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Abstract Modeling the joint distribution of spot and futures returns is crucial for
establishing optimal hedging strategies. This paper proposes a new class of dynamic
copula-GARCHmodels that exploits information from high-frequency data for hedge
ratio estimation. The copula theory facilitates constructing a flexible distribution; the
inclusion of realized volatilitymeasures constructed from high-frequency data enables
copula forecasts to swiftly adapt to changingmarkets. By using data concerning equity
index returns, the estimation results show that the inclusion of realized measures of
volatility and correlation greatly enhances the explanatory power in the modeling.
Moreover, the out-of-sample forecasting results show that the hedged portfolios con-
structed from the proposedmodel are superior to those constructed from the prevailing
models in reducing the (estimated) conditional hedged portfolio variance. Finally, the
economic gains from exploiting high-frequency data for estimating the hedge ratios
are examined. It is found that hedgers obtain additional benefits by including high-
frequency data in their hedging decisions; more risk-averse hedgers generate greater
benefits.
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1 Introduction

Modeling the joint distribution of spot and futures returns is crucial for optimal futures
hedging because the optimal hedge ratio is obtained as the ratio of the covariance
between spot and futures returns to the variance of futures returns (Ederington 1979).
According to Engle (1982) and Bollerslev (1986), the conditional variances of many
asset returns changeover time.Consequently, bivariate generalized autoregressive con-
ditional heteroskedasticity (GARCH) models enabling time-dependent covariances
are commonly applied to estimate dynamic hedge ratios (Baillie and Myers 1991;
Brooks et al. 2002; Cecchetti et al. 1988; Kroner and Sultan 1993; Park and Switzer
1995). It is found that the GARCH hedge ratios are superior essentially because they
account for the conditional heteroskedasticity in the distribution of spot and futures
returns.

Most aforementioned studies model the conditional distribution under a bivariate
normality assumption. Recent studies indicate that bivariate normality fails to account
for the distribution’s higher moments or for the tail dependence between spot and
futures returns (Hsu et al. 2008; Lai 2012; Lee 2009; Park and Jei 2010). In this situ-
ation, standard GARCH estimators attach too much weight to extreme observations,
leading to the estimation of the optimal hedge ratio being generally inefficient (Harris
and Shen 2003).

In addition, standard GARCHmodels use low frequency (LF) returns to determine
current covariance levels. Squared (or cross-product) returns, however, offer limited
information regarding the estimation of return covariation, compared with realized
(co-)variances computed using high-frequency (HF) data (Andersen and Bollerslev
1998; Andersen et al. 2001; Barndorff-Nielsen and Shephard 2004). Based on this,
high-frequency-based volatility models have been developed recently (Hansen et al.
2012, 2014; Noureldin et al. 2012; Shephard and Sheppard 2010). It is shown that
GARCH models using HF data can more quickly adjust to changes in volatility than
can standard GARCH models.

This study improves the effectiveness of dynamic hedging by specifying the joint
distribution using the features of flexible density function and shorter response time,
rendering it more flexible and effective than the prevailing methods of modeling the
dynamic structures are. On the basis of conditional Sklar’s theorem, Patton (2006)
demonstrated a conditional joint distribution can be decomposed into its conditional
marginal distributions and its conditional copula function. This provides full flexibility
in specifying the conditional joint distribution, which is thusmore realistic in capturing
many of the observed features in spot and futures returns that may affect the hedge
ratio estimation. Moreover, copula forecasts using HF data can more swiftly adapt
to changing markets than forecasts using only daily data can (Salvatierra and Patton
2015).

Herein, the performance of the proposed copula-based GARCH model with HF
data (copula-GARCH-X) is compared with the competing models in two respects:
First, in terms of goodness-of-fit, the estimation results indicate that the improvement
caused by switching from the conventional models to the proposed copula-GARCH-X
model can be substantial for the equity indexmarkets. Second, when investigating out-
of-sample performance, the forecasting results illustrate that the copula-GARCH-X
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model can substantially reduce the (estimated) conditional hedged portfolio variance,
translating into pronounced expected utility gains particular for hedgers with higher
risk aversion attitudes.

The remainder of this paper is organized as follows: the second section presents the
copula-GARCH-Xmodel for hedge ratio estimation, the third section provides the data
and preliminary analysis results, the forth section describes the conditional hedging
performancemeasure, the fifth section describes the model’s forecasting performance,
and the final section concludes.

2 Methodology

Consider a hedger who desires an underlying spot asset and seeks to hedge the price
risk of the asset by shorting its own futures contracts. The optimal hedge ratio given
by

δ∗
t � σs f,t

σ 2
f,t

� ρs f,t
σs,t

σ f,t
(1)

determines the optimal futures position per unit underlying spot asset at time t , where
σs f,t and ρs f,t denote the conditional covariance and correlation of spot and futures
returns, and σs,t and σ f,t denote the conditional spot and futures volatility, respec-
tively.1 The empirical estimation of the hedge ratio clearly depends on how the joint
distribution of spot and futures returns is modeled and thus how the conditional covari-
ance matrix of assets is estimated.

Denote rt ≡ [rs,t , r f,t ]′ as a 2 × 1 vector consisting of spot and futures returns at
time t . Let Ft : R2 → [0, 1] be the conditional distribution of rt |Ft−1, where Ft−1
denotes some information set at time t − 1. The conditional Sklar’s theorem of Patton
(2006) suggests that the conditional distribution can be split into conditional marginal
distributions Fi,t : R → [0, 1], and a unique conditional copula Ct : [0, 1]2 → [0, 1]
such that

rt |Ft−1 ∼ Ft (rs,t , r f,t ) � Ct (Fs,t (rs,t ), F f,t (r f,t )) (2)

Write vi,t ≡ Fi,t (ri,t ) and vt ≡ [vs,t , v f,t ]′. The conditional copula of rt can be
expressed as the conditional joint distribution of the probability integral transforms
(PIT) of the random variables:

Ct (vs,t , v f,t ) � Ft

(
F−1

s,t (vs,t ), F−1
f,t (v f,t )

)
, ∀(vs,t , v f,t ) ∈ [0, 1]2 (3)

where F−1
i,t is the quantile function of Fi,t . This copula contains the information

regarding the dependence structure of spot and futures returns through the dependence
parameter implied by a copula function.

1 Baillie and Myers (1991) indicated that the optimal hedge ratio is derived by minimizing the conditional
variance of hedged portfolio returns.

123



310 Y.-S. Lai

The most prominent hedging model is provided by Kroner and Sultan (1993), who
employ the following bivariate error correction model with a constant conditional cor-
relation GARCH (CCC-GARCH) structure for describing the conditional distribution
of spot and futures returns:

ri,t � α0i + α1i (st−1 − λ ft−1) + ui,t , i � s, f (4)

ut �
[

us,t

u f,t

]
|Ft−1 ∼ N (0,Ht ) (5)

Ht � Dt RDt (6)

hi,t � β0i + β1i hi,t−1 + β2i u
2
i,t−1 (7)

where st−1 − λ ft−1 denotes the error-correction term for modeling the long-run rela-
tionship between spot and futures prices, ut denotes the return innovation vector,
Ht denotes a conditional covariance matrix, Dt � diag(h1/2

s,t , h1/2
f,t ) denotes a diago-

nal matrix containing the information of conditional standard deviations of spot and
futures returns, and R � (ρs f ) denotes a constant correlation matrix.2 Note that this
CCC-GARCHmodel corresponds to the case of conditional bivariate normality, where
the marginal distributions (Eq. 2) and the conditional copula (Eq. 3) are both normal
(Jondeau and Rockinger 2006; Patton 2006).

