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Abstract This paper provides a new way of converting risk-neutral moments into the
corresponding physical moments, which are required for many applications. The main
theoretical result is a new analytical representation of the expected payoffs of put and
call options under the physical measure in terms of current option prices and a repre-
sentative investor’s preferences. This representation is then used to derive analytical
expressions for a variety of ex-ante physical return moments, showing explicitly how
moment premiums depend on current option prices and preferences. As an empiri-
cal application of our theoretical results, we provide option-implied estimates of the
representative stock market investor’s disappointment aversion using S&P 500 index
option prices. We find that disappointment aversion has a procyclical pattern. It is high
in times of high index levels and declines when the index falls. We confirm the view
that investors with high risk aversion and disappointment aversion leave the stock
market during times of turbulence and reenter it after a period of high returns.
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1 Introduction

The use of option prices to gain information about the underlying asset’s return dis-
tribution is an important idea in finance. Certainly, the most prominent example is
implied volatility, which goes back to Latané and Rendleman (1976). More recent
developments have moved forward from simple Black–Scholes volatilities to model-
free implied volatilities (Britten-Jones and Neuberger 2000; Jiang and Tian 2005) and
higher-order impliedmoments (Bakshi et al. 2003;Neuberger 2012). Impliedmoments
are used extensively in a variety of applications, such as forecasting [see the survey
articles by Poon andGranger (2003), Christoffersen et al. (2012), andGiamouridis and
Skiadopoulos (2012)], risk measurement (Buss and Vilkov 2012; Chang et al. 2012;
Baule et al. 2016; Hollstein and Prokopczup 2016), portfolio selection (Aït-Sahalia
and Brandt 2008; Kostakis et al. 2011; DeMiguel et al. 2013; Kempf et al. 2015;
Schneider 2015), asset pricing (Conrad et al. 2013; An et al. 2014), and the study of
financial market integration (Siriopoulos and Fassas 2013).

Option-implied moments have the drawback that they are formed under the risk-
neutral probability measure, whereas many applications require moments under the
physical (real-world, actual, subjective) probabilitymeasure. Ideally, onewould exploit
all information contained in current option prices and obtain a simple but economically
soundmethod to adjust for risk, that is, tomove from the risk-neutralmoment to the cor-
responding physicalmoment. This paper provides such amethod by showing explicitly
how the risk adjustment depends on current option prices and risk preferences.

The main theoretical result of our paper states how the expected payoffs of call and
put options under the physical measure depend on current option prices and the utility
function of a representative investor. This result has many potential uses. One specific
use is to express the underlying’s ex ante return moments under the physical measure,
which we call risk-adjusted implied moments, in terms of observed option prices and
preferences. The presentedmethodology is very general. It applies to impliedmoments
as in Neuberger (2012), implied moments as in Bakshi et al. (2003), which refer to log
returns, and to the corresponding moments of discrete returns. It can deal with both
central and non-central moments and is not restricted to a specific utility function.

As an empirical application, we use the presented methodology to study the model
of a representative investorwith disappointment aversion, as introduced byGul (1991).
We show that disappointment aversion has a strong effect on the expected returns of
out-of-the-money call options on theStandard&Poor’s (S&P) 500 index, but almost no
effect on the returns of out-of-the money put options. A further analysis shows that the
disappointment model leads to a negative ex ante variance risk premium and a positive
skewness risk premium for reasonable preference parameters. Finally, we estimate the
implied relative risk aversion and disappointment aversion of the representative stock
market investor from cross-sections of S&P 500 index option prices. Our results show
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that disappointment aversion has a strong timevariation and is economically significant
in specific periods. We find a procyclical pattern: Disappointment is high in times of
high index levels and declines when the index falls. Our findings confirm the view that
investors with high risk aversion and high disappointment aversion leave the stock
market during times of turbulence and reenter it after a period of high returns.

The major advantage of our approach is the availability of exact analytical expres-
sions for risk-adjusted implied moments which facilitate the economic understanding
and allow for numerically stablemoment calculations. Our approach shares this advan-
tage with model-free (risk-neutral) implied moments developed by Britten-Jones and
Neuberger (2000), Bakshi et al. (2003), and Neuberger (2012), which are very popular
in both research and practice.1 An alternative approach to adjusted implied moments
for risk is to transform the full risk-neutral density into a physical density under cer-
tain preference assumptions. Such an approach, as followed by Rubinstein (1994),
Bliss and Panigirtzoglou (2004), and Kostakis et al. (2011),2 adjusts all moments
simultaneously. However, it does not provide analytical expressions for the resulting
risk-adjusted moments.

Explicit theoretical results on the relation between risk-neutral and ex ante phys-
ical moments are rare. One major exception is a theorem by Bakshi et al. (2003)
showing that risk-neutral skewness can be approximated by variance, skewness, and
kurtosis under the physical probability measure and the preferences of a representative
investor.3 Bakshi andMadan (2006) provide a similar approximation of the risk-neutral
variance.4 In our approach, however, we reverse the direction and describe physical
moments in terms of current option prices and preferences. Moreover, our results
supply an exact characterization for all moments of the return distribution.

On the empirical side, our paper is related to studies on variance and skewness risk
premiums. It is a stylized fact that the realized variance risk premium is (on average)
negative for stock indexes (Coval and Shumway 2001; Bakshi and Kapadia 2003;
Carr andWu 2009). Kozhan et al. (2013) and Sasaki (2016) document a corresponding
positive skewness risk premium.Ourwork contributes to this literature by investigating
a representative investor model with disappointment aversion together with the market
expectations contained in option prices. As our empirical results based on S&P 500
options show, the disappointment model leads to a negative average ex ante variance
risk premium and a positive average ex ante skewness risk premium for reasonable
preference parameters over the period from 1996 to 2011.

Finally, our paper is related to studies on implied estimators of preference parame-
ters. Jackwerth (2000) and Bliss and Panigirtzoglou (2004) exploit information from
option prices to imply the relative risk aversion of the representative stock market

1 For example, the volatility index VIX uses a model-free approach similar to the one proposed in Britten-
Jones and Neuberger (2000) and serves itself as the underlying of a fast-growing derivatives market (Drimus
and Farkas 2013).
2 These papers use a representative investor with a specific utility function. Ross (2015) develops an
alternative method by imposing restrictions on the dynamics of the stochastic discount factor. However,
Borovicka et al. (2015) point out that the latter approach suffers from identification problems.
3 See Theorem 2 of Bakshi et al. (2003).
4 See Theorem 1 of Bakshi and Madan (2006).
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investor. We use preferences with disappointment aversion and simultaneously esti-
mate implied risk aversion and disappointment aversion.

