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Abstract This paper studies the valuation and hedging problems of forward-start
rainbow options (FSROs). By combining the characteristics of both multiple assets
and forward-start feature, this new type of derivative has many potential applications,
for instance, to incorporate the reset provision in rainbow options for investors or
hedgers or designmore effective executive compensation plans. Themain contribution
of this paper is a novel martingale pricing technique for options whose payoffs are
associated with multiple assets and time points. Equipped with this technique, the
analytic pricing formula and the formulae of the delta and gamma of the FSRO are first
derived. We conduct numerical experiments to verify these formulae and examine the
characteristics of the FSRO’s price and Greek letters. To demonstrate the importance
and general applicability of the proposed technique, we also apply it to deriving the
pricing formula for the discrete-sampling lookback rainbow options.
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1 Introduction

Since the forward-start/reset and rainbow options are both desirable for investors, we
are motivated to study rainbow options with the forward-start/reset feature. However,
the valuation of options with both forward-start/reset feature and multiple underlying
assets has been an ongoing problem. The difficulty of deriving analytic pricing for-
mulae arises when combining different pricing methods for each feature. The main
contribution of this paper is to propose a technique to evaluate options with both these
features. This technique is also crucial in pricing a wide class of discrete-sampling
path-dependent rainbow options.

Forward-start options (also known as delayed options) are similar to standard
options except that the decision about a contractual term, such as the strike price, is
postponed until a prespecified date. When the strike price is the only contractual term
to be determined, forward-start options are called delayed-strike options. Forward-
start options are often combined in series to form a ratchet option (also called a cliquet
option) in equity or interest rate swap markets such that each option commences with
an at-the-money strike price when the previous option expires. This provides a con-
venient way to hedge risks or lock in profits periodically. Rubinstein (1991) evaluates
forward-start options where the strike price is determined on the forward-start date so
as to make the option at the money at that time point. He combines the homogeneous
property with respect to the asset and strike prices and the no-arbitrage argument to
derive the pricing formula for forward-start options.

A reset option is in essence a delayed-strike forward-start option with a prespecified
initial strike price. For a reset call (put) option on reset dates, a common strike-updating
rule is to set the new strike price to be the minimum (maximum) of the current strike
price and underlying asset price. This rule is attractive for option holders since it
transforms out-of-the-money options to at-the-money options on reset dates. Several
types of single-asset reset options are explored in the literature. Gray and Whaley
(1999) introduce the analytic pricing formula for conventional reset put options. Cheng
and Zhang (2000) propose the analytic-form solution for reset options with multiple
reset dates. Both of Gray and Whaley (1999) and Cheng and Zhang (2000) evaluate
directly the integrals over normal or lognormal distributions for solving the pricing
formulae. On the other hand, Liao andWang (2003) apply the technique for probability
measure change to derive the closed-form pricing formula for reset options with a
stepped reset of the strike price on prespecified reset dates.

Options involving two or more risky assets are generally referred to as rainbow
options. The multi-asset feature has been applied to derivative products to benefit
from the diversification, making them attractive to option holders. Stulz (1982) derives
the analytic pricing formula for options on the maximum or minimum of two assets
via solving partial differential equations. Options on the maximum or minimum of
multiple assets are investigated by Johnson (1987), who derives the analytic-form for-
mulae by exploiting the pricing formula and the corresponding change-of-numeraire
interpretation for exchange options in Margrabe (1978). Following this methodol-
ogy, Ouwehand and West (2006) show the details of using the change-of-numeraire
technique to derive pricing formulae for various rainbow options.
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The valuation of forward-start rainbow options 147

Due to the benefit of the multiple assets and forward-start/reset feature in designing
derivatives, this paper investigates rainbowoptionswith the forward-start/reset feature,
which are referred to as the forward-start rainbow options (abbreviated as FSROs for
simplicity hereafter). There are many possible applications based on FSROs. For
instance, it may not be the best arrangement for long-term rainbow option holders to
have a fixed strike price specified on the issue day. The delay of the determination
of the strike price gives rainbow option holders more flexibility, which is particularly
desirable if the whole market is involved in some events during the option life. In
addition, it is also possible to apply FSROs to the design of executive compensation
plans. It is generally believed that the performance of amanager should be evaluated by
several indexes, such as the equity price, sales volume, and net profit. The rainbow call
options on the minimum of these indexes can encourage the manager to improve the
firm in many aspects, and thus solve the problems arising from linking compensation
plans only to equity prices. Since most compensation plans are in effect for multiple
years, it is unreasonable to decide a fixed benchmark, i.e., the strike price of the rainbow
call option on the minimum of multiple indexes, in the beginning. The introduction
of the forward-start/reset feature to determine the benchmark, for example annually,
may provide a satisfied solution for both firms and executive managers.