The normality of the innovations for financial asset returns is usually rejected on the
basis of daily or weekly data, illustrating that the bivariate normality seems too restric-
tive to jointlymodel the spot and futures distribution. To relax this restriction, Hsu et al.
(2008) extended the CCC-GARCH model by suggesting a copula-GARCH approach
for specifying the joint distribution. To illustrate, denotemi,t ≡ α0i+α1i (st−1−λ ft−1),
the conditional mean equation, and εi,t ≡ h−1/2

i,t (ri,t − mi,t ), the standardized error,
satisfying E[εi,t ] � 0 and var[εi,t ] � 1, for i � s, f . Assume the standardized errors
εi,t follow the skew-t distribution of Hansen (1994) given as follows:

fεi (εi,t ;φ, η) �

⎧⎪⎪⎨
⎪⎪⎩

bc

(
1 + 1

η−2

(
bεt+a
1−φ

)2)−(η+1)/ 2
, εi,t < − a

b

bc

(
1 + 1

η−2

(
bεt+a
1+φ

)2)−(η+1)/ 2
, εi,t ≥ − a

b

(8)

where

a ≡ 4φc
η − 2

η − 1
, b ≡

√
1 + 3φ2 − a2, c ≡

�
(

η+1
2

)
√

π (η − 2)�
( η
2

)

2 According to Bauwens et al. (2006), the correlation models of Bollerslev (1990), Engle (2002) and
Tse and Tsui (2002) belong to a model class that can be viewed as nonlinear combinations of univariate
GARCH models. This key feature permits flexibility to specify the individual conditional variances and
the conditional correlation separately, because the parameter vector in this model class is separable (Engle
2002).
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φ ∈ (−1, 1) denotes the skewness parameter and η ∈ (2,∞) denotes the degree
of freedom parameter; subsequently the marginal distributions can be obtained as
follows:

Fi,t (ri,t ) � Fεi ,t

(
h−1/2

i,t (ri,t − mi,t )
)

, i � s, f (9)

The rationality of using this skew-t density function is that the standardized errors
filtered using a GARCH model may still be asymmetric and/or leptokurtic, and thus
some non-normal distributions must be considered for the PIT usage.

To capture the dependence structure between spot and futures returns, firstly con-
sider the normal-copula

CN
t

(
vs,t , v f,t ; ρs f,t

) � ρt

(
−1(vs,t ),

−1(v f,t )
)

(10)

and the t-copula

CT
t

(
vs,t , v f,t ; ρs f,t , ν

) � Tρt ,ν

(
T −1

ν (vs,t ), T −1
ν (v f,t )

)
(11)

where −1 and T −1
ν represent the quantile functions of a standardized univariate nor-

mal distribution and a univariate Student’s t distribution, respectively, and ν denotes
the degree of freedom parameter. The dependence parameter ρs f,t captures the time-
varying dependence relation implied by the copulas, dynamics of which can be
specified, as suggested by Tse and Tsui (2002):

ρs f,t � (1 − κ1 − κ2)ρ̄s f + κ1ρs f,t−1 + κ2

∑2
j�1 us,t− j u f,t− j√(∑2

j�1 u2
s,t− j

) (∑2
j�1 u2

f,t− j

) (12)

where κ1 and κ2 are nonnegative with κ1 + κ2 ≤ 1. Both copulas have U-shape tail
dependence, implying that the comovements of spot and futures strength in turbulent
periods.3 The difference between the copulas is that the t-copula function captures both
the linear correlation and tail dependence between spot and futures returns, whereas
the normal-copula having zero tail dependence captures only the linear correlation.
The second copulas that will be considered are the Gumbel copula

CG
t

(
vs,t , v f,t ;ϑ

G
t

)
� exp

{
−

(
(− ln vs,t )

ϑG
t + (− ln v f,t )

ϑG
t

)1/ϑG
t
}

(13)

and the Clayton copula

CC
t

(
vs,t , v f,t ;ϑ

C
t

)
�

(
v

−ϑC
t

s,t + v
−ϑC

t
f,t − 1

)−1/ϑC
t

(14)

3 In other words, the dependence structure symmetrically holds for both the downside and upside markets
so that it does not support the hypothesis of correlation asymmetry.
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where the associated dependence parameters are defined as ϑG
t � 1/(1 − τt ) and

ϑC
t � 2τt/(1 − τt ), respectively; and, the time-varying Kendall’s tau is given by a

monotone transformation, τt � 2
π
arcsin(ρt ) (see, e.g., Chen 2007; Hsu et al. 2008;

Lee 2009). The difference between the asymmetric copulas is that a Gumbel (Clayton)
copula implies a higher dependence at the right (left) tails of themarginal distributions.
Hsu et al. (2008) reported that for the case of a direct hedge, amodel based onGaussian
copula density outperforms those based on Gumbel and Clayton copula densities in
terms of variance reduction size.

The copula-GARCHmodel suggested byHsu et al. (2008) is specified conditioning
on historical return information FLF

t−1. Alternatively, this paper specifies a copula-
GARCH-X model conditioning on HF information set FHF

t−1 for the bivariate futures
hedge.4

Assume that 2×1 return vector rt conditioning onFHF
t−1 follows the joint distribution

rt |FHF
t−1 ∼ Ft

(
rs,t , r f,t

) � Ct
(
vs,t , v f,t

)
(15)

similar to that of Eqs. (2) and (3) and that it hasmarginal distributions similar to those of
Eqs. (8) and (9). The copula functionCt (·) may be interpreted as the copulas provided
in Eqs. (10), (11), (13) and (14), respectively. After specifying the mean equations,
marginal distributions, and copulas, the remaining step for extending the conventional
copula-GARCHmodel is to specify the dynamic process of conditional variances and
dependence by encompassing realized variance (RV) and realized correlation (RCorr)
measures, respectively, into the second-order moment equations, given as follows:

hi,t � β0i + β1i hi,t−1 + β2iRVi,t−1, i � s, f (16)

ρs f,t � (1 − κ1 − κ2)ρ̄s f + κ1ρs f,t−1 + κ2RCorrs f,t−1 (17)

Given the aforementioned specification, the hedge ratio in Eq. (1) is estimated through
one-step-ahead forecasts of the conditional variances that are obtained from the uni-
variate variance equations and the (transformed) dependence parameters obtained from
the conditional copulas.