The remainder of the paper is organized as follows. Section 2 presents our main the-
oretical result, which links expected payoffs of call and put options to option prices and
preferences. This result is applied in Sect. 3 to derive risk-adjusted implied moments.
The following Sect. 4 presents our data set and explains how moments are computed.
Section 5 provides illustrations of the effect of risk aversion and disappointment aver-
sion on expected options payoffs and return moments. Section 6 presents our implied
estimates of relative risk aversion and disappointment aversion. Section 7 concludes
the paper.

2 Expected payoffs under the physical measure

Our analysis exploits the relation between physical and risk-neutral densities, as out-
lined, for example, by Aït-Sahalia and Lo (2000). Consider a risky market portfolio
with current price St , traded on a frictionless, complete market, and a risk-free asset
with constant interest rate r .A representative investor exists and assigns utilityU (St+τ )

to the future payoff St+τ , τ > 0, according to a utility functionU . In such a setting, the
relation between the physical density function, p(St+τ ), and the risk-neutral density
function, q(St+τ ), is5

p(St+τ ) = q(St+τ )

c ·U ′(St+τ )
, with c ≡

∫
q(x)

U ′(x)
dx . (1)

Equation (1) shows how the physical density can be obtained from knowledge of
the risk-neutral density and the utility function of the representative investor. Note,
however, that St+τ refers to the whole market and not to any individual asset traded
on the market.

Our goal is now to establish a similar link between expected payoffs of contingent
claims under the physical measure, expected (discounted) options payoffs under the
risk-neutral measure (i.e., option prices), and the utility function. Denote the expected
discounted payoff of a call option (put option) with strike price K and time to maturity
τ under the physical measure as

CP (t, τ, K ) ≡ EP [e−rτ (St+τ − K )+
]
, (2)

PP (t, τ, K ) ≡ EP [e−rτ (K − St+τ )
+] . (3)

The following proposition shows how CP (t, τ, K ) and PP (t, τ, K ) can be
expressed in terms of current options prices and the utility function.6 The proof is
provided in the Appendix.

5 As Bliss and Panigirtzoglou (2004), p. 409, state, “the origins of the development of this result have
proven difficult to trace.” A derivation of the result can be found, for example, in Aït-Sahalia and Lo (2000),
p. 13ff.
6 The utility function has to satisfy only mild conditions. It must be twice continuously differentiable with
U ′ > 0 and U ′′ < 0, a condition fulfilled by many common utility functions, such as the class discussed
by Brockett and Golden (1987) and the hyperbolic absolute risk aversion (HARA) class.
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Proposition 1 If the relation between physical and risk-neutral density is as in Eq.
(1) and the utility function of the representative investor is twice continuously differ-
entiable with U ′ > 0 and U ′′ < 0, then

CP (t, τ, K ) = C(t, τ, K )

c ·U ′(K )

+
∞∫

K

−U ′′(x)
c ·U ′(x)2

{C(t, τ, x) + (x − K )D(t, τ, x)} dx, (4)

PP (t, τ, K ) = P(t, τ, K )

c ·U ′(K )

−
K∫

0

−U ′′(x)
c ·U ′(x)2

{
P(t, τ, x) + (K − x)(e−rτ − D(t, τ, x))

}
dx, (5)

wi th c =
∞∫

0

−U ′′(x)
U ′(x)2

erτ D(t, τ, x)dx + 1

U ′(0)
,

where C(t, τ, K ) and P(t, τ, K ) are the prices of call and put options, respectively,
with strike price K and time to maturity τ , and D(t, τ, K ) denotes the price of a digital
option that pays one dollar if St+τ is above the strike price K .

The result in Proposition 1 is remarkable for several reasons. First, the expected
(discounted) payoffs of both call and put options under the physical measure are
expressed in terms of current prices of calls, puts, and digital options, the risk-free
interest rate, and the utility function only. Knowledge of the full risk-neutral density is
not required, which avoids numerical problems (see Bliss and Panigirtzoglou (2002)
for a discussion of these issues, particularly the need for the second derivatives of
option prices with respect to the strike price). Instead, the expressions in Eqs. (4) and
(5) can be obtained via stable numerical integration.

Second, the proposition shows a simple way to study the effects of risk aversion
on the expected returns of call and put options. If the utility function is linear, i.e.,
there is no risk aversion, Eqs. (4) and (5) confirm that CP (t, τ, K ) = C(t, τ, K )

and PP (t, τ, K ) = P(t, τ, K ). With growing risk aversion, however, the integrals
on the right-hand sides of Eqs. (4) and (5) gain importance. Since these integrals are
always positive, it follows that risk aversion leads to CP (t, τ, K ) > C(t, τ, K ) and
PP (t, τ, K ) < P(t, τ, K ), which is very intuitive. Because the payoff of a call option
is positively related to the payoff of the underlying asset (the market), a higher risk
aversion of the representative investor is associated with higher expected payoffs of
calls. Since the current market prices of options are given, higher risk aversion is also
associated with higher expected call returns. In contrast, for put options, payoffs are
negatively related to the payoff of the underlying asset, and a higher risk aversion
reduces the required expected returns. Finally, Proposition 1 can be used to express
the expected payoffs of more general contingent claims in terms of option prices and
the utility function of the representative investor, as stated in the following proposition.
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Proposition 2 Let H(St+τ ) be a twice continuously differentiable function of the
price St+τ , which represents the payoff function of a contingent claim maturing at
time t + τ . Then the time t expected payoff E P

[
H(St+τ )

]
of the contingent claim

under the physical measure equals

E P [H(St+τ )
] = H(St ) + H ′(St )erτ

[
CP (t, τ, St ) − PP (t, τ, St )

]

+ erτ
∞∫

St

H ′′(K )CP (t, τ, K )dK

+ erτ
St∫

0

H ′′(K )PP (t, τ, K )dK , (6)

with C P (t, τ, K ) and PP (t, τ, K ) from Proposition 1.