Although attractive as the FSRO may be, however, its pricing problem has never
been discussed in the literature. One possible reason is that it is not a simple task to
combine the pricing techniques for forward-start/reset options and rainbow options.
Even though the change-of-probability-measure technique in Liao and Wang (2003)
(for pricing reset options) and the change-of-numeraire technique in Ouwehand and
West (2006) (for pricing rainbowoptions) are similar,1 it is not straightforward to apply
any one or the combination of these two techniques to evaluate the expected value of
an asset price at a specified time point conditional on the comparison results between
individual asset prices evolving up to different time points,2 which is a problem arising
exclusively when pricing FSROs or other discrete-sampling path-dependent rainbow
options. This is because neither of these two techniques specifies how to transform
individual asset prices (or the corresponding Brownian motions) evolving up to differ-
ent time points for an auxiliary probability measure which may be related to another
time point. To overcome the difficulty, this paper proposes a never explored way to use
the change-of-probability-measure technique and find this novel martingale pricing
technique is useful and convenient for pricingmany discrete-sampling path-dependent
rainbow options.

Based on this technique, we are able to derive the analytic formulae for FSROs and
their delta and gamma. We consider a general payoff for FSROs, which encompass
the rainbow options (Johnson 1987), the single-asset reset options (Gray and Whaley
1999), and the plain vanilla options (Black and Scholes 1973) as special cases. In
addition to the analytical results, numerical experiments are conducted to examine
the characteristics of the FSRO’s price and Greek letters. We discover that there are

1 Theoretically speaking, both of these two techniques can be classified as martingale pricing methods.
2 More concretely, to evaluate EQ [Sa(s) · I (Sb(u) ≤ Sc(v))], where Q denotes the risk-neutral probability
measure, Si (z) denotes the price of the asset i at the time point z, and I (·) is defined as an indicator
function.
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148 C.-Y. Chen et al.

significant differences between the benefit of the forward-start feature in the single-
asset case and that in the multiple-asset case. Similar to the findings in the literature,
there are jumps appearing for the delta and gamma as time passes the forward-start
date. Finally, to demonstrate this pricing technique’s general applicability, this paper
also presents the pricing formula for the discrete-sampling lookback rainbow option,
which is another example of path-dependent rainbow options that can be evaluated
with the proposed technique.

This paper is organized as follows.We introduce the valuation framework, the novel
martingale pricing technique, and the FSROpricing formula in Sect. 2. Applications of
the proposed pricing formula, which cover several well-known results in the literature,
are discussed in Sect. 3. In Sect. 4, numerical experiments are conducted to validate
the FSRO formula and to investigate various properties of FSROs. Sect. 5 concludes
the paper.

2 Valuation of forward-start rainbow options

2.1 Basic framework

Consider a forward-start rainbow put option (hereafter abbreviated as FSRPO) on n
non-dividend-paying assets,3 whose price processes at the time point z are denoted as
Si (z) for i = 1, . . . , n. The current time is 0. On the forward-start date t , the forward-
start strike price will be determined as the maximum among S1(t), . . . , Sn(t), and K ,
which is the guaranteed minimum strike price specified initially. At maturity T , the
cheapest underlying asset among S1(T ), . . . , Sn(T ) can be sold at the forward-start
strike price. The payoff of the FSRPO can be expressed as

P(T ) = (max [K , S1(t), . . . , Sn(t)] − min [S1(T ), . . . , Sn(T )])+ . (2.1)

Note that the considered payoff function is general and encompasses the payoffs of the
rainbow put option on the minimum of multiple assets (t = 0), the single-asset reset
put option (n = 1), and the plain vanilla put option (t = 0, n = 1) as special cases.

The underlying asset prices are assumed to follow geometric Brownian motions.4

Under the risk-neutral measure Q, the dynamics of the underlying asset prices are
posited as the following stochastic differential equations:

3 Although this paper considers only the non-dividend-paying case for simplicity, all results are straight-
foward to be extended to underlying assets with constant dividend yields.
4 Although it is widely accepted that jumps are able to explain the empirical regularities of derivative
pricing, this paper focuses on pure diffusion processes. This is because incorporating additional jumps not
only complicates the problem substantially but also obscures the contribution of this paper, which proposes a
technique to tackle the evaluation of the expected value of an asset price at a specified time point conditional
on the comparison results between individual asset prices (or the correspondingBrownianmotions) evolving
up to different time points. Even so, we highly appreciate the anonymous referee to mention this point.
Nevertheless, we can analyze qualitatively the possible impacts of adding jumps on the values of FSRPOs.
Since the reset provision can turn out-of-the-money options to become at-the-money options on reset dates,
the reset provision can partially eliminate the effect of unfavorable jump movements. As for put options
on the minimum of multiple assets, through the diversification effect, additional jumps could lower the
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dSi (z)

Si (z)
= rdt + σi dW

Q
i (z), for i = 1, . . . , n, (2.2)

where the risk-free rate during the option life is assumed to be r , the volatility of the i-th
asset’s return process is denoted by σi , and the standard Brownian motion processes
WQ

i (z) and WQ
j (z) for the i-th and j-th assets are correlated with the correlation

coefficient ρi j .