The density function equivalent of Eq. (2) provides benefits in estimating con-
ditional copula-GARCH models (Patton 2006). This paper estimates the unknown
parameters for the copula-GARCH-X models follows a three-stage method such
as that of Chen (2007), because it is difficult in practice to achieve a simulta-
neous estimation for large number of parameters in a model system (Hsu et al.
2008; Patton 2006).5 In the first stage, the conditional mean and variance equa-
tions for each asset are estimated separately by maximizing the likelihood function
L1i (αi , βi ) � − 1

2 ln 2π − 1
2T

∑T
t�1 ln hi,t − 1

2T

∑T
t�1 h−1

i,t (ri,t − mi,t )2 by using

4 Salvatierra and Patton (2015) described a new class of dynamic copula models by augmenting the gen-
eralized autoregressive score (GAS) model of Creal et al. (2013) with the inclusion of realized correlation
measures, called GRAS models. It is found that the GRAS models provide superior performance in terms
of density forecasting and asset allocating.
5 Chen (2007) indicated that this three-stage estimation method is not considered for efficiency, but it is
more easily implemented when the copula model is complicated.
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the Gaussian quasi-maximum likelihood estimator. In the second stage, the skew-
ness and degree of freedom parameters for each asset are obtained by maximizing
the likelihood function L2i (φ, η|α̂i , β̂i ) � 1

T

∑T
t�1 ln fεi (ε̂i,t ;φ, η) of the uncondi-

tional skew-t distribution on the basis of the parameter estimates in the first stage.
After obtaining the PIT for each marginal distribution, in the third stage, the cop-
ula parameters are then obtained by maximizing the copula likelihood function
L3i (ρ, ν|θ̂ ) � 1

T

∑T
t�1 ln ct (v̂t ; ρ, ν), where θ ≡ (αi , βi , φ, η), vt ≡ (vs,t , v f,t ),

and ct (vs,t , v f,t ) ≡ ∂2Ct (vs,t , v f,t )/∂vs,t , ∂v f,t .

3 Data and preliminary analysis

This paper investigates the performance of alternative hedge ratio estimates by using
data on S&P 500 e-mini futures (symbol ES) with their underlying S&P 500 equity
index (symbol SP), and the correlated Dow index (symbol DJ). The HF prices for the
assets are obtained from Tick Data, Inc., spanning the period of July 1, 2003 to June
30, 2015. The filtered prices are used to construct daily returns and realized volatility
measures.6 Daily returns are calculated as the logarithmic difference between the last
and first prices of a day, illustrating that this paper focuses on modeling the variation
of daily open-to-close returns.7 For daily realized volatility measures, the multivariate
realized kernel estimator is adopted with the use of 1-min returns and the Parzen kernel
function.8 The single bandwidth parameter is selected each day on the basis of the
procedure reported in Barndorff-Nielsen et al. (2011). For the sample period, the mean
(standard deviation) of the bandwidth parameters for the SP–ES and DJ–ES assets is
approximately 15.03 (1.47) and 15.13 (1.49), respectively.

Panels A and B of Table 1 present the descriptive statistics of daily open-to-close
returns and realized volatilitymeasures, respectively. The daily returns are skewedwith
excess kurtosis and are supported by the Jarque–Bera statistics. In other words, the
(unconditional) univariate distribution of spot/futures is asymmetric and fat-tailed. In
addition, the volatility/correlation of returns differs in terms of the estimation using LF
data (PanelA) relative to that usingHFdata (PanelB).Because squared (cross-product)
returns are a rather noisy proxy for the true conditional (co)variance, a superior better
realized (co)variance estimator creates a more precise proxy in measuring the return
(co)variation (Andersen and Bollerslev 1998; Andersen et al. 2001; Barndorff-Nielsen
and Shephard 2004). Overall, the preliminary analysis might provide an initial insight

6 The sample selection rules outlined in Lai (2016) are applied. First, the records outside the time horizon
when both spot and futures markets are open are deleted from the database. Second, for futures, the records
of nearby contracts are used and rolled to the next month when the volume of the current month is exceeded.
7 The noisy overnight return is treated as a deterministic jump and is omitted for the return calculation.
Hence, the time horizon for the calculation of daily returns and realized volatility measures matches. This
also avoids diminishing the performance difference between models using LF and HF data (Hautsch et al.
2015; Lai 2016).
8 Because the presence ofmicrostructure noise and asynchronous trading in actual HF prices has challenged
the standard realized variance and covariance estimators, Lai (2016) demonstrated that to facilitate effective
hedging, hedge ratio estimation should employ noise-robust estimators rather than noise-contaminated
estimators. The Parzen kernel is considered for efficiency, where the number of realized autocovariances
‘n’ required for this kernel equals H.
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Table 1 Summary statistics of daily returns and realized measures of volatility

Spot Futures

SP DJ ES

Panel A. Daily returns

Mean 2.0033 2.8969 0.9045

Variance 1.2649 1.1882 0.9391

Skewness − 0.2880 0.0222 − 0.3477

Kurtosis 14.1765 14.2563 13.3246

Jarque–Bera 1719.5* 1728.5* 1482.5*

Correlation 0.8772 0.8163

Panel B. Daily realized volatility measures

Realized variance 0.9895 0.9003 0.8803

(0.0274) (0.0259) (0.0247)

Realized correlation 0.9260 0.8827

(0.0964) (0.1121)

The top (bottom) panel of this table presents summary statistics on the daily open-to-close returns (realized
measures of volatility) for the equity index assets. Daily returns are calculated by differencing the last and
first logarithmic prices of a day. Daily realized variance and correlation measures report the sample average
with standard deviation (in parentheses) of the daily realized measures constructed by the multivariate
realized kernel estimator of Barndorff-Nielsen et al. (2011), with the use of filtered 1-min prices. The
sample period runs from July 1, 2003, to June 30, 2015. Jarque–Bera tests the assumption of normality,
where * indicates the significance at the 5% level. The statistics of mean, variance, and realized variance
are expressed in terms of basis points of the price

into the rationality of including precise realized volatility/correlation measures into
conditional copulas for modeling the dynamics of LF returns (Salvatierra and Patton
2015).

Tables 2 and 3 present the estimation results of the copula-GARCH models for the
SP–ES andDJ–ES assets, respectively, using in-sample data from July 1, 2003, to June
30, 2011. First, focusing on the parameter estimates employing LF data, Panel A of
Tables 2 and 3 presents the parameter estimates for the conditional mean and variance
equations. As shown in Table 2, the coefficient on the error-correction term for the
spot and futures is negative and positive, respectively. In other words, in response to a
positive deviation at time t −1 (i.e., st−1 > ft−1), the SP price in the subsequent period
declines, whereas the ES price increases to restore the long-term relationship.9 For the
conditional variance estimates, the results indicate that the GARCH coefficients are
all greater than 0.90 with significant coefficients on the ARCH term, clearly indicating

9 Note that the cointegrating vector is restricted to be (1,− 1) for the SP–ES assets because Park and
Switzer (1995) and Brooks et al. (2002) reported that the parameter can be approximated on the basis of
spot and futures for equity indices. For the DJ–ES data, the error correction term in Eq. (4) is omitted in
the estimations because of the insignificant Johansen trace statistics.
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Table 2 Estimation of the
copula-GARCH models for the
SP–ES assets