To prove Proposition 2, we exploit the spanning argument of Bakshi and Madan
(2000) andCarr andMadan (2001). If H is a twice continuously differentiable function,
then H(St+τ ) equals

H(St+τ ) = H(St ) + (St+τ − St )H
′(St )

+
∞∫

St

H ′′(K )(St+τ − K )+dK

+
St∫

0

H ′′(K )(K − St+τ )
+dK . (7)

Now we take expectations under the physical measure P on both sides of Eq. (7) and
apply Fubini’s theorem to obtain

EP [H(St+τ )
] = H(St ) + H ′(St )EP [(St+τ − St )

]

+ erτ
∞∫

St

H ′′(K )CP (t, τ, K )dK

+ erτ
St∫

0

H ′′(K )PP (t, τ, K )dK . (8)

Finally, note that St+τ − St = (St+τ − St )+ − (St − St+τ )
+. Taking expectations

yields EP
[
St+τ − St

] = erτ
[
CP (t, τ, St ) − PP (t, τ, St )

]
. ��

Proposition 2 delivers the expected payoff of a contingent claim written on St+τ as
a function of the current price St of the underlying asset, current option prices, and
the utility function of the representative investor. Since the same reasoning that led
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to Eq. (6) applies under the risk-neutral measure (Bakshi et al. 2003), we obtain the
following ex ante risk premium of the contingent claim:

EP [H(St+τ )
]− EQ [H(St+τ )

] = H ′(St )erτ
[
(CP (t, τ, St ) − C(t, τ, St ))

−(PP (t, τ, St ) − P(t, τ, St ))
]

+ erτ
∞∫

St

H ′′(K )(CP (t, τ, K ) − C(t, τ, K ))dK

+ erτ
St∫

0

H ′′(K )(PP (t, τ, K ) − P(t, τ, K ))dK .

(9)

As Eq. (9) shows, there is an explicit formula for the risk premiums of general
contingent claimswhichonly requires current (time t) optionprices and the preferences
of the representative investor. Ex ante risk premiums havemany potential applications,
such as the performance measurement of portfolio strategies with options. In this
paper, however, our goal is to study appropriate risk adjustments and risk premiums
for moments of the return distribution.

3 Moments under the physical measure

Different moments of the return distribution result from different choices of the func-
tion H(St+τ ). Table 1 shows some important cases. The first column of the table
presents the specific choice of the function H(St+τ ). For the calculation of risk-
adjusted impliedmoments, we have to evaluate the function H (and its first and second
derivatives) at certain points (St and K ), as can be seen from Eq. (6). The second col-
umn provides the corresponding values of H(St ), H ′(St ), and H ′′(K ). Finally, the
third column presents the resulting risk-adjusted implied moment according to Propo-
sition 2. Such a moment is a model-free implied one in the sense that it exploits
information from current options prices without reference to a specific option pricing
model. It is model-dependent, however, because of its reliance on the utility function
of the representative investor. Risk-adjusted implied moments are moments under the
physical measure, a property they share with realized moments. In contrast to realized
moments, however, which exploit ex post realized prices, they are ex ante moments.
For simplicity, we call them ex ante physical moments or just physical moments.

Panel A of Table 1 considers the variance and skewness measures by Neuberger
(2012), who suggests 2E(

St+τ

St
− 1 − ln St+τ

St
) as a generalized variance and 6E(2 +

ln St+τ

St
−2 St+τ

St
+ St+τ

St
ln St+τ

St
) as an approximation of the third (non-central)moment of

log returns. The motivation for these moment measures is their aggregation property.
Aggregation guarantees that higher-frequency data can be used to obtain unbiased
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estimates of the physical moment over the return period.7 Panel B considers the higher
non-central moments (k ≥ 2) of log returns. The corresponding risk-neutral model-
free implied moments were derived by Bakshi et al. (2003) and are widely applied. For
some applications, however, such as portfolio optimization, we require moments of
discrete returns instead of log returns. Therefore, Panel C considers discrete returns.8

To obtain central moments, we additionally need to express the expected return in
terms of vanilla option prices and the utility function. Consider discrete returns first.
Since St+τ − St = (St+τ − St )+ − (St − St+τ )

+, the expected return equals

EP
[
St+τ − St

St

]
= EP

[
(St+τ − St )+

St

]
− EP

[
(St − St+τ )

+

St

]

= erτ

St

(
CP (t, τ, St ) − PP (t, τ, St )

)
. (10)

For log returns, apply the spanning argument of Bakshi andMadan (2000) and Carr
and Madan (2001) again. With H(St+τ ) = log St+τ

St
, we obtain H(St ) = 0, H ′(St ) =

1
St
, and H ′′(K ) = − 1

K 2 , leading to9

EP
[
log

St+τ

St

]
= erτ

St

(
CP (t, τ, St ) − PP (t, τ, St )

)

− erτ
∞∫

St

1

K 2C
P (t, τ, K )dK

− erτ
St∫

0

1

K 2 P
P (t, τ, K )dK . (11)

The results in Table 1 are useful for different purposes. An immediate application is
the prediction of moments, like the variance, for use in risk management or portfolio
optimization. Information from current option prices has been shown to be very useful
in this respect.10 However, predictions under the physical measure are ultimately
needed. Our results show how to use option-implied information in combination with
an assumption about risk preferences to arrive at the required predictions.

Another application concerns the understanding of risk premiums. Because the
risk-neutral counterparts of EP

[
H(St+τ )

]
are readily available (one simply has to

replace CP and PP by the corresponding call and put prices, respectively), the results
in Table 1 allow us to express the ex ante risk premium contained in physical moments
in terms of current prices (spot price and option prices) and risk aversion [see Eq. (9)].

7 The corresponding risk-neutral model-free implied moments are given in Kozhan et al. (2013).
8 See Christoffersen et al. (2012) for a presentation of the corresponding risk-neutral model-free implied
moments.
9 See Jiang and Tian (2005) for the corresponding result under the risk-neutral measure.
10 See the survey articles by Poon and Granger (2003) and Christoffersen et al. (2012).
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A corresponding analysis is provided in Sect. 5. Finally, we can reverse the procedure
and use the results in Table 1 to obtain implied estimates of the representative investor’s
preferences. Such an empirical application is presented in Sect. 6.

4 Data and moment calculations

The options data set for our empirical analyses consists of European options written on
the S&P 500 spot index traded on the Chicago Board Options Exchange (CBOE). The
data source is OptionMetrics and the data period covers January 1996 to December
2011. We use the one-month put and call options which mature every month. The
matching interest rates and spot prices of the underlying index are also provided by
OptionMetrics.