2.2 The martingale pricing approach

When applying the martingale pricing approach to the FSRPO, note first that the pay-
off function in Eq. (2.1) can be further decomposed into multiple components which
are more easily evaluated. There are n + 1 possible scenarios for the forward-start
strike price max[K , S1(t), . . . , Sn(t)]: The first is that K turns out to be the maxi-
mum, that is, max[K , S1(t), . . . , Sn(t)] = K ; in the rest of the n possible scenarios
max[K , S1(t), . . . , Sn(t)] = SM (t), for M = 1, . . . , n, where M denotes the asset
index of the maximum price at time t . Similarly, the cheapest asset at maturity T
has n possible cases: min[S1(T ), . . . , Sn(T )] = Sm(T ), for m = 1, . . . , n, where m
denotes the asset index of the minimum price at time T . By such a categorization, the
FSRPO’s payoff P(T ) (Eq. 2.1) is decomposed as

P(T ) =
n∑

m=1

(K − Sm(T )) · I
(
{K ≥ Si (t)}1≤i≤n ,

{
S j (T ) ≥ Sm(T )

}
1≤ j �=m≤n , K ≥ Sm(T )

)

+
∑

1≤m,M≤n

(SM (t) − Sm(T )) · I
(
{SM (t) ≥ Sit }1≤i≤n ,

{
S j (T ) ≥ Sm(T )

}
1≤ j �=m≤n ,

SM (t) ≥ Sm(T )) , (2.3)

where I (·) is the indicator function, Sit = K if i = M , and Sit = Si (t) otherwise.
Strictly speaking, the payoff decomposition of Eq. (2.3) holds for almost all events

except when two or more underlying prices attain the same extremum values. Since
such exceptions have zero probability, they do not affect the validity of the pricing for-
mula developed in the following context. According to the martingale pricing theory,
the arbitrage-free price of the FSRPO based on today’s information set F0 is

P(0) = e−rT EQ [P(T )|F0] . (2.4)

Footnote 4 continued
expected value of min[S1(T ), . . . , Sn(T )]. This is because if there is any asset with a net negative jump
movement, this harmful effect will be retained by the minimum function. On the other hand, the realized
value of min[S1(T ), . . . , Sn(T )] rises only when all assets are with net positive jump movements. Since
the FSRPO considered in this paper is essentially based on a minimum put options plus the reset option for
the strike price, due to the above analysis, it can be expected that the additional jump processes will exhibit
a generally positive impact on the value of the FSRPO.
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After substituting the payoff decomposition in Eq. (2.3) into Eq. (2.4), we obtain

P(0)=
n∑

m=1

Ke−rT EQ
[
I
(
{K ≥ Si (t)}1≤i≤n ,

{
S j (T )≥ Sm (T )

}
1≤ j �=m≤n , K ≥ Sm (T )

)
|F0

]

−
n∑

m=1

e−rT EQ
[
Sm(T ) · I

(
{K ≥ Si (t)}1≤i≤n ,

{
S j (T )≥ Sm (T )

}
1≤ j �=m≤n , K ≥ Sm(T )

)
|F0

]

+
∑

1≤m,M≤n

e−rT EQ
[
SM (t) · I

(
{SM (t)≥ Sit }1≤i≤n ,

{
S j (T )≥ Sm (T )

}
1≤ j �=m≤n , SM (t)≥ Sm(T )

)
|F0

]

−
∑

1≤m,M≤n

e−rT EQ
[
Sm(T ) · I

(
{SM (t) ≥ Sit }1≤i≤n ,

{
S j (T ) ≥ Sm(T )

}
1≤ j �=m≤n , SM (t) ≥ Sm(T )

)
|F0

]
.

(2.5)

2.3 Change of measure with respect to different assets and time points

In Eq. (2.5), each expectation inside the first summation can be simply evaluated as a
multivariate standard normal cumulative distribution function (CDF). However, when
we proceed with the expectations inside the other summations, different situations
develop.

Take the expectations inside the third summation for example. Since SM (t) =
SM (0) exp

(
(r − σ 2

M/2)t + σMWQ
M (t)

)
, we can rewrite each expectation as

SM (0)ert EQ
[
exp(σMWQ

M (t) − σ 2
Mt/2)

·I
(
{SM (t) ≥ Sit }1≤i≤n ,

{
S j (T ) ≥ Sm(T )

}
1≤ j �=m≤n , SM (t) ≥ Sm(T )

)
|F0

]
.

