′

2,−ρ))

+ (1−α)V
D e−λvσvτ FN2(−g′

2,−h′
2, ρ),

(42)

where N2 is the standard bivariate normal cumulative distribution as

N2(a, b, ρ) = 1

2π
√
1 − ρ2

∫ a

−∞

∫ b

−∞
e
− 1

2(1−ρ2)
(x2−2ρxy+y2)

dxdy,

and

ρ = (ρsvσsσv − γ2)τ + γ2H(τ )

σv

√∫ τ

0 σ̂ 2
s (s)dsτ

,

a′
1 = ln

( S
K

) + ln P(δ, τ ) + rτ + 1
2

∫ τ

0 σ̂ 2
s (s)ds√∫ τ

τ
σ̂ 2
s (s)ds

,

b′
1 = ln

( V
D∗

) + (
r + ρsvσsσv − γ2 − λvσv − 1

2σ
2
v

)
τ + γ2H(τ )

σv

√
τ

,

a′
2 = ln

( S
K

) + ln P(δ, τ ) + (r − 1
2

∫ τ

0 σ̂ 2
s (s)ds√∫ τ

0 σ̂ 2
s (s)ds

,

b′
2 = ln

( V
D∗

) + (
r − λvσv − 1

2σ
2
v

)
τ

σv

√
τ

,

e′
1 = ln

( S
K

) + ln P ′(δ, τ ) + (r + ρsvσsσv)τ + 1
2

∫ τ

0 σ̂ 2
s (s)ds√∫ τ

0 σ̂ 2
s (s)ds

,

f ′
1 = ln

( V
D∗

) + (
r + ρsvσsσv − γ2 − λvσv + 1

2σ
2
v

)
τ + γ2H(τ )

σv

√
τ

,

e′
2 = ln

( S
K

) + ln P ′(δ, τ ) + (r + ρsvσsσv)τ − 1
2

∫ τ

0 σ̂ 2
s (s)ds√∫ τ

0 σ̂ 2
s (s)ds

,

f ′
2 = ln

( V
D∗

) + (r − λvσv + 1
2σ

2
v )τ

σv

√
τ

,

c′
2 = a′

2, d
′
2 = b′

2, g
′
2 = e′

2, h
′
2 = f ′

2.
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Proof See “Appendix D”. ��

5 Three-factor commodity-linked bonds valuemodel under
stochastic interest rate

This section investigates the effect of stochastic interest rate on commodity-linked
bonds prices. The model given in the three-factor model is extended to a world with
stochastic interest rate, but it assumes a constant convenience yield. Therefore, the
stochastic factors or state variables in the model are the spot price of the underlying
commodity, the value of the firm and the interest rate. To allow for random interest
rate in the model, the short-term riskless interest rate r is assumed to evolve according
to a Vasicek type of mean-reverting process under the equivalent probability measure:

dr = q(m∗ − r)dt + σr dW ∗r
t , (43)

whereq,m∗ andσr are positive constant parameters,W ∗r
t is a standardWiener process.

In the Vasicek (1977) framework, the price of a default-free unit discount bond is
expressed by

B∗(r , τ ) = ζ(τ )e−ς(τ)r ,

ζ(τ ) = exp

{(
m∗ − σ 2

r

2q2

)
(ς(τ ) − τ) − σ 2

r

4q
ς2(τ )

}
,

ς(τ ) = 1 − e−qτ

q
,

m∗ = m − σr

q
λr ,

where λr represents the market prices of risk for the interest rate and is assumed
to be constant. The relationship between dW ∗s

t , dW ∗v
t and dW ∗r

t are as follows:
dW ∗s

t dW ∗v
t = ρsvdt , dW ∗s

t dW ∗r
t = ρsr dt and dW ∗r

t dW ∗v
t = ρrvdt . Also, the

correlation coefficients ρsv , ρsr and ρrv are constant parameters satisfying

0 < ρsv < 1,−1 < ρsr < 1,−1 < ρrv < 1, ρ2
sv + ρ2

sr + ρ2
rv − 2ρsvρsrρrv − 1 < 0.

(44)
By the risk neutral pricing rule, the no-arbitrage price B(τ, S, V , r) of a commodity-

linked bond at the time to maturity τ under measure Q can be written as

B(S, V , r , τ ) = e−rτ EQ
t [h(ST , VT ) | St = S, Vt = V , rt = r ], (45)
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satisfies a PDE given by

∂B
∂τ

= 1
2σ

2
s S

2 ∂2B
∂S2

+ 1
2σ

2
v V

2 ∂2B
∂V 2 + 1

2σ
2
r

∂2B
∂r2

+ ρsvσsσvSV
∂2B

∂S∂V + ρsrσsσr S
∂2B
∂S∂r

+ρrvσrσvV
∂2B
∂r∂V + (r − δ)S ∂B

∂s + (r − λvσv)V
∂B
∂V + q(m∗ − r) ∂B

∂r − r B,

(46)
with the boundary conditions B(τ, 0, V , r) = 0 and B(0, S, V , r) = h(ST , VT ) =
max{F + ST − K , F}[1{VT ≥D∗} + 1{VT <D∗} (1−α)VT

D ], where h(ST , VT ) is defined in
Eq. 26.

Now we follow the same procedure as described above, by applying the dou-
bly Mellin transform techniques, we get a closed-form formula for the three-factor
commodity-linked bonds price under stochastic interest rate.

Theorem 3 The price of the commodity-linked bonds, defined by Eq. 45, is expressed
by

B(τ, S, V , r) = e−δτ SN2(a′
1, b

′
1, ρ) + B∗(r , τ )(F − K )N2(a′

2, b
′
2, ρ)

+B∗(r , τ )FN2(−c′
2, d

′
2,−ρ)

+ (1−α)V
D ( S

B∗(r ,τ )
e
∫ τ
0 ρsvσsσv−λvσv−δ+(ρsrσsσr+ρrvσrσv)ς(s)dsN2(e′

1,− f ′
1,−ρ)

+e−λvσvτ (F − K )N2(e′
2,− f ′

2,−ρ))