The analyses concentrate on the variance measure 2E(
St+τ

St
− 1 − ln St+τ

St
) and the

skewness measure 6E(2 + ln St+τ

St
− 2 St+τ

St
+ St+τ

St
ln St+τ

St
) of Neuberger (2012). The

major advantage of these measures is the availability of realized moments for both
variance and skewness11 in addition to the risk-neutral and physical moments.

The computation of risk-neutral and physical moments [according to Table 1 and
Eqs. (4) and (5)] follows a standard procedure, as outlined, for example, by Chang
et al. (2012). For every month in the data period, we select the first trading day after
the expiration day of expiring options contracts at the CBOE. This choice guarantees
the existence of options series with times to expiration close to our one-month time
horizon. We take the implied Black–Scholes volatilities provided by OptionMetrics
of all out-of-the money put and call options and fit a cubic spline to obtain a smooth
volatility curve. Outside the available range of strike prices, the volatility curve is
assumed to be flat. Then, we select 1,500 equally spaced strike prices on the interval
[1.001, 3 · St ]. For these 1,500 strike prices, the corresponding implied volatilities
are converted back into call and put prices via the Black–Scholes formula. The same
volatility curves are used to obtain prices for digital options12 via the corresponding
Black–Scholes type formula.13 With these option prices, we calculate the implied
moments under the risk-neutral measure and, given a parameterization of the utility
function, under the physical measure.

Realized moments are required for the estimation of implied preference parameters
in Sect. 6. The computation of realized variance and skewness follows Kozhan et al.
(2013). For the return period starting at time t and ending at time t + τ , which is one
month in our study, all daily returns within this period are used for the calculations.
Let n be the number of days in the return period and ri be the log return of the index

11 For the standard definition of skewness, it is unclear what a reasonable realized moment would be.
12 Digital options on the S&P 500 index trade on the CBOE since July 2008. These digital options, however,
are very illiquid.
13 It is important to note that, at this point, we still do not have to assume any particular option pricing
model, such as the Black–Scholes model. Given that our volatility curve is continuously differentiable, the
prices obtained from a duplication strategy consisting of k long call options with strike price K and k short
call options with strike price K + (1/k) will converge to the prices we use for k → ∞.
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on day i . Then the realized variance rvt,t+τ and the realized skewness rst,t+τ are

rvt,t+τ =
n∑

i=1

2(eri − 1 − ri ), (12)

rst,t+τ =
n∑

i=1

3δvE
i,t+τ (e

ri − 1) + 6(2 − 2eri + ri + ri e
ri ), (13)

where δvE
i,t+τ is the change from day i − 1 to day i of another volatility measure,

called the variance of the entropy contract, which is calculated from the cross section
of option prices each day and refers to the period until t + τ .14 Because skewness
is usually reported as a standardized measure, we follow this practice and finally
calculate rskewt,t+τ = rst,t+τ /(rvt,t+τ )

3/2.

5 The impact of investor preferences on expected option payoffs and
moments

Propositions 1 and 2 provide a basis for quantifying the impact of investor preferences
on expected options payoffs and ex ante physical moments of the underlying’s return
distribution. The resulting effects are likely to depend on current market conditions.
In our approach, these market conditions are captured by the cross section of current
option prices. For an illustration, we consider the market conditions (observed option
prices) on January 20, 2004, which is the midpoint of our data sample.

In addition to the state of the optionsmarket,wehave to specify investor preferences.
We consider a representative investor with disappointment aversion, as introduced by
Gul (1991). The disappointment model is often implemented as a generalization of
CRRA utility. It allows investors to weight losses more heavily than gains, as in
prospect theory, and captures both risk aversion and disappointment aversion. The
corresponding utility function with disappointment aversion is shown in Eq. (14).15

U (W ) =
⎧⎨
⎩

W 1−γ −1
1−γ

W 1−γ −1
1−γ

− ( 1A − 1
) [ F1−γ

t,t+τ −1
1−γ

− W 1−γ −1
1−γ

]
if

W > Ft,t+τ ,

W ≤ Ft,t+τ ,
(14)

where W denotes terminal wealth. The utility function has two parameters: γ is the
coefficient of relative risk aversion and A ≤ 1 the coefficient of disappointment aver-
sion. With A = 1, we obtain CRRA utility. If A is smaller than one, the representative
investor weights losses and gains differently and shows disappointment aversion. In

14 See Kozhan et al. (2013) for details.
15 The utility function with disappointment aversion is not differentiable at W = Ft,t+τ , which violates
the requirements of Proposition 1. It is no problem, however, to approximate the utility function in a small
interval around Ft,t+τ with a twice continuously differentiable function. That is how we proceed.
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addition, the forward price Ft,t+τ enters into the utility function. It serves as the ref-
erence point for the definition of losses.16

Figure 1 shows how the expected payoffs of options written on the S&P 500 index
change with different degrees of relative risk aversion (Part A) and with different
levels of disappointment aversion (Part B) under the market conditions on January 20,
2004.17 The horizontal axes depict different strike prices. Strike prices to the right of
the forward price (1138.23) refer to call options and those to the left of the forward
price refer to put options. For Part A, the coefficient of disappointment aversion A is
set to one, that is, we study the effects of changing relative risk aversion in a CRRA
setting. In Part B, the coefficient of relative risk aversion γ is set to 2. In both parts,
the solid lines show the benchmark case of a risk-neutral representative investor.

As expected, higher relative risk aversion (RRA) leads to higher expected payoffs
for calls and lower expected payoffs for puts. The representative investor requires a
higher return of call options and a lower return of put options with increasing risk
aversion. However, the effects on calls and puts are not symmetric. Moving from risk
neutrality to a relative risk aversion of 2 or 4 has a much stronger effect on puts than on
calls. Even put options that are far out of the money react to changes in risk aversion,
whereas the corresponding call options show almost no effect. The reason for such a
different reaction is that current option prices can capture asymmetries in the return
distribution. Therefore, Part A of Fig. 1 highlights the importance of conditioning on
current market information when risk premiums and risk adjustments are studied. A
particularly interesting case refers to a strike price equal to the forward price (1138.23).
This is the only point in the graph where we show the effects for call and put options
with the same strike. Because prices of calls and puts are identical for this strike price
according to put-call parity, the expected payoffs in a risk-neutral world should also be
identical, explaining the continuity of the solid line. With a risk averse representative
investor, however, call payoffs are higher than put payoffs, explaining the discontinuity
of the dashed and dotted lines.