In order to evaluate the above expectation,wenow introduce anewRadon–Nikodym
derivative:

dRMt

dQ
= exp

(
σMWQ

M (t) − σ 2
Mt/2

)
,

with which an equivalent probability measure RMt can be determined. Note that to
define the probability measure RMt , we specifically take both an asset and a time
point into account, i.e., the probability measure RMt is defined with respect to both
the M-th asset and the time point t . Our approach is different from the common
change-of-probability-measure technique used for option pricing, in which the auxil-
iary probability measure is associated with only a specified asset. Due to the consid-
eration of the time dimension, our approach is more appropriate to evaluate options
whose payoffs are associated with multiple assets and time points.

This approach raises a natural question: How is the Cameron–Martin–Girsanov
theorem (orGirsanov theorem for short) appliedwith this Radon–Nikodymderivative?
The answer of this question leads to a rather general solution that transforms Q-
Brownian motions into Ris-Brownian motions, where i is the index of the underlying
asset and s can be any time point. The theorem we proposed to solve this problem is
stated as follows.
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Theorem 2.1 Let W Q
j (z) and WQ

i (z) be two correlated Q-Brownian motions, and
ρ j i is their correlation coefficient. By defining the Radon–Nikodym derivative as

dRis/dQ = exp(σiW
Q
i (s) − σ 2

i s/2), we can obtain that

W Ris
j (z) = WQ

j (z) − ρ j iσi min(s, z)

is an Ris-Brownian motion for any time points s and z.

Proof See “Appendix 1”. ��
Theorem 2.1 states that, given the Radon–Nikodym derivative dRis/dQ and the

corresponding Ris probability measure, the transformation from the Q-Brownian
motion WQ

j (z) to the Ris-Brownian motion WRis
j (z) is simply achieved by sub-

tracting a drift term ρ j iσi min(s, z), where i and j are any two asset indexes, and
s and z can be any two time points. More specifically, if the considered time point
z is before s, WRis

j (z) = WQ
j (z) − ρ j iσi z; if the considered time point z is after s,

WRis
j (z) = WQ

j (z)−ρ j iσi s. Note that when z > s, although bothWRis
j (z) andWQ

j (z)
are Brownian motions evolving up to the time point z, the adjustment term is ρ j iσi s
rather than ρ j iσi z. In “Appendix 1”, we not only prove Theorem 2.1 but also elaborate
this specialty regarding the time dimension through evaluating an illustrative example.

It should be noted that to prove Theorem 2.1, we consider the kernel of the Girsanov
theorem to be σi · I (z ≤ s) rather than a constant σi , which is commonly used in the
literature for option pricing, such as Ouwehand and West (2006) for pricing rainbow
options and Liao and Wang (2003) for pricing reset options.5 Comparing Theorem
2.1 with this commonly used method, one can tell that Theorem 2.1 is more general
due to the consideration of the additional time dimension. By analyzing the different
kernels used in the Girsanov theorem, it is straightforward to infer that Theorem 2.1
can reduce to the commonly used method if the specified time s is fixed to be the
maturity date T .

To the best of our knowledge, Theorem 2.1 proposes a never explored way to
use the Girsanov theorem for option pricing. In fact, Theorem 2.1 is crucial for
not only pricing new path-dependent rainbow options but also unifying existing
results. While we apply Theorem 2.1 to pricing FSRPOs in the next subsection,
we also employ it in “Appendix 4” to obtain the pricing formula for the discrete-
sampling lookback rainbow option, which is another new type of path-dependent
rainbow options. In addition, Sect. 3 will demonstrate that the pricing formula of the

5 For example, Eqs. (A.5) and (A.6) in Liao and Wang (2003) can be rewritten with our notation system as
follows.

dR1
dQ

= exp
(
σ1W

Q
1 (T ) − σ 2

1 T/2
)

, and dW R1
1 (z) = dWQ

1 (z) − σ1dt.

Since they price a single-asset reset option, the volatility of the only asset is denoted as σ1. With σ1 as the
kernel in the Girsanov theorem, an equivalent probability measure R1 and the Brownian motion under it,

dW
R1
1 (z), can be defined. Note that the probability measure R1 is defined with respect to the single asset

but independent of any specified time point.
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FSRPO based on Theorem 2.1 can reduce to the pricing formulae of rainbow options,
single-asset reset options, and plain vanilla options that are already derived in the
literature.