Parameters Copula-GARCH Copula-GARCH-X

Spot Futures Spot Futures

Panel A. ECT -GARCH equation

α0 0.0014** 0.0002 0.0002* 0.0000

(0.0002) (0.0001) (0.0001) (0.0002)

α1 − 0.0044 0.0095* 0.0069 0.0339

(0.0024) (0.0037) (0.0049) (0.0377)

β0 0.0000** 0.0000** 0.0000 0.0000*

(0.0000) (0.0000) (0.0000) (0.0000)

β1 0.9120** 0.9029** 0.7537** 0.7011**

(0.0123) (0.0171) (0.0524) (0.0659)

β2 0.0748** 0.0819** 0.2463** 0.2900**

(0.0111) (0.0146) (0.0428) (0.0652)

LogL 6643.40 6833.93 6692.43 6883.19

Persistence 0.9867 0.9847 0.9999 0.9911

Panel B. Marginal distribution

DoF 7.6579** 9.0248** 10.5656** 11.8099**

(1.3622) (1.7097) (2.4629) (2.9623)

Skew − 0.1356** − 0.1563** − 0.1535** − 0.1692**

(0.0231) (0.0248) (0.0229) (0.0259)

LogL 2817.59 2825.09 2860.41 2831.08

KS test 0.0312 0.0230 0.0249 0.0173

(p value) 0.0390 0.2318 0.1631 0.5796

Normal Student’s t Normal Student’s t

Panel C. Copula function

ρ̄ 0.9030** 0.9113** 0.8698** 0.8694**

(0.0057) (0.0040) (0.0152) (0.0161)

κ1 0.0000 0.0000 0.9825** 0.9674**

(0.0000) (0.0000) (0.0085) (0.0382)

κ2 0.0138 0.0328* 0.0096 0.0204

(0.0123) (0.0142) (0.0061) (0.0248)

DoF 5.0314** 6.1405**

(0.6892) (0.9874)

LogL 1692.11 1781.09 1713.72 1780.90

Persistence 0.0138 0.0328 0.9921 0.9878

Gumbel Clayton Gumbel Clayton

ρ̄ 0.8930** 0.8472** 0.8394** 0.7570**

(0.0054) (0.0065) (0.0281) (0.0505)

κ1 0.0000 0.0000 0.9193** 0.9347**

(0.0000) (0.0000) (0.0712) (0.0501)

κ2 0.0428* 0.0211 0.0411 0.0336

(0.0190) (0.0198) (0.0401) (0.0316)

LogL 1602.30 1511.76 1600.61 1507.43

Persistence 0.0428 0.0211 0.9604 0.9683

The table presents the parameter
estimates with robust standard errors
(in parentheses) for the
copula-GARCH-type models, where
0.0000 indicates that the value is
smaller than 0.00005. LogL stands
for log likelihood. Persistence
measures the degree of persistency in
conditional variance and dependence
structure. DoF and Skew respectively
represent the degree of freedom and
the skewness parameters. KS
(Kolmogorov–Smirnov) test checks
whether the PIT data by the skew-t
density is uniformly distributed. The
sample period for the estimations is
from July 1, 2003, to June 30, 2011
** and * represent a 1 and 5%
significance level, respectively
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Table 3 Estimation of the
copula-GARCH models for the
DJ–ES assets

Parameters Copula-GARCH Copula-GARCH-X

Spot Futures Spot Futures

Panel A. ECT -GARCH equation

α0 0.0006** 0.0002 0.0003 0.0000

(0.0002) (0.0001) (0.0002) (0.0000)

β0 0.0000** 0.0000** 0.0000 0.0000

(0.0000) (0.0000) (0.0000) (0.0000)

β1 0.9066** 0.9029** 0.7468** 0.7044**

(0.0135) (0.0157) (0.0652) (0.0657)

β2 0.0795** 0.0819** 0.2532** 0.2868**

(0.0124) (0.0140) (0.0474) (0.0632)

LogL 6663.41 6833.91 6702.93 6882.86

Persistence 0.9861 0.9848 0.9999 0.9912

Panel B. Marginal distribution

DoF 7.6954** 9.0518** 10.6009** 12.0175**

(1.3576) (1.7246) (2.3500) (3.0973)

Skew − 0.0938** − 0.1562** − 0.1233** − 0.1696**

(0.0239) (0.0248) (0.0237) (0.0258)

LogL 2824.04 2825.13 2883.83 2831.26

KS test 0.0316 0.0223 0.0238 0.0191

(p value) 0.0353 0.2653 0.2010 0.4500

Normal Student’s t Normal Student’s t

Panel C. Copula function

ρ̄ 0.8889** 0.8858** 0.8095** 0.8073**

(0.0108) (0.0107) (0.0194) (0.0204)

κ1 0.9994** 0.9995** 0.9296** 0.8989**

(0.0014) (0.0012) (0.0879) (0.0480)

κ2 0.0006 0.0005 0.0081 0.0171

(0.0005) (0.0004) (0.0131) (0.0195)

DoF 9.1220** 9.7483**

(2.1067) (2.4475)

LogL 1173.04 1196.90 1139.39 1163.46

Persistence 0.9999 0.9999 0.9377 0.9160

Gumbel Clayton Gumbel Clayton

ρ̄ 0.8789** 0.7440** 0.7830** 0.7276**

(0.0142) (0.2936) (0.0219) (0.0093)

κ1 0.9991** 0.9957** 0.8412** 0.7463**

(0.0015) (0.0391) (0.1501) (0.0140)

κ2 0.0008 0.0042 0.0078 0.0000

(0.0007) (0.0052) (0.0286) (0.0000)

LogL 1078.35 999.13 1035.65 966.88

Persistence 0.9999 0.9999 0.8490 0.7463See Table 2 for the legends
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that the conditional heteroskedasticity is revealed in the data.10 In Panel B of Tables 2
and 3, we present the parameter estimates on the standardized residuals using the
unconditional skew-t distribution. The results indicate that the skewness parameters
are all negative and the degree of freedom parameters are all positive, showing that the
standardized residuals remain asymmetric and leptokurtic even after considering the
GARCH effects. To examine whether the specification of the marginal distribution is
adequate, the Kolmogorov–Smirnov (KS) statistics with p values are reported to check
whether the conditional PIT data is uniformly distributed. Because the statistics are
all insignificant at a 1% level, showing the skew-t transformation on the standardized
residuals should be adequate for all assets examined.

Subsequently, we focus on estimations by using HF data (Tables 2, 3); Panel A
shows that the estimates employing HF data can differ from those employing LF data.
The coefficients on the error-correction terms for SP–ES are both positive, show-
ing that in response to a positive deviation, the spot price in the subsequent period
raises, whereas the futures price raises more to restore the long-term relationship. The
GARCH coefficients employing HF data are approximately 0.70–0.75, whereas the
corresponding estimates employing LF data are approximately 0.90. Obviously, the
decrease in the GARCH weight translates into the increase in the ARCH weight. The
higher weights on the ARCH term given HF data against LF data clearly illustrate
that HF data are more informative in forecasting future volatility (Hansen et al. 2012;
Shephard and Sheppard 2010). In Panel B, the estimates for the marginal distribution
using HF data indicate that the standardized residuals remain skewed and leptokurtic,
implying that employing the skewed-t density for modeling purpose is crucial.