+ (1−α)V
D e−λvσvτ FN2(−g′

2,−h′
2, ρ),

(47)
where N2 is the standard bivariate normal cumulative distribution as

N2(a, b, ρ) = 1

2π
√
1 − ρ2

∫ a

−∞

∫ b

−∞
e
− 1

2(1−ρ2)
(x2−2ρxy+y2)

dxdy,

and

σ̂ 2
s (τ ) = σ 2

s − 2ρsrσsσrς(τ) + σ 2
r ς2(τ ),

σ̂ 2
v (τ ) = σ 2

v − 2ρrvσrσvς(τ) + σ 2
r ς2(τ ),

ρ = (
∫ τ

0 ρsvσsσv + (ρsrσsσr + ρrvσrσv)ς(s) + σ 2
r ς2(s)ds√∫ τ

0 σ̂ 2
s (s)ds

√∫ τ

0 σ̂ 2
v (s)ds

,

a′
1 = ln

( S
K

) − ln B∗(r , τ ) − δτ + 1
2

∫ τ

0 σ̂ 2
s (s)ds√∫ τ

0 σ̂ 2
s (s)ds

,

b′
1 = ln

( V
D∗

) − ln B∗(r , τ ) − 1
2

∫ τ

0 σ̂ 2
v (s)ds + ∫ τ

0 ρsvσsσv − λvσv + (ρsrσsσr + ρrvσrσv)ς(s)ds√∫ τ

0 σ̂ 2
v (s)ds

,

a′
2 = ln

( S
K

) − ln B∗(r , τ ) − δτ − 1
2

∫ τ

0 σ̂ 2
s (s)ds√∫ τ

0 σ̂ 2
s (S)dS

,

b′
2 = ln

( V
D∗

) − ln B∗(r , τ ) − λvσvτ − 1
2

∫ τ

0 σ̂ 2
v (s)ds√∫ τ

0 σ̂ 2
v (s)ds

,

e′
1 = ln

( S
K

) − ln B∗(r , τ ) + 1
2

∫ τ

0 σ̂ 2
s (s)ds + ∫ τ

0 ρsvσsσv − δ + (ρsrσsσr + ρrvσrσv)ς(s)ds√∫ τ

0 σ̂ 2
s (s)ds

,
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f ′
1 = ln

( V
D∗

) − ln B∗(r , τ ) + 1
2

∫ τ

0 σ̂ 2
v (s)ds + ∫ τ

0 ρsvσsσv − λvσv + (ρsrσsσr + ρrvσrσv)ς(s)ds√∫ τ

0 σ̂ 2
v (s)ds

,

e′
2 = ln

( S
K

) − ln B∗(r , τ ) − 1
2

∫ τ

0 σ̂ 2
s (s)ds + ∫ τ

0 ρsvσsσv − δ + (ρsrσsσr + ρrvσrσv)ς(s)ds√∫ τ

0 σ̂ 2
s (s)ds

,

f ′
2 = ln

( V
D∗

) − ln B∗(r , τ ) − λvσvτ + 1
2

∫ τ

0 σ̂ 2
v (s)ds√∫ τ

0 σ̂ 2
v (s)ds

,

c′
2 = a′

2, d
′
2 = b′

2, g
′
2 = e′

2, h
′
2 = f ′

2.

6 Numerical analysis

In this section, numerical examples are presented to examine if the underlying com-
modity price, convenience yield and counterparty credit risk have significant impacts
on the prices of the commodity-linked bonds. As a reference point of numerical results,
based on the values reported by Klein (1996), Miura and Yamauchi (1998), Chen
(2010) and Lai and Mellios (2016), the parameter values for the base case are listed in
Table 1 whenever they are required to be specified throughout the numerical analysis.
The issuer of the commodity-linked bonds has the business of producing and selling
the commodity which is the underlying asset of the commodity-linked bonds. The cor-
relation coefficients ρsv , ρsδ , ρδv , ρsr and ρrv need to satisfy condition (25), (44) and
|ρ| < 1. Without loss of generality, we set bond with face value F = 100 and the time
to maturity τ of 5 years. The initial interest rate is assumed to be equal to 4% per year.
The spot prices of the underlying commodity St is 20. The strike price K is set equal
to the price of the underlying commodity St at the time of issuance. Ingersoll (1982)
points out when handling the convenience yield is to use the futures price of the com-
modity rather than the spot price(if one with a sufficiently long maturity is available).
Therefore, to set the initial values of the parameters of the process of the commodity
prices and the net marginal convenience yield, we use the parameter estimates for the
WTI light sweet crude oil data presented inLai andMellios (2016). In their paper, based
on all weekly observations of futures contracts traded prices on ICE from 2001/01/05
to 2010/12/31 forWest Texas Intermediate (WTI) light sweet crude oil, they estimated
the parameters of the process St and δt for WTI crude oil. The estimated parameters
were such that:κ = 0.729, θ = 0.080, σs = 0.399, σδ = 0.227, λδ = 0.251 and
ρsδ = 0.728. We set the current level of the convenience yield rate δt is 0.02. Now we
turn to focus on the parameters for the commodity-linked bonds issuer’s assets. The
instantaneous volatility is set to be σv = 0.3 and default barrier D∗ = D(outstanding
claims) is assumed to be 75 percent of the initial value of the issuer’s assets Vt is
200 which consists of this commodity-linked bonds and the equity. Chen (2010) finds
that bonds have recovery rate of around 0.60 across nine different aggregate states.
We set the deadweight costs α = 0.40. Because we suppose this issuing company
sells this commodity to the market, the value of this issuer is positively correlated to
the changes of this commodity prices and the convenience yield. So the underlying
commodity prices and the value of the issuer is set to behave with correlation coeffi-
cient ρsv is 0.3. Also, we set the correlation parameter between the value of the issuer
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Table 1 Preference parameters in the base case

Parameters Values Parameters Values

Volatility σs = 0.399 Volatility σv = 0.3

Volatility σr = 0.009 Volatility σδ = 0.227

Outstanding claims D = 150 Default barrier D∗ = 150

Market price of risk λr = −0.513 Strike price K = 20

Market price of risk λv = 0.05 Deadweight cost α = 0.4

Market price of risk λδ = 0.251 Time to maturity τ = 5

Correlation coefficient ρsδ = 0.728 Correlation coefficient ρsv = 0.3

Correlation coefficient ρδv = 0.66 Correlation coefficient ρrv = 0.5

Correlation coefficient ρsr = 0.051 Interest rate r0 = 0.04

Initial value V0 = 200 Initial value δ0 = 0.02

Magnitude of mean-reverting force q = 0.027 Initial price S0 = 20

Magnitude of mean-reverting force κ = 0.729 Face value F = 100

Long-run mean yield θ = 0.080 Long-run mean value m = 0.057

and the convenience yield ρδv is 0.66. In the following tables and figures, we change
one or more of the parameter values to investigate the impacts of the spot underly-
ing commodity price, stochastic convenience yield and counterparty credit risk on
the commodity-linked bonds prices with other variables taking on the values listed in
Table 1.