2.4 Analytical formulae for FSRPO and its delta and gamma

Equipped with Theorem 2.1, we can now derive the FSRPO pricing formula by
the martingale pricing approach. The detailed derivation to obtain the explicit solu-
tion is presented in “Appendix 2”, and the FSRPO pricing formula is stated as
follows:

P(0) =
n∑

m=1

Ke−rT N2n

({
dQ
K ,i t

}

1≤i≤n
,
{
dQ
jT,mT

}

1≤ j �=m≤n
, dQ

K ,mT ; RK ,m
)

−
n∑

m=1

Sm(0)N2n

({
dRmT
K ,i t

}

1≤i≤n
,
{
dRmT
jT,mT

}

1≤ j �=m≤n
, dRmT

K ,mT ; RK ,m
)

+
∑

1≤m,M≤n

SM (0)e−r(T−t) N2n

({
dRMt
i t

}

1≤i≤n
,
{
dRMt
jT,mT

}

1≤ j �=m≤n
, dRMt

Mt,mT ; RM,m
)

−
∑

1≤m,M≤n

Sm(0) N2n

({
dRmT
it

}

1≤i≤n
,
{
dRmT
jT,mT

}

1≤ j �=m≤n
, dRmT

Mt,mT ; RM,m
)

, (2.6)

where N2n(d••,•; R•,•) denotes a 2n-variate standard normal CDF with 2n parame-
ters d••,• and a 2n × 2n correlation matrix R•,•. In addition, we also define σab as√

σ 2
a − 2ρabσaσb + σ 2

b and σas,bτ as
√

σ 2
a s − 2ρabσaσb min(s, τ ) + σ 2

b τ . With the
above notations, d••,• and R•,• are explicitly expressed as follows.

dQ
K ,i t = ln(K/Si (0)) − (r − σ 2

i /2)t

σi
√
t

,

dQ
jT,mT = ln(S j (0)/Sm(0)) + (σ 2

m − σ 2
j )T/2

σ jm
√
T

,

dQ
K ,mT = ln(K/Sm(0)) − (r − σ 2

m/2)T

σm
√
T

,

dRmT
K ,i t = ln(K/Si (0)) − (r − (σ 2

im − σ 2
i )/2)t

σi
√
t

,

dRmT
jT,mT = ln(S j (0)/Sm(0)) − σ 2

jmT/2

σ jm
√
T

,

dRmT
K ,mT = ln(K/Sm(0)) − (r + σ 2

m/2)T

σm
√
T

,
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dRMt
i t =

⎧
⎪⎨

⎪⎩

dRMt
Mt,K = ln(SM (0)/K )+(r+σ 2

M/2)t

σM
√
t

i = M

dRMt
Mt,i t = ln(SM (0)/Si (0))+σ 2

iM t/2

σiM
√
t

i �= M
,

dRMt
jT,mT = ln(S j (0)/Sm(0)) + (σ 2

Mt,mT − σ 2
Mt, jT )/2

σ jm
√
t

,

dRMt
Mt,mT = ln(SM (0)/Sm(0)) + r(t − T ) + σ 2

Mt,mT /2

σMt,mT
,

dRmT
it =

⎧
⎪⎨

⎪⎩

dRmT
Mt,K = ln(SM (0)/K )+(r−(σ 2

Mm−σ 2
m )/2)t

σM
√
t

i = M

dRmT
Mt,i t = ln(SM (0)/Si (0))+(σ 2

im−σ 2
Mm )t/2

σiM
√
t

i �= M
,

dRmT
jT,mT = ln(S j (0)/Sm(0)) − σ 2

jmT/2

σ jm
√
T

,

dRmT
Mt,mT = ln(SM (0)/Sm(0)) + r(t − T ) − σ 2

Mt,mT /2

σMt,mT
,

RK ,m =
⎛

⎝
(I )n×n

(I I )
′
(n−1)×n

(I I I )
′
1×n

(I I )n×(n−1)
(I V )(n−1)×(n−1)

(V )
′
1×(n−1)

(I I I )n×1
(V )(n−1)×1

1

⎞

⎠

2n×2n

,

with

(I )n×n = (ρik)1≤i≤n
1≤k≤n

,

(I I )n×(n−1) =
(

ρimσm − ρilσl

σlm

√
t

T

)

1≤i≤n
1≤l �=m≤n

,

(I I I )n×1 =
(

ρim

√
t

T

)

1≤i≤n

,

(I V )(n−1)×(n−1) =
(

σ 2
m − ρlmσmσl − ρ jmσ jσm + ρ jlσ jσl

σ jmσlm

)

1≤ j �=m≤n
1≤l �=m≤n

,

(V )(n−1)×1 =
(

σm − ρ jmσ j

σ jm

)

1≤ j �=m≤n

,

and

RM,m =
⎛

⎝
(V I )n×n

(V I I )
′
(n−1)×n

(V I I I )
′
1×n

(V I I )n×(n−1)
(I X)(n−1)×(n−1)

(X)
′
1×(n−1)

(V I I I )n×1
(X)(n−1)×1

1

⎞

⎠

2n×2n

,
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with

(V I )n×n =
(

ρikσiσk − ρkMσkσM − ρiMσiσM + σ 2
M

σiM σkM

)