Part B of the figure shows the effects of varying disappointment aversion on the
expected payoffs of put and call options. Similar to the case of relative risk aver-
sion, with increasing disappointment aversion the representative investor requires call
options to have a higher return. However, the behavior for put options is distinctly dif-
ferent. The effects of disappointment aversion on the expected payoffs are negligible
(the dotted line is almost indistinguishable from the dashed line). The observed dif-
ference to the risk-neutral case stems almost exclusively from the effect of a positive
relative risk aversion. This finding of distinctly different effects of disappointment
aversion on calls and puts is an interesting property of the disappointment model.
The following rationale provides some intuition for this result: According to Eq. (14),
greater disappointment leads to lower utility in all states below the forward price.

16 In general, the reference point is the implicitly defined certainty-equivalent wealth at time t + τ that
depends on the endogenously determined portfolio of the investor. Since the representative investor holds
the market, the certainty equivalent equals the forward price.
17 The main results of increasing call payoffs with larger risk aversion and disappointment aversion as
well as decreasing put payoffs with larger risk aversion are also stable over time and do not only reflect
the particular situation on January 20, 2004. Moreover, the effects are generally stronger for at-the-money
options than for out-of-the-money options.
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Fig. 1 Effects of investor preferences on the expected payoffs of call and put options under the physical
measure. a Part A: varying the coefficient of relative risk aversion b Part B: varying the coefficient of
disappointment aversion. This figure shows the expected payoffs of at-the-money and out-of-the-money
call and put options for different strike prices and different investor preferences. Values are based on the
spot and derivatives prices for the S&P 500 index on January 20, 2004, and use the formulas from Eqs. (4)
and (5). The forward price on that date was 1138.23. In both parts of the figure, the expected payoffs of
calls are presented on the right-hand side (strike prices above forward price) and the expected payoffs of
puts are given on the left-hand side (strike prices below forward price). Expected payoffs are calculated
under the assumption of a representative investor with utility function according to Eq. (14). The solid line
depicts the benchmark case of a risk-neutral representative investor (No Risk-Adjustment). In Part A, the
dashed line refers to an investor with relative risk aversion of 2 and the dotted line refers to an investor
with relative risk aversion of 4. In both cases, the parameter of disappointment aversion is 1. In Part B,
the dashed line refers to an investor with disappointment parameter of 0.85 and the dotted line refers to
an investor with disappointment parameter of 0.70. In both cases, the relative risk aversion parameter is 2.
Note that for put options the dashed line and the dotted line are almost indistinguishable, i.e., the variation
of the disappointment parameter has almost no effects on put payoffs
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For at-the-money or out-of-the-money call options, these states lead to a complete
loss of the premium. Therefore, the greater the disappointment aversion, the higher
the expected return (expected payoff) of the call options. For at-the-money or out-of-
the-money put options, however, we have two effects. First, for very bad states far
below the forward price, put options provide gains, which are all the more valuable
the greater the disappointment aversion is. Second, for states below the forward price
but close to it, put options lead to losses because of the put premium. Greater disap-
pointment aversion makes these losses more harmful for the representative investor.
As Part B of Fig. 1 shows, the two effects seem to offset each other almost completely
for the price data on January 20, 2004.

A similar analysis can be carried out for the variance and skewness of index returns.
Part A of Fig. 2 shows how the ex ante physical moments change with different levels
of relative risk aversion, ranging from 1 to 12. The coefficient of disappointment
aversion is set to 1 in all cases, that is, we study the case of CRRA utility. Again, the
data refer to January 20, 2004. As a reference point, it is instructive to recall what
would happen under a log-normal price distribution. In this case, relative risk aversion
has no effect on either variance or skewness (Bakshi et al. 2003, p. 110). Part A of
Fig. 2, however, shows a significant effect. Therefore, current option prices indicate a
non-normal return distribution.

When variance is examined, two effects are worth mentioning. First, because the
risk-neutral variance (×100) is 0.213 (shown as a vertical line in the figure), the ex
ante physical variance is below the risk-neutral variance for all levels of risk aversion
between 1 and 12, showing a negative variance risk premium. Second, the ex ante
variance is not a monotonic function of risk aversion but has a minimum at a relative
risk aversion of 5.40. The negative variance risk premium is well in line with a hedging
argument put forward by Carr and Wu (2009). If investors dislike a larger variance,
they arewilling to pay a premium for an instrument thatmakes payments if the variance
increases, like a variance swap, implying that the swap rate (risk-neutral variance) is
above the ex-ante physical variance. A negative realized variance risk premium is also
consistent with previous empirical research (Coval and Shumway 2001; Bakshi and
Kapadia 2003; Carr and Wu 2009).

The ex ante skewness generally increases with γ , ranging from a negative value of
−2.010 for a risk-neutral investor (shown as a vertical line in the figure) to a positive
value of 1.716 for an investor with γ = 12. Therefore, the representative investor
model with CRRA utility implies a positive skewness risk premium on January 20,
2004. Moreover, ex ante skewness seems to be quite sensitive to the level of risk
aversion. A positive skewness risk premium is also reasonable with respect to the
above hedging argument. If investors dislike a lower skewness (distribution more
skewed to the left), then they are willing to pay a premium for instruments that make
positive payments if the skewness decreases. Therefore, the risk-neutral skewness
should be below the ex-ante physical skewness. Empirical evidence on a positive
realized skewness risk premium is provided byKozhan et al. (2013) and Sasaki (2016).