Table 2 compares the one-, two- and three-factor(I, II) commodity-linked bonds
prices for different parameter choices of the underlying commodity price, convenience
yield, interest rate and counterparty credit risk. The one-factor theoretical commodity-
linked bonds prices are calculated by uncertain commodity prices price model in
Eq. 7, where the net convenience yield rate is fixed through the life of the commodity-
linked bonds contract. The two-factor commodity-linked bonds prices are computed
by uncertain commodity price and stochastic convenience yield by Eq. 21. The three-
factor commodity-linked bonds pricing formula in Eq. 42 which involves stochastic
commodity price, stochastic convenience yield and counterparty credit risk. The val-
uation of the three-factor commodity-linked bonds with a constant convenience yield
in Eq. 47 which considers stochastic interest rate in the three-factor commodity-linked
bonds model.

As can be observed in Table 2, increasing the standard deviation on the return
on the underlying commodity increases the value of the commodity-linked bonds in
Panel 2. This because a higher standard deviation on the return on the underlying
commodity causing a higher premium portion of the commodity-linked bonds. In
addition, we can understand the effect of S0 in the same way. What’s more, the values
of the three-factor(I) commodity-linked bonds with increase with ρsv and decrease
with ρsδ and ρδv as shown in Table 2. A higher value of correlation coefficient ρsv
ensures that the values of the underlying commodity St and the issuer Vt tend to move
in line with ρsv . We can also find that the values of the three-factor(I, II) bonds are
smaller than those of the one- and two-factor bonds, which results from the default
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Fig. 1 Values of commodity-linked bonds against spot convenience yield. Baseline parameter values are
given in Table 1, unless otherwise noted

risk of the counterparty, there is the largest reduction in the value of commodity-linked
bonds, as shown in Panel 17(−45.1027 and −41.8915), implying that the probability
the bond writer will default increases when the standard deviation of the return of
the issuer’s asset increases. Conversely, a higher value of the issuer’s asset, there is
the smallest reduction in Panel 12(−18.5792,−16.5654). In addition, we find that
the one-factor commodity-linked bonds prices are higher than those of the two-factor
bonds prices due to the lower convenience yield in the one-factor model. Based on the
results of Table 2, these findings show that the parameter variables of the underlying
commodity price, stochastic convenience yield, stochastic interest rate and the vale of
the issuer play important roles in valuing the commodity-linked bonds. These results
are expected and consistent with previous studies, such as Hilliard and Reis (1998).
And what’s more, such a conclusion seems more clear in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13 and 14.

Figure 1 graphs how the values of commodity-linked bonds changes with the spot
convenience yield. Not surprising, the bonds price is decreasing in the convenience
yield. As can be seen in Fig. 1, when the initial level of convenience yield approaches
the long-run value θ (0.08), the one- and two-factor commodity-linked bonds prices
are not significantly different. With δ0 deviation from the long-run value θ , the dif-
ference in price between the one-factor and the two-factor bonds models increases,
and the difference between the three-factor(I) and the three-factor(II) bonds price also
increases.
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Fig. 2 Values of commodity-linked bonds against time to maturity. Baseline parameter values are given in
Table 1, unless otherwise noted
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Fig. 3 Values of commodity-linked bonds against underlying-to-strike ratio. Baseline parameter values are
given in Table 1, unless otherwise noted
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Fig. 4 Values of commodity-linked bonds against the debt ratio. Baseline parameter values are given in
Table 1, unless otherwise noted
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Fig. 5 Values of commodity-linked bonds against speed of adjustment. Baseline parameter values are given
in Table 1, unless otherwise noted
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Fig. 6 Values of commodity-linked bonds against long-run mean yield. Baseline parameter values are given
in Table 1, unless otherwise noted
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Fig. 7 Values of commodity-linked bonds against deadweight cost. Baseline parameter values are given in
Table 1, unless otherwise noted
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Fig. 8 Values of commodity-linked bonds against correlation coefficient between the return of the under-
lying commodity and the return convenience yield. Baseline parameter values are given in Table 1, unless
otherwise noted
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Fig. 9 Values of commodity-linked bonds against correlation coefficient between the return convenience
yield and the value of the issuer’s asset. Baseline parameter values are given in Table 1, unless otherwise
noted
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Fig. 10 Values of commodity-linked bonds against correlation coefficient between the return of the under-
lying commodity and the return on the issuer’s asset. Baseline parameter values are given in Table 1, unless
otherwise noted
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Fig. 11 Values of commodity-linked bonds against standard deviation of the return of the underlying
commodity. Baseline parameter values are given in Table 1, unless otherwise noted
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Fig. 12 Values of commodity-linked bonds against standard deviation of the return of the convenience
yield. Baseline parameter values are given in Table 1, unless otherwise noted
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Fig. 13 Values of commodity-linked bonds against standard deviation of the return of the issuer’s asset.
Baseline parameter values are given in Table 1, unless otherwise noted
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Fig. 14 Values of commodity-linkedbonds against standard deviation of the interest rate.Baseline parameter
values are given in Table 1, unless otherwise noted

Figure 2 indicates the sensitivity of the commodity-linked bonds price with respect
to the time to maturity. On the whole, the commodity-linked bonds price decreases as
the time to maturity increases, no matter which model is applied. It can be seen that
the gap in prices between the one-factor and the two-, three-factor models increases
as the time to maturity rises. A longer time to maturity has three different effects on
bonds values: first, it is well known that the value of a bond decreases with the time
to maturity due to the time value of money; but second, convenience yield decreases
with τ and tends to higher bonds value, this is because the longer the time to maturity,
the lower is the average of the convenience yield and the higher the commodity-linked
bonds price; on the other hand, the possibility of default by the issuer also increases
with τ reduces option portion of bonds price.

Figures 3 and 4 suggest how the ratio of the underlying commodity value to strike
price, S/K , and debt ratio, D/V , affect the values of the commodity-linked bonds.
In Fig. 3, increasing the ratio of the underlying commodity value to strike price S/K
increases the value of the commodity-linked bonds. This can also be seen from Eqs. 7,
21, 42 and 47, where it is clear that the commodity-linked bonds value increases with
S/K . Figure 4 shows that the impact of default risk on the value of the commodity-
linked bonds in the three-factor model is more apparent if the debt ratio approaches
to one. This means that if default becomes more and more possible, the decrease in
the prices of the commodity-linked bonds becomes more rapidly. The value of the
commodity-linked bonds decreases as the issuer is leveraged over a 15% debt ratio.
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The greater the default risk, the greater the reduction in the value of the commodity-
linked bonds.