1≤i≤n
1≤k≤n

,

(V I I )n×(n−1) =
(

ρimσiσm − ρilσiσl − ρmMσmσM + ρlMσlσM

σiM σlm

√
t

T

)

1≤i≤n
1≤l �=m≤n

,

(V I I I )n×1 =
(

ρimσiσm − ρiMσiσM − ρmMσmσM + σ 2
M

σiM σMt,mT

√
t

)

1≤i≤n

,

(I X)(n−1)×(n−1) =
(

σ 2
m − ρ jmσ jσm − ρlmσlσm + ρ jlσ jσl

σ jm σlm

)

1≤ j �=m≤n
1≤l �=m≤n

,

(X)(n−1)×1 =
(

σ 2
mT − ρmMσmσMt − ρ jmσ jσmT + ρ jMσ jσMt

σ jm
√
T σMt,mT

)

1≤ j �=m≤n

.

Note that we assume Sit = K if i = M in Eq. (2.3); thus in RM,m , we set σi = 0 when

i = M . Consequently, σiM =
√

σ 2
i − 2ρiMσiσM + σ 2

M =
√

σ 2
M = σM when i = M .

In addition to the pricing formula, the delta and gammaof the FSRPOcan be derived
analytically. The delta of the a-th underlying asset is

∂P

∂Sa
= −N2n

({
dRaT
K ,i t

}

1≤i≤n
,
{
dRaT
jT,aT

}

1≤ j �=a≤n
, dRaT

K ,aT ; RK ,a
)

+
n∑

a′=1

e−r(T−t)N2n

({
dRat
i t

}

1≤i≤n
,
{
dRat
jT,a′T

}

1≤ j �=a′≤n
, dRat

at,a′T ; Ra,a′
)

−
n∑

a′=1

N2n

({
dRaT
it

}

1≤i≤n
,
{
dRaT
jT,aT

}

1≤ j �=a≤n
, dRaT

a′t,aT ; Ra′,a
)

,

where a′ is merely an index of the underlying asset. As for the gamma ∂2P
∂S2a

and the

cross gamma ∂2P
∂Sa∂Sb

, the lengthy results are omitted in order to streamline this paper.
“Appendix 3” shows how to analytically derive the formulae of the delta, gamma, and
cross gamma of the FSRPO.

3 Applications of the pricing formula

This section shows that the pricing formula of the FSRPO (Eq. 2.6) encompasses
many well-known option pricing formulae as special cases, such as rainbow options in
Johnson (1987), single-asset reset options inGray andWhaley (1999), and plain vanilla
options in Black and Scholes (1973). These results demonstrate the wide potential and
applications of Theorem 2.1, which can be used to derive the pricing formulae for not
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only discrete-sampling path dependent rainbow options but also many existent options
in the literature.

3.1 Rainbow puts on the minimum of multiple assets

The FSRPO can be reduced to the rainbow put option on the minimum of multiple
assets (or rainbow put option for short) if we set the forward-start date to be today, that
is, t = 0. In this scenario, the strike price at time 0, i.e., max[K , S1(0), . . . , Sn(0)],
should be a known constant. For the reason of notation brevity, this strike price is
still denoted K . With this new notation, we simplify Eqs. (2.1) and (2.6) and obtain,
respectively, the payoff and the pricing formula of the rainbow put option:

Pm(T ) = (K − min[S1(T ), . . . , Sn(T )])+,

and

Pm(0) =
n∑

m=1

Ke−rT Nn

({
dQ
jT,mT

}

1≤ j �=m≤n
, dQ

K ,mT ; RK ,m
)

−
n∑

m=1

Sm(0) Nn

({
dRmT
jT,mT

}

1≤ j �=m≤n
, dRmT

K ,mT ; RK ,m
)

,

where

dQ
jT,mT =

ln
(
S j (0)/Sm(0)

) +
(
σ 2
m − σ 2

j

)
T/2

σ jm
√
T

,

dQ
K ,mT = ln(K/Sm(0)) − (r − σ 2

m/2)T

σm
√
T

,

dRmT
jT,mT = ln(S j (0)/Sm(0)) − σ 2

jmT/2

σ jm
√
T

,

dRmT
K ,mT = ln(K/Sm(0)) − (r + σ 2

m/2)T

σm
√
T

,

RK ,m =
(

(I )(n−1)×(n−1)

(I I )
′
1×(n−1)

(I I )(n−1)×1
1

)

n×n

,

with

(I )(n−1)×(n−1) =
(

σ 2
m − ρlmσmσl − ρ jmσ jσm + ρ jlσ jσl

σ jmσlm

)

1≤ j �=m≤n
1≤l �=m≤n

,

(I I )(n−1)×1 =
(

σm − ρ jmσ j

σ jm

)

1≤l �=m≤n

.
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By the put-call parity, the above formula is consistent with Johnson’s (1987) results
for rainbow call options.