After obtaining the PIT data, Panel C of Tables 2 and 3 show the parameter esti-
mates of the dynamic copulas. In measuring the degree of persistence in conditional
dependence process, the estimates obtained from the HF data can differ from the
corresponding estimates obtained from the LF data. Considering SP–ES with the
normal-copula as an example, the persistence in conditional dependence employing
LF andHF data is 0.0138 and 0.9921, respectively, showing that the estimates obtained
from LF and HF data support the constant and time-varying conditional correlation
hypothesis, respectively. On comparing the estimates employing HF data, the sample
mean (standard deviation) of the conditional correlations interpreted by the normal-
and t-copulas is approximately 0.9026 (0.0064) and 0.9083 (0.0077), respectively,
showing that the estimates that further consider the tail dependence can be higher

10 Brooks et al. (2002) illustrated the importance of incorporating the leverage effect for hedge ratio
estimation. Because the asymmetric ARCH term is not pronounced in the data, throughout the paper, we
consider a symmetric GARCH model instead.
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in both level and variation.11 Regarding to the dynamics of Kendall’s tau generated
by the asymmetric copulas, the sample mean (standard deviation) of the estimates
interpreted by the Gumbel- and Clayton-copula is approximately 0.6950 (0.0132) and
0.6439 (0.0120), respectively, showing there are substantial differences in determining
the dependence level and variation.

In terms ofmodel fitting, the log-likelihood (LogL) functions indicate that switching
from LF to HF data can substantially increase the total LogL scores. To test the
significance of the improvement, the non-nested likelihood ratio test of Vuong (1989)
is performed. All the statistics exceed 1.96 (5% significance level), confirming the
usefulness of HF data in the modeling.

4 Measuring conditional hedging performance

Recall that the hedge ratio in Eq. (1) is derived by minimizing the conditional variance
of hedged portfolio return,

w∗
t � argmin

wt

wt�tw′
t (18)

where w∗
t ≡ [1,−δ∗

t ], comprising the weights on spot and futures assets, represents
the weight vector constructed from the true conditional covariance matrix of returns
�t ≡ cov[rt |Ft−1]. To compare the performance of two competing hedged portfolios
with the corresponding weight w̃t , constructed in terms of forecasts of the conditional
covariance matrix, H̃t , the result of Patton and Sheppard (2009) given by

w∗
t �tw′∗

t < w̃t�t w̃′
t (19)

can be applied, showing that the conditional variance of the hedged portfolio that is
based on theweight w̃t estimated by anymodel’s forecastmust be larger than that based
on the true weight w∗

t constructed from the true covariance matrix. Consequently, the
superior hedged portfolio approaches the lower bound when the estimated weight w̃t

approaches its true counterpart, w∗
t .

To test the significance of switching from the benchmark model to the alternative
model on the basis of the null hypothesis,

H0 : E
[

L
(
�t ; w̃b

t

)]
� E

[
L

(
�t ; w̃a

t

)]
(20)

11 As pointed out by a referee, it would be valuable to provide further guidance on how to select the copulas
based on formal statistical tests. Chen (2007) established moment-based copula tests for parametric copula-
based multivariate dynamic models with low-frequency data. On the basis of Kendall’s tau, this class of
moment-based tests provide directions for checking the misspecification of comovements (tail dependence)
when taking account of the estimation uncertainty effect. Employing the tests in a high-frequency data
setting, the joint MLU Chi squared statistics with 6 degree of freedom for the SP–ES and DJ–ES data
are 5.71 (5.64) and 1.53 (0.64), respectively, on the basis of a symmetric normal (t) copula function.
Also, by employing the bootstrapping approach of Patton (2013) for detecting the presence of asymmetric
dependence, the chi-squared statistics for the SP–ES and DJ–ES data are 1.09 and 0.59, respectively. The
testing results both conclude that we fail to reject the null of symmetric dependence structure.
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a Diebold–Mariano and West (henceforth DMW) forecast comparison test, given by
Diebold andMariano (1995) andWest (1996), is adopted, where L(�t ; w̃t ) ≡ w̃t�t w̃′

t
denotes the loss function defined over the true conditional covariance matrix �t , and
w̃b

t and w̃a
t denote the weight vectors constructed from the benchmark model and the

alternative model, respectively. Define

dt ≡ w̃b
t �t w̃′b

t − w̃a
t �t w̃′a

t ; (21)

then, the DMW test statistic is computed using

DMW �
√

T d̄T√
avar

[√
T d̄T

] (22)

where d̄T ≡ T −1 ∑T
t�1 dt , and avar

[√
T d̄T

]
represents the Newey–West estimator of

the asymptotic variance of the re-scaled average
√

T d̄T . Under the null hypothesis, the
DMW statistic is asymptotically normally distributed, and the hedged portfolio con-
structed using the alternativemodel is superior to that constructed using the benchmark
model if the mean of dt is significantly positive.

In addition to statistical evaluation, hedgers may be concerned regarding the eco-
nomic benefits of a copula hedge using HF returns. Kroner and Sultan (1993) derived
the optimal hedge ratio by maximizing the expected utility function,

EtU (rp,t+1) � Et (rp,t+1) − γ vart (rp,t+1) (23)

where γ > 0 measures the degree of risk aversion of a hedger and risk is measured
using conditional variances.12 To compare the performance economically across dif-
ferent hedged portfolios, the economic value (EV) approach of Fleming et al. (2001)
is considered for evaluating the economic benefits of switching from the benchmark
model to the alternative models, where the EV can be estimated by solving the fol-
lowing equation:

ÊnU
(

rbp,t+1; γ
)

� ÊnU
(

r ap,t+1 − EV;γ
)

(24)

where Ên denotes the sample average operator, and rbp,t+1 and r ap,t+1 represent the
hedged portfolio returns obtained by the benchmark and alternative models, respec-
tively. In this paper, EV is represented in annualized basis points, with the levels of
risk aversion equals to 1, 4, and 20 to assess the performance gains across hedgers
(Kroner and Sultan 1993; Lai 2016).13 A positive EV indicates that the alternative

12 Kroner and Sultan (1993) showed that the utility-maximization and variance-minimization hedge ratio
coincides in the case when the futures price follows a martingale.
13 Extreme risk aversion attitudes, for example, 1 and 20, can be interpreted as evaluations based on utility-
maximization and variance-minimization perspectives, respectively. Note that the anticipated return equals
to zero to access the performance difference between models, as suggested by Kroner and Sultan (1993).
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model outperforms the benchmark model, which can aid hedgers when they consider
switching from the benchmark model to the alternative model.

5 Empirical results

The third section shows that HF data can substantially improve the goodness-of-fit
of the dynamic copulas. Because hedgers are more concerned regarding the model’s
performance in the future, but not in the past, whether the HF data might provide valu-
able information regarding hedge ratio prediction must be judged by their empirical
performances. Hence, the model’s parameters are re-estimated each day by using a
rolling-over approach with a fixed in-sample size.14 The period from July 1, 2011,
to June 30, 2015, is regarded as the out-of-sample data. The hedged portfolios are
recursively constructed each day by using the hedge ratio estimates obtained from
one-step-ahead forecasts of conditional variances and correlations predicted by the
model.