Figure 5 displays that a smaller speed of adjustment κ makes the bonds prices higher
than that of a larger speed of adjustment κ . This means that the premium portion of
bonds prices decrease as the speed of adjustment κ becomes large. As expected, it can
be observed that the difference in prices between the one-factor and the two-, three-
factor(I) models increases first and sequently decreases as the speed of adjustment κ

increases.8 This is because with a high speed of adjustment, the convenience yield
returns to its higher long-run level θ faster. As we know, commodity option portion
is decreasing function of the convenience yield rate, keeping the convenience yield
at a higher level leads to a lower option price, and the standard (bivariate) normal
cumulative distribution simultaneously increaseswith the convenience yield increases,
causing a higher bond price. However, in the one-factor model, the convenience yield
is fixed andmaintained at a lower level through the entire life of the commodity-linked
bonds contract. In summary, as in the result of Fig. 5 indicates that a fixed convenience
yield in the one-factor and three-factor(II) model can lead to significantly different
bonds prices relative to those obtained by a stochastic convenience yield in the two-
and three-factor(I) model. In Fig. 6, increasing the level of long-run yield decreases the
commodity-linked bonds value in the two- and three-factor models. The effect of the
deadweight cost, α, is shown in Fig. 7. Clearly, it follows from (42) and (47) that the
deadweight cost α affects only the recovery when default event occurs. Therefore, the
commodity-linked bonds prices in the three-factor model is a linear decrease function
with respect to α.

Figures 8, 9 and 10 illustrate how the commodity-linked bonds price under the
one-, two- and three-factor models changes with the correlation between the return
of the underlying commodity and the return of the convenience yield ρsδ , between
the return of the convenience yield and the return of the issuer’s asset ρδv , between
the return of the underlying commodity and the return of the issuer’s asset ρsv . Not
surprisingly, the commodity-linked bonds price is increasing with respect to ρsv in
the three-factor model and decreasing with respect to ρsδ in the two- and three-factor
models, and decreasing with respect to ρδv in the three-factor model. Figure 8 plots
the effect of varying degrees of correlation ρsδ . It is evident that the spot commodity
price and the convenience yield have opposing effect on bonds values. This is because
the premium portion of bonds prices increase as the spot commodity prices increase,
but the spot commodity prices decrease as convenience yields increase. In Fig. 9, the
effect of ρδv can be explained in a similar way. Figure 10 shows the effect of the
correlation ρsv . Since there are no counterparty credit risk in the one- and two-factor
models do not vary with ρsv . In the case of a positive correlation between the return
on the underlying commodity and the return on the issuer’s asset in the three-factor
model, if the issuer’s asset increases, there is a tendency for the underlying commodity
to increase and for the value of the commodity-linked bonds to increase. Therefore a
stronger positive correlation between the return on the underlying commodity and the
return on the issuer’s asset in the three-factor model corresponds to a smaller effect of

8 Notice that the result has a little discrepancy with these Miura and Yamauchi (1998) display in their
Fig. 2. They just suggest that a smaller level of κ makes the bond prices higher than that of a larger level of
κ .
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Table 3 Sensitivity analysis for the commodity-linked bonds prices

Parameters Effect on the
one-factor

Effect on the
two-factor

Effect on the
Three-Factor

Effect on the
three-factor

Bond price Bond price Bond price(I) Bond price(II)

τ − − − −
S0 + + + +
K − − − +
σs + + + +
δ0 − − − −
θ No − − No

σδ No U-shaped U-shaped No

ρsδ No − − No

κ No U-shaped U-shaped No

ρδv No No − No

V0 No No + +
D No No − −
D∗ No No − −
ρsv No No + +
α No No − −
σv No No − −
q No No No −
m No No No −
ρsr No No No −
ρrv No No No +
σr No No No −

credit risk on the commodity-linked bonds. However, from Fig. 10 we also can see that
the three-factor model prices are less than the one- and two-factor commodity-linked
bonds prices. As Schwartz (1997) points out that most of default risk comes not from
the firm being unable to pay the face value of the commodity-linked bonds, as is the
case for regular bonds, but from the firm being unable to pay the value of the option
for high commodity prices, even under substantial increases in the value of the firm.

Figures 11, 12, 13 and 14 reveal how the price of the commodity-linked bonds
are affected by the standard deviation of the return of the underlying commodity,
the convenience yield, the issuer’s asset and the interest rate. It can be seen that σs
impose a positive effect on the values of the commodity-linked bonds in the one-,
two-, and three-factor models, and σδ impose a positive effect on the values of the
commodity-linked bonds in the two- and three-factor models. On the contrary, σv

impose a negative effect on the values of the commodity-linked bonds in the three-
factor model. Figure 11 depicts the effect of the standard deviation of the return of the
underlying commodity on the value of the commodity-linked bonds. A higher standard
deviation of the return of the underlying commodity has two contrary effects on the
values of the commodity-linked bonds: first, it is obviously that the option portion of
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bonds prices increases with the standard deviation of the underlying commodity; and
second the possibility of default also increases with σs , this tends to a lower bonds
prices. The former effect is shown to dominate the latter effect during the life of the
commodity-linked bonds contract. The U-shaped curves for σδ in the two- and three-
factor(I) models are illustrated in Fig. 12. Figure 13 implies that when the standard
deviation of the return of the assets of the issuer is increased, the possibility of default
also increases. Consequently, the value of the commodity-linked bonds decreases as
σv increases. The effect of σr can be explained in a similar way depicted in Fig. 14.

In conclusion, the effects of different parameters on the value of the commodity-
linked bonds vary significantly, depending on the parameter considered. The effects
of the parameters considered in the one-, two- and three-factor(I, II) models are sum-
marized in Table 3.

7 Conclusion

This paper presents the two- and three-factor(I, II) commodity-linked bonds pricing
models where the spot underlying commodity price dynamics follow a geometrical
Brownian motion process with a stochastic drift, the dynamics of the net convenience
yield are formulated as a mean-reverting Ornstein–Uhlenbeck stochastic process and
the dynamics of the value of the issuer’s assets are given by a geometrical Brownian
motion process. Based on the Mellin transform techniques, we obtain the closed-form
pricing formulas of the commodity-linked bonds to study the impact of the underlying
commodity value, convenience yield, interest rate and counterparty credit risk onbonds
values. These formulas are simply provided with standard (bivariate) normal cumu-
lative distribution function so that the pricing and hedging of the commodity-linked
bonds can be computed very accurately and rapidly. We conduct the numerical evalu-
ations of sensitivity analysis for the commodity-linked bonds, and we use tables and
graphs to illustrate the significant movements of the prices with respect to parameters
of the commodity-linked bonds. From the results, we could find out how conve-
nience yield, interest rate and counterparty credit risk have a significant effect on
the commodity-linked bonds prices.
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Appendix A: Review of theMellin transform

To obtain help in solving the PDE (11), (28) and (46) with given terminal condition, we
first summarize the definition and some basic properties of without proof for readers
who are unfamiliar with the double Mellin transforms. The interested reader can refer
to Erdelyi et al. (1954) and Sneddon (1972) as well.