3.2 Reset options

If our model takes only one asset into account, that is, n = 1, the payoff in Eq. (2.1)
becomes

PR(T ) = (max[K , S1(t)] − S1(T ))+,

It is indeed the payoff of the single-asset reset put option whose strike price is reset to
be the maximum of K and S1(t) at time t .

Setting n = 1, the FSRPO’s pricing formula (Eq. 2.6) reduces to the formula of the
reset put option:

PR(0) = Ke−rT N2

(
dQ
K ,1t , d

Q
K ,1T ; RK ,1

)

− S1(0) N2

(
dR1T
K ,1t , d

R1T
K ,1T ; RK ,1

)

+ S1(0)e
−r(T−t) N2

(
dR1t
1t,K , dR1t

1t,1T ; R1,1
)

− S1(0) N2

(
dR1T
1t,K , dR1T

1t,1T ; R1,1
)
,

where

dQ
K ,1t = ln(K/S1(0)) − (r − σ 2

1 /2)t

σ1
√
t

,

dQ
K ,1T = ln(K/S1(0)) − (r − σ 2

1 /2)T

σ1
√
T

,

dR1T
K ,1t = ln(K/S1(0)) − (r + σ 2

1 /2)t

σ1
√
t

,

dR1T
K ,1T = ln(K/S1(0)) − (r + σ 2

1 /2)T

σ1
√
T

,

dR1t
1t,K = ln(S1(0)/K ) + (r + σ 2

1 /2)t

σ1
√
t

,

dR1t
1t,1T = −(r/σ1 − σ1/2)

√
T − t,

dR1T
1t,K = ln(S1(0)/K ) + (r + σ 2

1 /2)t

σ1
√
t

,

dR1T
1t,1T = −(r/σ1 + σ1/2)

√
T − t,

RK ,1 =
(

1√
t/T

√
t/T
1

)

2×2
,

R1,1 =
(
1
0
0
1

)

2×2
.
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The above pricing formula is identical to that in Gray and Whaley (1999).

3.3 Plain vanilla options

The FSRPO becomes the vanilla put option when n = 1 and t = 0. Under these
assumptions, the strike price of max[K , S1(0)] should be a known constant at the
present time point. We denote this strike price as K for the brevity of notations.
Therefore, the payoff (Eq. 2.1) becomes

PBS(T ) = (K − S1(T ))+.

Accordingly, setting (n, t) = (1, 0) in the FSRPO’s pricing formula (Eq. 2.6), we
obtain the famous Black–Scholes formula of the plain vanilla put option:

PBS(0) = Ke−rT N1(d
Q
K ,1T ) − S1(0) N1(d

R1T
K ,1T ),

where

dQ
K ,1T = ln(K/S1(0)) − (r − σ 2

1 /2)T

σ1
√
T

,

dR1T
K ,1T = ln(K/S1(0)) − (r + σ 2

1 /2)T

σ1
√
T

.

4 Numerical analysis and option characteristics

This section conducts numerical experiments to study the characteristics of theFSRPO.
In order to verify the FSRPO’s pricing formula, the analytical option prices and the
results generated according to the Monte Carlo simulations under various parameter
settings are first compared. Second, we contrast the characteristics of the FSRPO with
those of rainbow put and reset options since the FSRPO is in essence the combination
of these two types of options. Finally, this paper investigates the price behavior as well
as the delta, gamma, and cross gamma of the FSRPO. We examine an FSRPO with
two underlying assets in this section. Its payoff is reduced from Eq. (2.1) as follows.

P(T ) = (max[K , S1(t), S2(t)] − min[S1(T ), S2(T )])+. (4.1)

4.1 Validity test for the FSRPO pricing formula

To demonstrate the validity of the proposed closed-form pricing formula, this section
compares analytical option values computed via the pricing formula (2.6) with (exper-
imental) CIs obtained through theMonte Carlo simulations. The parameters of interest
are as follows. The initial underlying prices S1(0) and S2(0) and the guaranteed mini-
mum strike price K are chosen from the set {90, 100, 110}. Due to the symmetric roles
of the two underlying assets, we set σ1, the volatility of the return of the first asset,
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at 10, 30, and 50% while fixing σ2, the volatility of the return of the second asset, at
30% for simplicity. Four different values—0, 0.25, 0.5, and 0.75—are considered for
the forward-start date t . The option maturity T is fixed at one year, and the risk-free
rate r is fixed at 5 %.