Part B of Fig. 2 shows the corresponding analysis for different levels of disap-
pointment aversion, ranging from 1 to 0.5. In all cases, the coefficient of relative risk
aversion γ is set to 2. Again, we added two vertical lines (No Risk-Adjustment) that
refer to a risk-neutral representative investor as a reference point. We find that both,
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Fig. 2 Effects of investor preferences on the physical variance and skewness. a Part A: varying the coeffi-
cient of relative risk aversion b Part B: varying the coefficient of disappointment aversion. This figure shows
the ex ante return variance and skewness under the physical measure for different investor preferences. Val-
ues are based on spot and derivatives prices for the S&P 500 index on January 20, 2004, and use the formulas
from Panel A of Table 1. The dotted lines show the variance multiplied by 100 and the solid lines show the
skewness. In addition, there are vertical lines (dotted ones for the variance and solid ones for the skewness)
that show the risk-neutral moments (No Risk-Adjustment) as reference points. The scale on the vertical
axis on the left-hand side of the figure refers to variance and the scale on the right-hand side of the figure
refers to skewness. The representative investor has a utility function according to Eq. (14). In Part A, the
parameter of disappointment aversion is 1 and the coefficient of relative risk aversion varies from 1 (log
utility) to 12. In Part B, the parameter of relative risk aversion is 2 and the coefficient of disappointment
aversion varies from 1 to 0.5

variance and skewness, increase in disappointment aversion. In contrast to the effects
of relative risk aversion, an increasing disappointment aversion translates almost lin-
early into higher variances and skewnesses. If disappoint aversion increases by 0.1,
variance (×100) increases by about 0.013 and skewness by about 0.144.
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Fig. 3 Implied variance and skewness risk premiums over time. a Part A: implied variance risk premiums.
b Part B: implied skewness risk premiums. This figure shows the time series of the implied ex ante variance
risk premiums (Part A) and skewness risk premiums (Part B) for the period January 1996– December 2011.
The premiums are estimated under the assumption of a representative investorwith utility function according
to Eq. (14). The solid lines refer to the case of a relative risk aversion of 2 and no disappointment aversion
(RRA = 2.0). The dotted lines provide the premiums under the assumption of a relative risk aversion of 2
and a disappointment aversion of A = 0.8 (DA = 0.8)

The results in Fig. 2 refer only to a single date, but the main observations hold more
generally for the data set as a whole, which is documented in Fig. 3 and Table 2.

Figure 3 shows the time series of implied variance and skewness risk premiums.
Part A refers to the variance and Part B to the skewness. As we can see, the vari-
ance risk premium obtained from the model is negative most of the time but can vary
substantially. This observation stresses the importance of conditioning on the current
market situation. As the comparison of the solid and dotted lines shows, disappoint-
ment aversion always leads to a higher variance risk premium. The skewness risk
premium is always positive and also shows a strong time variation. Disappointment
aversion generally leads to even higher skewness risk premiums.
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Table 2 Descriptive statistics of the physical variance and skewness for different investor preferences

Panel A: Variance (×100)

Mean Std. dev. Q3 Median Q1

Risk neutral 0.464 0.437 0.548 0.346 0.231

Varying the coefficient of relative risk aversion

γ = 1.0 0.404 0.359 0.489 0.300 0.206

γ = 2.0 0.391 0.376 0.454 0.278 0.187

γ = 3.0 0.423 0.524 0.451 0.275 0.181

γ = 4.0 0.519 0.929 0.478 0.277 0.173

Varying the coefficient of disappointment aversion

A = 1.0 0.391 0.376 0.454 0.278 0.187

A = 0.9 0.413 0.401 0.477 0.292 0.197

A = 0.8 0.439 0.431 0.508 0.312 0.209

A = 0.7 0.473 0.468 0.545 0.336 0.225

Panel B: Skewness

Mean Std. Dev. Q3 Median Q1

Risk neutral −1.845 0.752 −1.302 −1.769 −2.269

Varying the coefficient of relative risk aversion

γ = 1.0 −0.992 0.874 −0.539 −1.115 −1.600

γ = 2.0 −0.125 1.227 0.395 −0.459 −0.932

γ = 3.0 0.612 1.430 1.251 0.142 −0.310

γ = 4.0 1.167 1.437 1.956 0.740 0.160

Varying the coefficient of disappointment aversion

A = 1.0 −0.125 1.227 0.395 −0.459 −0.932

A = 0.9 −0.001 1.202 0.513 −0.341 −0.776

A = 0.8 0.128 1.171 0.594 −0.215 −0.619

A = 0.7 0.263 1.131 0.690 −0.072 −0.449

This table shows descriptive statistics of the ex ante physical return variance (Panel A) and skewness (Panel
B) of the S&P 500 index for different investor preferences. The data period is January 1996–December
2011, with 192 monthly observations. Moments were calculated according to the formulas from Panel A of
Table 1 under the assumption of a representative investor with disappointment aversion and utility function
according to Eq. (14). In the case of varying the coefficient of relative risk aversion, the parameter for
disappointment aversion is set to 1. In the case of varying the coefficient of disappointment aversion, the
parameter of relative risk aversion γ is set to 2

Table 2 provides some descriptive statistics on implied variances and skewnesses
for all 192 months in the sample and different combinations of preference parameters.
Panel A refers to the variance and Panel B to the skewness. When looking at either the
mean, the median, or the quartiles Q1 and Q3, we see that the variance first decreases
with relative risk aversion and then increases. On average, the minimum is reached
between 2 and 3, which is a reasonable estimate of the overall level of investor risk
aversion. The variation of the disappointment parameter shows that variance increases
with greater disappointment aversion. With reasonable values for both relative risk
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aversion and disappointment aversion, the disappointment model leads to a negative
variance risk premium on average. In contrast to the variance, skewness generally
increaseswith both γ and A and the disappointmentmodel leads to a positive skewness
risk premiumon average. For both variance and skewness, there is substantial variation
over time for any fixed level of relative risk aversion and disappointment aversion. The
standard deviation increases for variance and skewness with higher degrees of relative
risk aversion. For an increasing level of disappointment, only the standard deviation
of the variance increases, while the variation of the skewness declines.

6 Implied disappointment aversion

In this section, we further investigate the disappointment model. Preferences with
disappointment aversion have received growing attention in finance. Applications of
disappointment aversion include the classical problem of allocating funds between
stocks and bonds (Ang et al. 2005), the study of economic benefits from giving
investors access to options (Driessen andMaenhout 2007), and the analysis of market-
timing strategies (Kostakis et al. 2011). Equilibrium models based on a representative
investor with disappointment aversion have also been used to explain risk premiums in
financial market. In this respect, the model by Babiak (2016) explains a negative vari-
ance risk premium while simultaneously matching the average market risk premium,
market volatility and risk-free rate; and the model by Schreindorfer (2014) leads to a
negative variance risk premium that also predicts returns over short time horizons.

Although the cited studies give important insights on the effects of disappoint-
ment aversion, to our knowledge this study is the first that provides estimates of the
magnitude of disappointment aversion from market data.