Definition 1 (Definition of the Mellin transform and inverse transform) The Mellin
transform ĝ(ω) of a complex-valued function g(x) defined over positive reals is

Mx [g(x);ω] := ĝ(ω) =
∫ ∞

0
g(x)xω−1dx,

with ω is complex number. Then the function g(x) can be recovered from its Mellin
transform by the inverse Mellin transformation formula

g(x) := M−1
x [ĝ(ω)] = 1

2π i

∫ c+i∞

c−i∞
ĝ(ω)x−ωdω,

with a < Re(ω) and a < c1 < b exist.

Definition 2 (Definition of the double Mellin transform and inverse transform) The
double Mellin transform ĝ(ω1, ω2) of a complex-valued function g(x, y) defined over
positive reals is

Mx,y[g(x, y);ω1, ω2] := ĝ(ω1, ω2) =
∫ ∞

0

∫ ∞

0
g(x, y)xω1−1yω2−1dxdy,

with ω1 and ω2 are complex numbers. Then the function g(x, y) can be recovered
from its Mellin transform by the inverse Mellin transformation formula

g(x, y) := M−1
x,y[ĝ(ω1, ω2)] = 1

(2π i)2

∫ c1+i∞

c1−i∞

∫ c2+i∞

c2−i∞
ĝ(ω1, ω2)x

−ω1 y−ω2dω1dω2,

with a < Re(ω1), Re(ω2) < b and a < c1, c2 < b exist.
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Proposition 1 (Basic properties of the Mellin transform) Suppose that there exists a
double Mellin transform of f (x, y). Then the following relations hold:

Mx,y

(
x

∂2

∂x
f (x, y);ω1, ω2

)
= −ω1 f̂ (ω1, ω2),

Mx,y

(
y

∂2

∂ y
f (x, y);ω1, ω2

)
= −ω2 f̂ (ω1, ω2),

Mx,y

(
xy

∂2

∂x∂ y
f (x, y);ω1, ω2

)
= ω1ω2 f̂ (ω1, ω2),

Mx,y

(
x2

∂2

∂x2
f (x, y);ω1, ω2

)
= ω1(ω1 + 1) f̂ (ω1, ω2),

Mx,y

(
y2

∂2

∂ y2
f (x, y);ω1, ω2

)
= ω2(ω2 + 1) f̂ (ω1, ω2).

Proposition 2 (Convolution of the Mellin transform) Let f (x) and g(x) be locally
integrable functions on positive reals. f̂ (ω) and ĝ(ω) are two Mellin transforms of
the functions f (x) and g(x), respectively. Then, the Mellin convolution is given by the
inverse Mellin transform of f̂ (ω1)ĝ(ω1) as follows:

f (x) ∨ g(x) : = 1

2π i

∫ c+i∞

c−i∞
f̂ (ω)ĝ(ω)x−ωdω

=
∫ ∞

0
f
( x

ω

)
g(x)

dω

ω
.

Proposition 3 (Convolution of the double Mellin transform) Let f (x, y) and g(x, y)
be locally integrable functions on positive reals. f̂ (ω1, ω2) and ĝ(ω1, ω2) are
two double Mellin transforms of the functions f (x, y) and g(x, y), respectively.
Then, the double Mellin convolution is given by the inverse Mellin transform of
f̂ (ω1, ω2)ĝ(ω1, ω2) as follows:

f (x, y) ∨ g(x, y) : = 1

(2π i)2

∫ c1+i∞

c1−i∞

∫ c2+i∞

c2−i∞
f̂ (ω1, ω2)ĝ(ω1, ω2)x

−ω1 y−ω2dω1dω2

=
∫ ∞

0

∫ ∞

0
f (

x

ω1
,
y

ω2
)g(x, y)

dω1

ω1

dω2

ω2
.

Proposition 4 (Inverse Mellin transform of exponential function) Given complex
numbers α and β with Re(α) ≥ 0, let f (x) = 1

2π i

∫ c+i∞
c−i∞ f̂ (s)x−sds, where

f̂ (s) = eα(s+β)2 . Then

f (x) = 1

2
√

πα
xβe− (ln x)2

4α

holds.
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Appendix B: Proof of Theorem 3.1

Proof First of all, let x = ln
(
S
u

)
√
2E(τ )

. By applying the change of variable from u to x ,
Eq. 20 becomes

B(τ, S, δ) = − 1√
2π

∫ −∞
ln
(
S
K

)
√
2E(τ )

(Se−√
2E(τ )x + F − K )e

c∗− 1
2 x

2+ G2(τ )√
2E(τ )

x
dx

− 1√
2π

∫ ln
(
S
K

)
√
2E(τ )

∞
Fe

c∗− 1
2 x

2+ G2(τ )√
2E(τ )

x
dx

= S√
2π

∫ ln
(
S
K

)
√
2E(τ )

−∞
e
− 1

2

(
x+ 2E(τ )−G2(τ )√

2E(τ )

)2+E(τ )−G2(τ )−τr
dx + F − K√

2π

∫ ln
(
S
K

)
√
2E(τ )

−∞

e
− 1

2

(
x− G2(τ )√

2E(τ )

)2−τr
dx + F√

2π

∫ ∞
ln( S

K )√
2E(τ )

e
− 1

2

(
x− G2(τ )√

2E(τ )

)2−τr
dx

= P(τ, δ)S
1√
2π

∫ ln
(
S
K

)
√
2E(τ )

−∞
e
− 1

2 (x+ 2E(τ )−G2(τ )√
2E(τ )

)2

dx − e−τr K
1√
2π

∫ ln
(
S
K

)
√
2E(τ )

−∞

e
− 1

2

(
x− G2(τ )√

2E(τ )

)2
dx + e−τr F . (48)

Here

P(τ, δ) = eE(τ )−G2(τ )−τr

= e

(
θ∗+γ1− σ2

δ

2κ2

)
(H(τ )−τ)− σ2

δ
4κ H2(τ )−δH(τ )

= A(τ ) exp(−δH(τ )),

where

A(τ ) = exp

{(
θ∗ + γ1 − σ 2

δ

2κ2

)
(H(τ ) − τ) − σ 2

δ

4κ
H2(τ )

}

H(τ ) = 1 − e−κτ

κ
.