The out-of-sample conditional hedging performance of the hedged portfolios is
measured using the loss function L(�t ; w̃t ) ≡ w̃t�t w̃′

t . Because the true conditional
covariance matrix �t is unobservable, the usual realized covariance matrix estimator
�̂

(m)
t � ∑m

i�1 ri,t r ′
i,t computed using uniformly spaced vector of returns ri,t with

the corresponding sampling frequency (e.g., 5-, 15-, and 30-min) is employed for
calculations. According to Patton (2011), using precise RV, rather than squared return,
in the construction of volatility proxy can be more efficient when performing the
comparison test; and the degree of distortion on measuring the conditional expected
loss function should be eliminated when using 5-min returns.

The results are provided in Table 4; the CCC-GARCH model of Kroner and Sul-
tan (1993) is considered the benchmark model in the comparison. The percentage risk
reduction size of switching from the benchmarkmodel to the normal-copula-GARCH-
X (normal-copula-GARCH) ranges from 8.13% (1.71%) to 11.24% (3.00%) and from
3.30% (1.78%) to 5.21% (2.75%) for the SP–ES and DJ–ES, respectively. Alterna-
tively, if hedgers adopt a t-copula density, the associated risk reduction size ranges
from 8.10% (1.34%) to 11.10% (2.50%) and from 3.36% (1.66%) to 5.24% (2.58%)
for the SP–ES and DJ–ES, respectively. When considering the asymmetric copulas,
the associated percentage risk reduction size can range from 7.77% (0.95%) to 12.05%
(6.28%) for the SP–ES, and can range from 1.31% (0.98%) to 5.09% (3.23%) for the
DJ–ES. To test whether the conditional variances constructed from the alternative
models are statistically different from the benchmark model, the DMW test using
Eq. (22) is performed. All statistics are positive and statistically significant at the 5%
level (except Clayton-copula in DJ–ES), indicating the importance of considering a
flexible copula-GARCH model for hedge ratio estimation. Figure 1 plots optimally
performing hedge ratios for the assets, showing that the estimates can depart from
those obtained from the benchmark CCC-GARCH model during some periods.

14 In other words, the in-sample data is rolled forward by simultaneously dropping the first observation in
the in-sample period and including an updated observation in the out-of-sample period.
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Table 4 Out-of-sample hedging performance comparison

Models L̄
(
�̂
(m)
t ; w̃t

)
Percentage risk reduction over the
CCC-GARCH model

5-min 15-min 30-min 5-min 15-min 30-min

S&P 500 index and S&P 500 E-mini futures (SP–ES)

CCC-GARCH 0.3567 0.3219 0.3049

CopulaN-GARCH 0.3460 0.3144 0.2997 3.00 (3.21)** 2.33 (2.81)** 1.71 (2.25)*

CopulaT-GARCH 0.3478 0.3159 0.3008 2.50 (3.05)** 1.86 (2.56)* 1.34 (1.99)*

CopulaG-GARCH 0.3491 0.3169 0.3020 2.13 (4.67)** 1.55 (3.47)** 0.95 (2.20)*

CopulaC-GARCH 0.3343 0.3058 0.2940 6.28 (3.19)** 5.00 (2.62)** 3.57 (2.05)*

CopulaN-
GARCH-X

0.3166 0.2887 0.2801 11.24 (2.81)** 10.31 (2.70)** 8.13
(2.73)**

CopulaT-
GARCH-X

0.3171 0.2890 0.2802 11.10 (2.79)** 10.22 (2.68)** 8.10
(2.72)**

CopulaG-
GARCH-X

0.3152 0.2880 0.2798 11.63 (2.89)** 10.53 (2.73)** 8.23
(2.73)**

CopulaC-
GARCH-X

0.3137 0.2882 0.2812 12.05 (2.92)** 10.47 (2.71)** 7.77
(2.53)**

Dow index and S&P 500 E-mini futures (DJ–ES)

CCC-GARCH 0.3376 0.3390 0.3364

CopulaN-GARCH 0.3283 0.3305 0.3304 2.75 (2.88)** 2.51 (2.72)** 1.78 (2.19)*

CopulaT-GARCH 0.3289 0.3311 0.3308 2.58 (2.94)** 2.33 (2.76)** 1.66 (2.21)*

CopulaG-GARCH 0.3267 0.3291 0.3300 3.23 (2.53)** 2.92 (2.40)** 1.90 (1.76)*

CopulaC-GARCH 0.3284 0.3306 0.3331 2.73 (1.52) 2.48 (1.52) 0.98 (0.64)

CopulaN-
GARCH-X

0.3200 0.3233 0.3253 5.21 (2.25)* 4.63 (2.58)** 3.30
(2.37)**

CopulaT-
GARCH-X

0.3199 0.3232 0.3251 5.24 (2.27)* 4.66 (2.59)** 3.36
(2.40)**

CopulaG-
GARCH-X

0.3204 0.3240 0.3264 5.09 (2.16)* 4.42 (2.50)** 2.97 (2.06)*

CopulaC-
GARCH-X

0.3244 0.3283 0.3320 3.91 (1.57) 3.16 (1.84)* 1.31 (0.85)

This table presents the sample average of the loss function L(�t ; w̃t ) ≡ w̃t �t w̃′
t (in terms of basis

points of the price) constructed from the estimated weight vector w̃t by a given model, where the true

covariance matrix is estimated by the realized covariance matrix estimator �̂(m)
t with the sampling frequen-

cies. Computation of the percentage risk reduction over the benchmark CCC-GARCH model is given as
(L̄(�t ; w̃b

t ) − L̄(�t ; w̃a
t ))/L̄(�t ; w̃b

t ) in terms of the average loss scores. The values in parentheses report
the DMW statistics of switching from the benchmark to the alternative models, where the critical values
for the one-side test at the 1 and 5% significance level are 2.326 and 1.645, respectively. The sample period
for the forecast evaluation is from July 1, 2011, to June 30, 2015 (1005 trading days)

To further investigate the performance of dynamic copulas switching from LF to
HF data, the DMW tests are applied again. On the basis of normal (t) copulas, the
DMW statistics using 5-, 15-, and 30-min volatility proxies are 2.60 (2.60), 2.46
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Fig. 1 This figure compares the optimally performing hedge ratios obtained from the copula-GARCH-X
model with those obtained from the benchmark CCC-GARCH model

(2.45), and 2.63 (2.63) for the SP–ES, and 1.68 (1.74), 2.23 (2.28), and 2.03 (2.13) for
the DJ–ES. On the basis of Gumbel (Clayton) copulas, the associated DMW statis-
tics are 2.59 (2.62), 2.57 (2.69), and 2.71 (2.86) for the SP–ES, and 1.47 (1.25),
2.09 (1.21), and 1.53 (0.45) for the DJ–ES. Rejection of the null hypothesis shows
that the hedged portfolios constructed from the copula-GARCH-X model are supe-
rior to those constructed from the copula-GARCH model, in terms of their estimated
conditional hedged portfolio variances.15 On comparing the performance difference
between normal- and t-copula functions employing HF data, the associated DMW
statistics are − 6.54 (1.30), − 4.31 (2.25), and − 1.19 (1.99) for the SP–ES (DJ–ES)
assets, respectively. The DJ–ES case illustrates that permitting tail dependence when
modeling dynamic copulas might further reduce conditional variance in hedged port-
folios. The SP–ES case further illustrates that permitting asymmetric tail dependence
when modeling dynamic copulas improves the out-of-sample hedging performance.
Overall, the comparisons using 5-min realized covariances conclude that the Clayton
(t) copula provide the best performance for the SP–ES (DJ–ES) hedging.