Our analysis follows the general idea of Jackwerth (2000) and Bliss and Pani-
girtzoglou (2004) to imply preference parameters from option prices. To do so, we
use the model of a representative investor with utility function according to Eq. (14)
and implement an optimization procedure that simultaneously estimates the param-
eter of relative risk aversion γ and the coefficient of disappointment aversion A by
minimizing differences between ex ante physical moments and realized moments. Ex
ante physical moments and realized moments are obtained for each month of our data
period from January 1996 to December 2011 as outlined in Sect. 4. In particular, we
obtain the implied estimates from

(γ, A)t = 1

12

t−1∑
i=t−13

argmin
(γ,A)

( ∣∣∣∣∣1 − pv(γ,A)

i,i+1

rvi,i+1

∣∣∣∣∣+
∣∣∣∣∣1 − ps(γ,A)

i,i+1

rsi,i+1

∣∣∣∣∣
)

, (15)

where rvt,t+1 refers to the realized variance and rst,t+1 to the non-standardized real-

ized skewness from time t to t + 1. pv(γ,A)
t,t+1 and ps(γ,A)

t,t+1 are the respective ex ante
physical moments resulting from the disappointment model with relative risk aversion
γ and disappointment aversion A. For the optimization, we perform a grid search for
values of γ between 1 and 15 with a step size of 0.25 and for values of A between 1
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Fig. 4 Implied relative risk aversion and disappointment aversion over time. a Part A: implied relative
risk aversion. b Part B: implied disappointment aversion. This figure shows implied coefficients of relative
risk aversion (Part A, solid line) and disappointment aversion (Part B, solid line) together with the level
of the S&P 500 index (dashed line) for the period January 1997– January 2012. The implied preference
parameters are estimated under the assumption of a representative investor with utility function according
to Eq. (14). The parameter estimates are obtained from Eq. (15)

and 0.5 with a step size of 0.025.18 At each point in time, we select the pair (γ, A)

which simultaneously minimizes the relative absolute error between the realized and
the risk-adjusted variances and skewnesses. To achieve stable estimates of (γ, A) at
time t , we take the average parameters from the minimization process over the past
12 months.

18 Mehra and Prescott (1985), p. 154, cite a number of papers arguing that relative risk aversion falls in
the range between 1 and 2. However, they allow for values of up to 10 in their own study and a more recent
paper by Azar (2006) estimates a value of 4.5. Ang et al. (2005) vary the coefficient of relative risk averison
between 2 and 10 and consider disappointment aversion coefficients between 1.0 and 0.6. We allow for an
even broader range of parameters in our optimization to be on the safe side.
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Table 3 Implied estimates of disappointment aversion and relative risk aversion

Mean Std. dev. Q3 Median Q1

Panel A: Descriptive statistics

Relative risk aversion (γ ) 1.765 0.501 2.000 1.708 1.354

Disappointment aversion (A) 0.945 0.042 0.985 0.950 0.910

Const. Coef. market return R2

Panel B: Relation to market return

Relative risk aversion (γ ) 1.634 1.917 0.414

(0.000) (0.000)

Disappointment aversion (A) 0.954 −0.122 0.241

(0.000) (0.003)

This table provides information on the implied estimates of the preference parameters γ and A under the
assumption of a representative investor with utility function according to Eq. (14). The time series of the
parameters γ and A are shown in Fig. 4. The results are based on monthly data over the period from
January 1997–January 2012, which yields 181 observations. Panel A shows descriptive statistics. Panel B
provides the results of regressions that regress the preference parameters on the returns of the S&P 500
index over the previous year. The p values are reported in parentheses, obtained from the heteroscedasticity-
and autocorrelation-consistent estimator of Newey and West (1987) with 11 lags

Our data covers the period from January 1996 to December 2011; hence, our
optimization procedure yields estimates of implied disappointment aversion over the
period from January 1997 to January 2012. Figure 4 shows the time series of the
parameters γ (Part A of the Figure) and A (Part B of the Figure) as well as the corre-
sponding index level of the S&P 500. Panel A of Table 3 presents descriptive statistics
for relative risk aversion (γ ) and disappointment aversion (A). The descriptive statis-
tics confirm that the magnitudes of the implied preference parameters are reasonable.
The estimated coefficient of relative risk aversion is always in the range between 1
and 3.19, which is in line with values suggested in the literature (Mehra and Prescott
1985). With respect to disappointment aversion, Ang et al. (2005) show that a value of
A = 0.6 leads to non-participation in the stock market for the classical asset allocation
problem to choose between stocks and bonds, suggesting that reasonable values for
A fall in the range between 1 and 0.6. This is the case for our estimates which attain
a minimum value of 0.84.

Figure 4 shows that both implied risk aversion and disappointment aversion vary
over time. In relation to the level of the S&P 500 index, we find a procyclical pattern.
In times of a rising stock market, risk aversion and disappointment aversion tend
to be high (high γ and low A). However, in falling markets they both decline with
disappointment aversion being close to 1. These findings are consistent with the results
of a study on forward-looking market risk premiums by Duan and Zhang (2014), who
also find a relatively low relative risk aversion of the aggregate stock market investor
at the peak of the financial crisis in late 2008 and early 2009.

As the representative agent that we use in the disappointment model represents the
aggregate of all investors, our findings are consistent with the view that investors with
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high levels of risk aversion and disappointment aversion leave the stock market during
turbulent times and reenter it after a period of high returns. For example, this pattern
can be seen in the period from 2000 to 2008. After the dot-com bubble burst in 2000,
disappointment aversion decreases considerably, indicating that investors with high
level of disappointment aversion leave themarket in this period.When the stockmarket
shows a stable recovery after 2003, disappointment-averse investors seem to reenter
the stockmarket, leading to higher aggregate disappointment aversion. However, when
the financial crisis hits the market in 2008, both risk aversion and disappointment are
very low again. The visual impression in Fig. 4 is also confirmed by a regression
analysis. If we regress the implied preference parameters on the market returns of the
previous year, we find highly significant coefficients, as given in Panel B of Table 3.
When previousmarkets returns are high, both relative risk aversion and disappointment
aversion tend to be at a high level as well.

Our results do not support an alternative view stating that risk aversion of the
aggregate stock market investor is increasing if markets go down. In their analysis of
the VIX, Bekaert et al. (2013) find a co-movement of risk aversion and stock market
volatility, which could be interpreted as a support for this alternative view. Although
volatility is often higher in down markets, market downturn and volatility are still
distinct concepts.