Then, B(S, τ ) is given by the formula

B(S, τ ) = P(τ, δ)S
1√
2π

∫ ln
(
S
K

)
√
2E(τ )

−∞
e− 1

2 (x ′
1)

2
dx − e−rτ K

1√
2π

∫ ln
(
S
K

)
√
2E(τ )

−∞
e− 1

2 (x ′
2)

2
dx + e−rτ F

= P(τ, δ)SN (d1) − e−rτ KN (d2) + e−rτ F, (49)

123



84 Z. Ma et al.

where d1 and d2 are given by

d1 = ln
( S
K

) + rτ + 1
2

∫ τ

0 σ̂ 2
s (t)dt + ln(P(δ, τ ))√∫ τ

0 σ̂ 2
s (s)ds

,

d2 = ln
( S
K

) + rτ − 1
2

∫ τ

0 σ̂ 2
s (t)dt + ln(P(δ, τ ))√∫ τ

0 σ̂ 2
s (s)ds

.

��

Appendix C: Proof of Lemma 4.1

Proof For τ > 0, because E(τ ) > 0, so the inequality G1(τ ) − G2(τ )
4E(τ )

> 0 ⇔
4E(τ )G1(τ ) > G2(τ ). And E(τ ) = 1

2

∫ τ

0 σ̂ 2
s (t)dt and G1(τ ) = 1

2σ
2
v τ = 1

2

∫ τ

0 σ 2
v dt .

From the Cauchy–Schwartz inequality, we have

4E(τ )G1(τ ) = 1

2

∫ τ

0
σ̂ 2
s (t)dt

1

2
σ 2

v τ = 1

2

∫ τ

0
σ 2

v dt

≥
(∫ τ

0
σ̂s(t)σvdt

)2

=
(∫ τ

0

√
σ 2

v (σ 2
s − 2ρsδσsσδH(t) + σ 2

δ H
2(t))dt

)2

,

andwe also knowG(τ ) = ρsvσsσvτ −γ2(τ −H(τ )) = ∫ τ

0 ρsvσsσv−ρδvσδσvH(t)dt .
Therefore 4E(τ )G1(τ ) > G2(τ ) is satisfied if and only if

∇ = σ 2
v

(
σ 2
s − 2ρsδσsσδH(t) + σ 2

δ H
2(t)) − (ρsvσsσv − ρδvσδσvH(t)

)2

= σ 2
v

[
(1 − ρ2

δv)σ
2
δ H

2(t) + 2(ρsvρδv − ρsδ)σsσδH(t) + (1 − ρ2
sv)σ

2
s

]
> 0.

If we consider ∇ as a quadratic equation of σδH(t), then ∇ > 0 is satisfied if and
only if σ 2

v > 0, 1 − ρ2
δv > 0 and

� = (2(ρsvρδv − ρsδ)σs)
2 − 4(1 − ρ2

δv)(1 − ρ2
sv)σ

2
s

= 4σ 2
s

[
ρ2
sv + ρ2

δv + ρ2
sδ − 2ρsvρδvρsδ − 1

]
< 0

are satisfied. Because σ 2
v > 0 for τ > 0 is satisfied, and according to conditions (25),

the two later conditions are obviously true. Consequently, G1(τ ) − G2(τ )
4E(τ )

> 0 has
been verified. ��
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Appendix D: Proof of Theorem 4.1

Proof First of all, let y = ln
(
V
w

)
√
2G1(τ )

and ρ = G(τ )

2
√
E(τ )G1(τ )

. By applying the change of

variables from u and w to x and y, I 1B(t, S, V , δ) of Eq. 41 becomes

I 1B (t, S, V , δ) = 1

2π

√√√√ G1(τ )

G1(τ ) − G2(τ )
4E(τ )

∫ −∞
ln( S

K )√
2E(τ )

∫ −∞
ln
(

V
D∗

)
√

2G1(τ )

eη exp

⎧⎨
⎩− (G1(τ ) + G3(τ ) − G(τ )(G2(τ )−√

2E(τ )x)
2E(τ )

)2

4(G1(τ ) − G2(τ )
4E(τ )

)

⎫⎬
⎭

(Se−√
2E(τ )x + F − K ) exp

{ y
√
2G1(τ )(G1(τ ) + G3(τ ) − G(τ )(G2(τ )−√

2E(τ )x)
2E(τ )

)

2(G1(τ ) − G2(τ )
4E(τ )

)

+ G2(τ )√
2E(τ )

x

}
e− 1

2 x
2
e

− G1(τ )y2

2

(
G1(τ )− G2 (τ )

4E(τ )

)
dxdy

= S

2π
√
1 − ρ2

∫ −∞
ln
(
S
K

)
√
2E(τ )

∫ −∞
ln
(

V
D∗

)
√

2G1(τ )

exp

{
η − 1

2(1 − ρ2)
(x2 + y2) −

[√
2E(τ ) − G2(τ )√

2E(τ )

+
(
G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )

)
G(τ )√
2E(τ )

2G1(τ )(1 − ρ2)

]
x +

y
√
2G1(τ )

(
G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )

)

2G1(τ )(1 − ρ2)

+ ρxy

(1 − ρ2)
− (G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )
)2

4G1(τ )(1 − ρ2)

}
dxdy

+ F − K

2π
√
1 − ρ2

∫ −∞
ln
(
S
K

)
√
2E(τ )

∫ −∞
ln
(

V
D∗

)
√

2G1(τ )

exp

{
η − 1

2(1 − ρ2)
(x2 + y2) −

[
(G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )
)

2G1(τ )(1 − ρ2)

· G(τ )√
2E(τ )

− G2(τ )√
2E(τ )

]
x + y

√
2G1(τ )(G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )
)

2G1(τ )(1 − ρ2)
+ ρxy

(1 − ρ2)

−
(
G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )

)2
4G1(τ )(1 − ρ2)

}
dxdy. (50)

To evaluate the first term in Eq. 50, we introduce an auxiliary function

I 10B (τ, S, V , δ) = S

2π
√
1 − ρ2

∫ −∞
ln( S

K )√
2E(τ )

∫ −∞
ln( V

D∗ )√
2G1(τ )

exp

⎧⎪⎨
⎪⎩η − 1

2(1 − ρ2)
(x2 + y2) −

⎡
⎢⎣√

2E(τ ) − G2(τ )√
2E(τ )

+
(
G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )

)
G(τ )√
2E(τ )