In terms of economic benefits, Table 5 presents the switching fees for the direct
and cross hedges. Evidently, the EV can further increase as the level of risk aversion
raises. For the case of a higher risk aversion (e.g., 20), the estimated EV employing
HF data for the SP–ES (DJ–ES) ranges from 119.45 (22.18) to 216.72 (89.21) basis
points per annum, compared with the benchmark CCC-GARCHmodel. Alternatively,

15 The critical values for the one-side DMW test at the 1 and 5% significance level are 2.326 and 1.645,
respectively.
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Table 5 Basis point fees for
switching from CCC-GARCH to
the copula-GARCH models

Models �̂
(m)
t Degree of risk aversion

1 4 20

S&P 500 index and S&P 500 E-mini futures (SP–ES)

CopulaN-GARCH 5-min 2.70 10.79 53.93

15-min 1.89 7.56 37.80

30-min 1.31 5.24 26.21

CopulaT-GARCH 5-min 2.24 8.97 44.86

15-min 1.51 6.05 30.24

30-min 1.03 4.13 20.66

CopulaG-GARCH 5-min 1.92 7.66 38.30

15-min 1.26 5.04 25.20

30-min 0.73 2.92 14.62

CopulaC-GARCH 5-min 5.64 22.58 112.90

15-min 4.06 16.23 81.14

30-min 2.75 10.99 54.94

CopulaN-
GARCH-X

5-min 10.11 40.42 202.10

15-min 8.37 33.47 167.33

30-min 6.25 25.00 124.99

CopulaT-
GARCH-X

5-min 9.98 39.92 199.58

15-min 8.29 33.16 165.82

30-min 6.22 24.90 124.49

CopulaG-
GARCH-X

5-min 10.46 41.83 209.16

15-min 8.54 34.17 170.86

30-min 6.33 25.30 126.50

CopulaC-
GARCH-X

5-min 10.84 43.34 216.72

15-min 8.49 33.97 169.85

30-min 5.97 23.89 119.45

Dow index and S&P 500 E-mini futures (DJ–ES)

CopulaN-GARCH 5-min 2.34 9.37 46.87

15-min 2.14 8.57 42.84

30-min 1.51 6.05 30.24

CopulaT-GARCH 5-min 2.19 8.77 43.85

15-min 1.99 7.96 39.82

30-min 1.41 5.64 28.22

CopulaG-GARCH 5-min 2.75 10.99 54.94

15-min 2.49 9.98 49.90

30-min 1.61 6.45 32.26

CopulaC-GARCH 5-min 2.32 9.27 46.37

15-min 2.12 8.47 42.34
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Table 5 continued
Models �̂

(m)
t Degree of risk aversion

1 4 20

30-min 0.83 3.33 16.63

CopulaN-
GARCH-X

5-min 4.44 17.74 88.70

15-min 3.96 15.83 79.13

30-min 2.80 11.19 55.94

CopulaT-
GARCH-X

5-min 4.46 17.84 89.21

15-min 3.98 15.93 79.63

30-min 2.85 11.39 56.95

CopulaG-
GARCH-X

5-min 4.33 17.34 86.69

15-min 3.78 15.12 75.60

30-min 2.52 10.08 50.40

CopulaC-
GARCH-X

5-min 3.33 13.31 66.53

15-min 2.70 10.79 53.93

30-min 1.11 4.44 22.18

This table reports annualized
basis point fees a hedger with the
degree of risk aversion would be
willing to pay to switch from the
benchmark CCC-GARCH
model to the copula-GARCH
models, based on the loss scores
reported in Table 4

the associated EV employing LF data ranges from 14.62 (16.63) to 112.90 (54.94)
basis points per annum. This illustrates that switching from LF- to HF-based dynamic
copulas for the SP–ES (DJ–ES) assets can engender extra benefits ranging from 64.51
(5.55) to 170.86 (45.36) basis points per annum. Figure 2 compares the hedge ratios
estimated usingLF- andHF-data, also showing substantial differences in the estimates.

The above comparison primarily focuses on a period of stable and upward trending
markets. Since the sample data covers the period of 2008 subprime crisis, this allows to
investigate the model’s performance when the market is in turmoil. This is especially
important when effective hedging tools are needed the most. To do this, the sample
period from July 2003 to June 2007 (1007 trading days) is reserved for in-sample
estimation of the model; the sample period from July 2007 to April 2009 (462 trading
days) is regarded as the crisis period for out-of-sample analysis. Table 6 reports the
percentage risk reduction size of the model for the crisis period, showing that the
asymmetric Clayton (symmetric t) copula specification with HF data provides the best
performance for the SP–ES (DJ–ES) hedges. Table 7 further reports the basis point
fees of switching from the benchmark CCC-GARCH model to the copula-GARCH
models. Compared with those reported in Table 5, it is found that the switching fees
of the proposed copula-GARCH-X model over the CCC-GARCH model can enlarge
when the market is in turmoil. For the case of a higher risk aversion, the estimated
EV employing HF data with Clayton (t) copula for the SP–ES (DJ–ES) ranges from
260.57 (145.15) to 352.80 (199.08) basis points per annum.Meanwhile, the associated
EV employing LF data ranges from 180.94 (36.79) to 216.72 (71.57) basis points per
annum. This illustrates that switching from LF- to HF-based dynamic Clayton (t)
copulas for the SP–ES (DJ–ES) assets can engender extra benefits ranging from 72.57
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Fig. 2 This figure compares the hedge ratios obtained from the copula-GARCH-X model with those
obtained from the copula-GARCH model

(92.73) to 136.08 (127.51) basis points per annum for the crisis period. Overall, the
finding of this paper offers an economic inference that supports the copula-GARCH-
X model more capably than can the CCC-GARCH and copula-GARCH models for
establishing optimal hedging strategies.

6 Conclusions

In optimal futures hedging, the task of modeling and forecasting the joint distribution
of spot and futures returns is a critical issue that has attracted the interest of academic
researchers and practical investors. This paper extends the conventional hedging mod-
els by augmenting the copula-GARCH model with realized measures of volatility
and covolatility for effectively managing the risk exposure of portfolios because the
hedging decisions that are based on the estimated hedge ratio can not only be more
realistic in capturing much of the observed behavior in spot and futures returns but can
also efficiently exploit the information from HF data. Applying the model to equity
index data shows that including HF data for dynamic copula-GARCH modeling can
substantially improve goodness-of-fit of spot and futures distribution; this finding is
robust across the copula functions and markets that are considered.