7 Conclusions

This paper presents a new and exact characterization of the expected payoffs of call
and put options under the physical probability measure in terms of current option
prices and the preferences of a representative investor. The result allows us to exploit
the full information contained in current prices in order to study the effects of risk
preferences on the expected performance of options. This could help to define proper
benchmarks for measuring the performance of trading strategies with options. It could
also be useful for the design of structured products, because one can study a product’s
required return for different groups of investors (with different risk preferences) in a
current market situation.

An important application of our major theoretical result is the risk adjustment of
option-implied moments. We show explicitly how the risk adjustment that transforms
risk-neutral moments into physical moments can be performed.We use our theoretical
results for an empirical study on disappointment aversion and show that disappoint-
ment aversion has a strong effect on the expected returns of out-of-the-money call
options on the S&P 500 index but almost no effect on the returns of out-of-the money
put options. Moreover, the disappointment model leads to a negative variance risk
premium and a positive skewness risk premium on average for reasonable parameter
values. We further provide option-implied estimates of the disappointment aversion of
the representative stock market investor and show that disappointment aversion can be
very strong in times of high index levels. Our findings confirm the view that investors
with a high level of disappointment aversion leave the stock market during times of
turbulence and reenter it after a period of high returns.

Several open issues could be explored in future research. One major task is to find
specifications of the utility function that are best suited to improving volatility predic-
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tions. Another issue concerns the question of which model is best suited to explaining
both variance and skewness risk premiums (and potentially premiums associated with
even higher moments). A related question is the simultaneous explanation of risk pre-
miums for different assets. This taskwould require an extension of the theory, however,
as it is an open question how the risk adjustment for the whole market translates into
a corresponding risk adjustment for individual assets.

Appendix

To prove Proposition 1, we use Eq. (1) and the following result frommeasure theory19:
Let (�,A, μ) be a finite measure space, f a non-negative, real-valued measurable

function, and ϕ : [0,∞) → [0,∞) a continuously differentiable and monotonically
increasing function with ϕ(0) = 0. Then,

∫
ϕ ◦ f dμ =

∞∫

0

ϕ′(x) μ( f > x) dx . (16)

Since U is twice continuously differentiable, the function 1
U ′(x) , x ∈ [0,∞), has

the following properties:

(i) 1
U ′(x) is continuously differentiable, since it is a composition of continuously
differentiable functions;

(ii) 1
U ′(x) increases monotonically for all x > 0, since

(
1

U ′(x)

)′ = −U ′′(x)
U ′(x)2 > 0;

(iii) for x → 0, 1
U ′(x) reaches its minimum and converges to a non-negative value.

Therefore, 1
U ′(x) is a non-negative function.

It follows that 1
U ′(x) − 1

U ′(0) satisfies all conditions required for ϕ, where 1
U ′(0) stands

for lim
x→0

1
U ′(x) .

The discounted expected payoff of a call option under the physical measure equals

CP (t, τ, K ) = EP [e−rτ (St+τ − K )+
]

=
∞∫

0

e−rτ (St+τ − K )+P(dSt+τ ).

Using the relation between physical and risk-neutral measures from Eq. (1) yields

1

c
·

∞∫

0

e−rτ (St+τ − K )+ 1

U ′(St+τ )
Q(dSt+τ )

19 See Proposition 19.13 ofAlsmeyer (2003). Special cases of this result inwhichμ is a probabilitymeasure
and f is a random variable can be found in many textbooks, such as Lemma 6.1. of Feller (1971).
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= 1

c
·

∞∫

0

{
1

U ′(St+τ )
− 1

U ′(0)
+ 1

U ′(0)

}
e−rτ (St+τ − K )+Q(dSt+τ )︸ ︷︷ ︸

≡μC (dSt+τ )

,

whereμC defines a measure. We can now apply the above result frommeasure theory,
which leads to

CP (t, τ, K ) = 1

c
·

∞∫

0

−U ′′(x)
U ′(x)2

μC {St+τ > x}dx + C(t, τ, K )

c ·U ′(0)

= 1

c
·

∞∫

0

−U ′′(x)
U ′(x)2

⎧⎨
⎩

∞∫

x

e−rτ (St+τ − K )+Q(dSt+τ )

⎫⎬
⎭ dx

+ C(t, τ, K )

c ·U ′(0)
.

For x < K , the inner integral
∞∫
x
e−rτ (St+τ − K )+Q(dSt+τ ) equals the value of a

plain-vanilla call option with strike price K . For x > K , it follows that

∞∫

x

e−rτ (St+τ − K )+︸ ︷︷ ︸
>0

Q(dSt+τ )

=
∞∫

x

e−rτ (St+τ − x)Q(dSt+τ ) +
∞∫

x

e−rτ (x − K )Q(dSt+τ )

= C(t, τ, x) + (x − K )e−rτ Q{St+τ > x}
= C(t, τ, x) + (x − K )D(t, τ, x),

where D(t, τ, x) denotes the price of a digital option that pays $1 if St+τ > x .
Finally, we obtain the following expression:

CP (t, τ, K ) = 1

c
·

∞∫

0

−U ′′(x)
U ′(x)2

C(t, τ, K )1{x<K }dx + C(t, τ, K )

c ·U ′(0)

+1

c
·

∞∫

0

−U ′′(x)
U ′(x)2

{C(t, τ, x) + (x − K )D(t, τ, x)} 1{x>K }dx

= 1

c
· C(t, τ, K )

{
1

U ′(K )
− 1

U ′(0)

}
+ C(t, τ, K )

c ·U ′(0)

+1

c
·

∞∫

K

−U ′′(x)
U ′(x)2

{C(t, τ, x) + (x − K )D(t, τ, x)} dx .
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The expression for the constant c can be derived similarly:

c =
∞∫

0

{
1

U ′(St+τ )
− 1

U ′(0)
+ 1

U ′(0)

}
Q(dSt+τ ).

Applying the above result from measure theory to the measure Q yields

c =
∞∫

0

−U ′′(x)
U ′(x)2

{ ∞∫

x

Q(dSt+τ )

}
dx + 1

U ′(0)

=
∞∫

0

−U ′′(x)
U ′(x)2

erτ D(t, τ, x)dx + 1

U ′(0)
.

The proof for the expected discounted payoff of a put option proceeds similarly. ��
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