2G1(τ )(1 − ρ2)

⎤
⎦ x + y

√
2G1(τ )(G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )
)

2G1(τ )(1 − ρ2)

+ ρxy

(1 − ρ2)
−

(
G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )

)2
4G1(τ )(1 − ρ2)

⎫⎪⎬
⎪⎭ dxdy. (51)

Then the exponent of the integrand of Eq. 51 can be expressed as

M1 − 1

2(1 − ρ2)
[(x + a1)

2 + (y + b1)
2] + ρ

1 − ρ2 (x + a1)(y + b1),
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where a1, b1 and M1 are given by

a1 = 2E(τ ) − G2(τ )√
2E(τ )

,

b1 = G(τ ) − G1(τ ) − G3(τ )√
2G1(τ )

,

M1 = η −
(
G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )

)2
4G1(τ )(1 − ρ2)

+ a21 + b21
2(1 − ρ2)

− ρa1b1
1 − ρ2

= E(τ ) − G2(τ ) − τr

= ln(P(δ, τ )).

Similarly, to evaluate the second term in Eq. 50, we introduce an auxiliary function

I 11B (τ, S, V , δ) = F − K

2π
√
1 − ρ2

∫ −∞
ln
(
S
K

)
√
2E(τ )

∫ −∞
ln
(

V
D∗

)
√

2B1 (τ )

exp

⎧⎨
⎩η − 1

2(1 − ρ2)
(x2 + y2) −

⎡
⎣
(
G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )

)

2G1(τ )(1 − ρ2)

· G(τ )√
2E(τ )

− G2(τ )√
2E(τ )

⎤
⎥⎦ x + y

√
2G1(τ )(G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )
)

2G1(τ )(1 − ρ2)
+ ρxy

2E(τ )G1(τ )(1 − ρ2)

−
(
G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )

)2
4G1(τ )(1 − ρ2)

⎫⎪⎬
⎪⎭ dxdy. (52)

Then the exponent of the integrand of Eq. 52 can be expressed as

M2 − 1

2(1 − ρ2)
[(x + a2)

2 + (y + b2)
2] + ρ

1 − ρ2 (x + a2)(y + b2),

where a2, b2 and M2 are given by

a2 = − G2(τ )√
2E(τ )

,

b2 = −G1(τ ) + G3(τ )√
2G1(τ )

,

M2 = η −
(
G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )

)2
4G1(τ )(1 − ρ2)

+ a22 + b22
2(1 − ρ2)

− ρa2b2
1 − ρ2

= −τr .
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Then, I 1B(τ, S, V , δ) is given by the formula

I 1B(τ, S, V , δ) = P(δ, τ )S 1
2π

√
1−ρ2

∫ a′
1−∞

∫ a′
2−∞ e

− 1
2(1−ρ2)

(x
′2
1 −2ρx ′

1y
′
1+y

′2
1 )
dx ′

1dy
′
1

+e−rτ (F − K ) 1
2π

√
1−ρ2

∫ b′
1−∞

∫ b′
2−∞ e

− 1
2(1−ρ2)

(x
′2
2 −2ρx ′

2y
′
2+y

′2
2 )
dx ′

2dy
′
2

= P(δ, τ )SN2(a′
1, b

′
1, ρ) + e−rτ (F − K )N2(a′

2, b
′
2, ρ),

(53)
where

a′
1 = ln

( S
K

) + ln P(δ, τ ) + τr + 1
2

∫ τ

0 σ̂ 2
s (s)ds√∫ τ

0 σ̂ 2
s (s)ds

,

b′
1 = ln

( V
D∗

) + (
r − λvσv − 1

2σ
2
v

)
τ + ρsvσsσv − γ2(τ − H(τ ))

σv

√
τ

,

a′
2 = ln

( S
K

) + ln P(δ, τ ) + τr − 1
2

∫ τ

0 σ̂ 2
s (s)ds√∫ τ

0 σ̂ 2
s (s)ds

,

b′
2 = ln

( V
D∗

) + (
r − λvσv − 1

2σ
2
v

)
τ

σv

√
τ

.

As with the same procedure for I 1B(τ, S, V , δ), then I 2B(τ, S, V , δ), I 3B(τ, S, V , δ)

and I 4B(τ, S, V , δ) of Eq. 41 are given respectively,

I 2B(τ, S, V , δ) = F

2π
√

1−ρ2

∫ ∞
ln
(
S
K

)
√
2E(τ )

∫ −∞
ln
(

V
D∗

)
√

2B1(τ )

exp

{
η − 1

2(1−ρ2)
(x2 + y2) −

[(
G1(τ )+G3(τ )− G(τ )G2(τ )

2E(τ )

)
2G1(τ )(1−ρ2)

· G(τ )√
2E(τ )

− G2(τ )√
2E(τ )

]
x + y

√
2G1(τ )(G1(τ )+G3(τ )− G(τ )G2(τ )

2E(τ )
)

2G1(τ )(1−ρ2)
+ ρxy

2E(τ )G1(τ )(1−ρ2)

−
(
G1(τ )+G3(τ )− G(τ )G2(τ )

2E(τ )

)2
4G1(τ )(1−ρ2)

}
dxdy

= e−rτ FN2(−c′
2, d

′
2,−ρ),

(54)
where

c′
2 = a′

2, d
′
2 = b′

2.I
3
B (τ, S, V , δ)

= (1 − α)V

D

1

2π

√√√√ G1(τ )

G1(τ ) − G2(τ )
4E(τ )

∫ −∞
ln( S

K )√
2E(τ )

∫ ln
(

V
D∗

)
√

2G1 (τ )

∞
exp

⎧⎪⎨
⎪⎩−

(
G1(τ ) + G3(τ ) − G(τ )(G2(τ )−√

2E(τ )x)
2E(τ )

)2

4
(
G1(τ ) − G2(τ )

4E(τ )

)
⎫⎪⎬
⎪⎭

eη−√
2G1(τ )y

(
Se−√

2E(τ )x + F − K
)
exp

{ y
√
2G1(τ )(G1(τ ) + G3(τ ) − G(τ )(G2(τ )−√

2E(τ )x)
2E(τ )

)

2
(
G1(τ ) − G2(τ )

4E(τ )

)

+ G2(τ )√
2E(τ )

x

}
e− 1

2 x
2
e
− G1 (τ )y2

2(G1 (τ )− G2 (τ )
4E(τ )

) dxdy
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= (1 − α)V

D
S

1

2π
√
1 − ρ2

∫ −∞
ln
(
S
K

)
√
2E(τ )