Furthermore, we examine whether HF data regarding the modeling can produce
statistical and economic gains for hedgers from dynamic hedging strategies. In par-
ticular, the out-of-sample comparisons are conducted on the basis of conditionally
unbiased volatility proxies. The results reveal that the hedged portfolios constructed
from the copula-GARCH-X model can be superior to those constructed from the
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Table 6 Hedging performance comparison for the crisis period

Models L̄
(
�̂
(m)
t ; w̃t

)
Percentage risk reduction over the
CCC-GARCH model

5-min 15-min 30-min 5-min 15-min 30-min

S&P 500 index and S&P 500 E-mini futures (SP–ES)

CCC-GARCH 1.0793 0.9888 0.9343

CopulaN-GARCH 1.0757 0.9853 0.9311 0.33 (1.63)* 0.35 (1.55) 0.34 (1.58)

CopulaT-GARCH 1.0829 0.9920 0.9376 − 0.33
(− 3.63)**

− 0.32
(− 3.39)**

− 0.35
(− 3.27)**

CopulaG-GARCH 1.0700 0.9807 0.9256 0.86 (4.63)** 0.82 (4.28)** 0.93 (4.23)**

CopulaC-GARCH 1.0363 0.9529 0.8951 3.98 (3.91)** 3.63 (3.49)** 4.20 (3.57)**

CopulaN-
GARCH-X

1.0165 0.9401 0.8848 5.82 (3.97)** 4.93 (3.45)** 5.30 (3.10)**

CopulaT-
GARCH-X

1.0183 0.9415 0.8857 5.65 (3.91)** 4.78 (3.39)** 5.20 (3.07)**

CopulaG-
GARCH-X

1.0135 0.9381 0.8821 6.10 (4.17)** 5.13 (3.62)** 5.59 (3.29)**

CopulaC-
GARCH-X

1.0093 0.9371 0.8807 6.49 (4.52)** 5.23 (3.78)** 5.74 (3.52)**

Dow index and S&P 500 E-mini futures (DJ–ES)

CCC-GARCH 1.1514 1.1416 1.1833

CopulaN-GARCH 1.1499 1.1396 1.1808 0.13 (2.18)* 0.18 (3.88)** 0.21 (3.59)**

CopulaT-GARCH 1.1441 1.1312 1.1691 0.63 (1.70)* 0.91 (2.91)** 1.20 (3.25)**

CopulaG-GARCH 1.1432 1.1301 1.1676 0.71 (1.96)* 1.01 (3.47)** 1.33 (4.02)**

CopulaC-GARCH 1.1486 1.1251 1.1510 0.24 (0.18) 1.45 (1.58) 2.73 (2.91)**

CopulaN-
GARCH-X

1.1200 1.1132 1.1439 2.73 (5.01)** 2.49 (3.82)** 3.33 (3.81)**

CopulaT-
GARCH-X

1.1191 1.1128 1.1438 2.81 (5.11)** 2.52 (3.90)** 3.34 (3.82)**

CopulaG-
GARCH-X

1.1302 1.1194 1.1461 1.84 (2.92)** 1.94 (2.70)** 3.14 (3.56)**

CopulaC-
GARCH-X

1.1656 1.1466 1.1660 − 1.23 (− 0.95) − 0.44 (− 0.38) 1.46 (1.38)

See Table 4 for the legends. The crisis period runs from July 1, 2007, to April 30, 2009 (462 trading days)

copula-GARCHmodel; thus hedgers, especially thosewith pronounced risk aversions,
would willingly pay substantial switching fees ranging from 64.51 (5.55) to 170.86
(45.36) annualized basis points to switch their strategies from the copula-GARCH
model to the copula-GARCH-X model for the SP–ES (DJ–ES) assets. When the
market is in turmoil, our results further indicate that switching from LF- to HF-based
dynamic asymmetric Clayton (symmetric t) copulas for the SP–ES (DJ–ES) assets can
engender extra benefits ranging from 72.57 (92.73) to 136.08 (127.51) basis points
per annum. Our empirical evidences clearly illustrates the value of a copula-GARCH
futures hedge employing HF data and provides relevant information for hedgers to

123



Dynamic hedging with futures: a copula-based GARCH model… 327

Table 7 Basis point fees for the
crisis period Models �̂

(m)
t Degree of risk aversion

1 4 20

S&P 500 index and S&P 500 E-mini futures (SP–ES)

CopulaN-GARCH 5-min 0.91 3.63 18.14

15-min 0.88 3.53 17.64

30-min 0.81 3.23 16.13

CopulaT-GARCH 5-min − 0.91 − 3.63 − 18.14

15-min − 0.81 − 3.23 − 16.13

30-min − 0.83 − 3.33 − 16.63

CopulaG-GARCH 5-min 2.34 9.37 46.87

15-min 2.04 8.16 40.82

30-min 2.19 8.77 43.85

CopulaC-GARCH 5-min 10.84 43.34 216.72

15-min 9.05 36.19 180.94

30-min 9.88 39.51 197.57

CopulaN-GARCH-X 5-min 15.83 63.30 316.51

15-min 12.27 49.09 245.45

30-min 12.47 49.90 249.48

CopulaT-GARCH-X 5-min 15.37 61.49 307.44

15-min 11.92 47.68 238.39

30-min 12.25 48.99 244.94

CopulaG-GARCH-X 5-min 16.58 66.33 331.63

15-min 12.78 51.11 255.53

30-min 13.15 52.62 263.09

CopulaC-GARCH-X 5-min 17.64 70.56 352.80

15-min 13.03 52.11 260.57

30-min 13.51 54.03 270.14

Dow index and S&P 500 E-mini futures (DJ–ES)

CopulaN-GARCH 5-min 0.38 1.51 7.56

15-min 0.50 2.02 10.08

30-min 0.63 2.52 12.60

CopulaT-GARCH 5-min 1.84 7.36 36.79

15-min 2.62 10.48 52.42

30-min 3.58 14.31 71.57

CopulaG-GARCH 5-min 2.07 8.27 41.33

15-min 2.90 11.59 57.96

30-min 3.96 15.83 79.13

CopulaC-GARCH 5-min 0.71 2.82 14.11

15-min 4.16 16.63 83.16

30-min 8.14 32.56 162.79

CopulaN-GARCH-X 5-min 7.91 31.65 158.26

15-min 7.16 28.63 143.14
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Table 7 continued
Models �̂

(m)
t Degree of risk aversion

1 4 20

30-min 9.93 39.72 198.58

CopulaT-GARCH-X 5-min 8.14 32.56 162.79

15-min 7.26 29.03 145.15

30-min 9.95 39.82 199.08

CopulaG-GARCH-X 5-min 5.34 21.37 106.85

15-min 5.59 22.38 111.89

30-min 9.37 37.50 187.49

CopulaC-GARCH-X 5-min − 3.58 − 14.31 − 71.57

15-min − 1.26 − 5.04 − 25.20

30-min 4.36 17.44 87.19See Table 5 for the legends

exercise their strategies when achieving their trading goals. These findings have cru-
cial financial and economic implications for risk management practice.
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