∫ ln( V
D∗ )√

2G1 (τ )

∞
exp

{
η − 1

2(1 − ρ2)
(x2 + y2) −

[√
2E(τ )

− G2(τ )√
2E(τ )

+
(
G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )

)
G(τ )√
2E(τ )

2G1(τ )(1 − ρ2)

]
x + [

√
2G1(τ )(G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )
)

2G1(τ )(1 − ρ2)

− √
2G1(τ )]y + ρxy

2E(τ )G1(τ )(1 − ρ2)
− (G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )
)2

4G1(τ )(1 − ρ2)

}
dxdy

+ (1 − α)V

D

F − K

2π
√
1 − ρ2

∫ −∞
ln( S

K )√
2E(τ )

∫ ln
(

V
D∗

)
√

2G1 (τ )

∞
exp

{
η − 1

2(1 − ρ2)
(x2 + y2) +

[
G2(τ )√
2E(τ )

−
(
G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )

)

2G1(τ )(1 − ρ2)

G(τ )√
2E(τ )

⎤
⎦ x +

[√
2G1(τ )(G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )
)

2G1(τ )(1 − ρ2)

−√
2G1(τ )

]
y + ρxy

2E(τ )G1(τ )(1 − ρ2)
− (G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )
)2

4G1(τ )(1 − ρ2)

}
dxdy

= (1 − α)V

D
(P ′(δ, τ )Se(r+ρsvσsσv−λvσv)τN2(e

′
1,− f ′

1,−ρ)

+ e−λvσvτ (F − K )N2(e
′
2,− f ′

2,−ρ)), (55)

where

P ′(δ, τ ) = A′(τ ) exp(−δH(τ )),

A′(τ ) = exp

{(
θ∗ + γ1 + γ2 − σ 2

δ

2κ2

)
(H(τ ) − τ) − σ 2

δ

4κ
H2(τ )

}
,

e′
1 = ln

( S
K

) + ln P ′(δ, τ ) + τr + 1
2

∫ τ

0 σ̂ 2
s (s)ds + ρsvσsσvτ√∫ τ

0 σ̂ 2
s (s)ds

,

f ′
1 = ln

( V
D∗

) + (
r − λvσv + 1

2σ 2
v

)
τ + ρsvσsσv − γ2(τ − H(τ ))

σv

√
τ

,

e′
2 = ln

( S
K

) + ln P ′(δ, τ ) + τr − 1
2

∫ τ

0 σ̂ 2
s (s)ds + ρsvσsσvτ√∫ τ

0 σ̂ 2
s (s)ds

,

f ′
2 = ln

( V
D∗

) + (
r − λvσv + 1

2σ 2
v

)
τ

σv

√
τ

.

I 4B(τ, S, V , δ) = (1 − α)V

D

F

2π
√
1 − ρ2

∫ ln
(
S
K

)
√
2E(τ )

∞

∫ ln
(

V
D∗

)
√

2G1(τ )

∞
exp

{
η − 1

2(1 − ρ2)
(x2 + y2) +

[
G2(τ )√
2E(τ )

−
(
G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )

)

2G1(τ )(1 − ρ2)

G(τ )√
2E(τ )

]
x + [

√
2G1(τ )(G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )
)

2G1(τ )(1 − ρ2)

− √
2G1(τ )]y + ρxy

2E(τ )G1(τ )(1 − ρ2)
−

(
G1(τ ) + G3(τ ) − G(τ )G2(τ )

2E(τ )

)2
4G1(τ )(1 − ρ2)

}
dxdy

= (1 − α)V

D
e−λvσvτ FN2(−g′

2,−h′
2, ρ), (56)
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where

g′
2 = e′

2, h
′
2 = f ′

2.

Finally, we can recombine I 1B(τ, S, V , δ), I 2B(τ, S, V , δ), I 3B(τ, S, V , δ) and
I 4B(τ, S, V , δ) in the following formula:

B(S, V , δ, τ ) = P(δ, τ )SN2(a
′
1, b

′
1, ρ) + e−rτ (F − K )N2(a

′
2, b

′
2, ρ)

+ e−rτ FN2(−c′
2, d

′
2,−ρ)

+ (1 − α)V

D
(P ′(δ, τ )Se(r−λ1σv+ρsvσsσv)τN2(e

′
1,− f ′

1,−ρ)

+ e−λvσvτ (F − K )N2(e
′
2,− f ′

2,−ρ))

+ (1 − α)V

D
e−λvσvτ FN2(−g′

2,−h′
2, ρ), (57)

where N2 is the standard bivariate normal cumulative distribution as

N2(a, b, ρ) = 1

2π
√
1 − ρ2

∫ a

−∞

∫ b

−∞
e
− 1

2(1−ρ2)
(x2−2ρxy+y2)

dxdy,

and

ρ = (ρsvσsσv − γ2)τ + γ2H(τ )

σv

√∫ τ

0 σ̂ 2
s (s)dsτ

,

a′
1 = ln

( S
K

) + ln P(δ, τ ) + rτ + 1
2

∫ τ

0 σ̂ 2
s (s)ds√∫ τ

0 σ̂ 2
s (s)ds

,

b′
1 = ln

( V
D∗

) + (
r − λvσv + ρsvσsσv − γ2 − 1

2σ
2
v

)
τ + γ2H(τ )

σv

√
τ

,

a′
2 = ln

( S
K

) + ln P(δ, τ ) + rτ − 1
2

∫ τ

0 σ̂ 2
s (s)ds√∫ τ

0 σ̂ 2
s (S)dS

,

b′
2 = ln

( V
D∗

) + (
r − λvσv − 1

2σ
2
v

)
τ

σv

√
τ

,

e′
1 = ln

( S
K

) + ln P ′(δ, τ ) + (r + ρsvσsσv)τ + 1
2

∫ τ

0 σ̂ 2
s (s)ds√∫ τ

0 σ̂ 2
s (s)ds

,

f ′
1 = ln

( V
D∗

) + (
r − λvσv + ρsvσsσv − γ2 + 1

2σ
2
v

)
τ + γ2H(τ )

σv

√
τ

,

e′
2 = ln

( S
K

) + ln P ′(δ, τ ) + (r + ρsvσsσv)τ − 1
2

∫ τ

0 σ̂ 2
s (s)ds√∫ τ

0 σ̂ 2
s (s)ds

,
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f ′
2 = ln

( V
D∗

) + (
r − λvσv + 1

2σ
2
v

)
τ

σv

√
τ

,

c′
2 = a′

2, d
′
2 = b′

2, g
′
2 = e′

2, h
′
2 = f ′

2.
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