Table 1 lists the numerical results for all possible combinations of the parameter
values when ρ12 = −0.5. With respect to each combination, the FSRPO’s price is
computed based on the pricing formula (2.6), and the 95% CI, reported in parenthe-
ses under each option price, is computed by the Monte Carlo method with 100,000
simulations. Almost all theoretical option values are within the 95% CIs. The results
of these numerical experiments demonstrate the validity of our pricing formula (2.6)
for the FSRPOs. More numerical results for ρ12 = 0 and ρ12 = 0.5 are not reported
for the purpose to streamline this paper. Nevertheless, these results are available upon
request.

Note that as t = 0, the forward-start strike pricemax[K , S1(t), S2(t)] is known to be
the result ofmax[K , S1(0), S2(0)] and the FSRPO is identical to the rainbowput option
with the strike price ofmax[K , S1(0), S2(0)] in Stulz (1982). To avoid confusion about
the meaning of the strike price K in this paper and in Stulz (1982), when comparing
the numerical results for t = 0, we report only the results for K ≥ max[S1(0), S2(0)].
This is becuase in these scenarios, the effective strike price considered in our model
is max[K , S1(0), S2(0)] = K , and one can simply input the value of K as the strike
price in Stulz’s (1982) option pricing formula to obtain identical results as those in
the column of t = 0 in Table 1.

4.2 Compare FSRPOs with rainbow and forward-start/reset options

Although the FSRO is designed essentially as the combination of the rainbow and
forward-start/reset options, we are interested to investigate whether the FSRO owns
distinct characteristics from those in rainbow and forward-start/reset options. If it
does, we can conclude that there exists interaction between the rainbow option and the
forward-start/reset feature. To achieve it, we examine the impact of different forward-
start dates and different correlations on the price of the FSRPO in this section.

The base case of the parameter values in this section is as follows: S1(0) = S2(0) =
K = 100, r = 0.05, ρ12 = 0, σ1 = σ2 = 0.3, t = 0.25, and T = 1.

4.2.1 Characteristics with respect to varying the forward-start date

The solid curve in Fig. 1 shows how the FSRPO value varies with respect to the
forward-start date t while the other parameters remain fixed. Because of the benefit
of the forward-start feature, an FSRPO is more valuable than a rainbow put option,
which is represented by the dashed line in Fig. 1. In addition, as the forward-start date
t tends towards the present date, this benefit disappears and the price of the FSRPO
converges towards that of the two-asset rainbow put option.

Moreover, Fig. 1 shows a positive relationship between the value of the FSRPO and
the forward-start date t , which means the benefit of the forward-start feature increases
with the delay of the forward-start date. However, this price behavior contrasts sharply
with that of the single-asset case, which is explained as follows.
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Fig. 1 Values of the FSRPOwith respect to different forward-start date t . This figure depicts the relationship
between the FSRPO value and the forward-start date t . The forward-start date t varies from 0 to 0.8, and
the values of the other parameters are as follows: S1(0) = S2(0) = K = 100, r = 0.05, ρ12 = 0,
σ1 = σ2 = 0.3, and T = 1. It is clear to find a positive relationship between the FSRPO price and the
forward-start date t . The dashed line corresponds to the option value of the European rainbow put option
on the minimum of two assets derived by the pricing formula in Johnson (1987). When t tends to zero,
the solid curve converges to the dashed line, which demonstrates that the pricing formula for the classic
rainbow option is a special case of our general pricing formula for the FSRO

Consider the single-asset reset put option whose payoff is

PR(T ) = (max[K , S1(t)] − S1(T ))+. (4.2)

The value of this option, based on the base parameter values, attains an interior maxi-
mum 12.1154 at t = 0.557 shown in Fig. 2.6 Note that for t = T , the payoff function
in Eq. (4.2) reduces to that of the plain vanilla put option,

PR(T ) = (max[K , S1(T )] − S1(T ))+ = (K − S1(T ))+.

This observation shows that the benefit of the forward-start feature also diminishes as t
approaches the maturity date. Since the benefit of the forward-start feature disappears
at both t = 0 and t = T in the single-asset case, it results in the dome-like curve in
Fig. 2.

Compared with the single-asset case, the FSRPO generally retains the benefit of the
forward-start feature when t = T . This conclusion simply follows from contrasting
the payoff in Eq. (4.1) when t = 0 with that when t = T :

P(T ) =
{

(max[K , S1(0), S2(0)] − min[S1(T ), S2(T )])+ if t = 0,

(max[K , S1(T ), S2(T )] − min[S1(T ), S2(T )])+ if t = T .

The strike price for t = T , max[K , S1(T ), S2(T )], is expected to be higher than
the strike price for t = 0, max[K , S1(0), S2(0)], due to the positive growth rates

6 The results in this figure are consistent with those in Fig. 5 of Gray and Whaley (1999).
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Fig. 2 Values of single-asset reset puts with respect to different reset date t . This figure examines the
relation between the values of single-asset reset puts and different reset dates t ranging from 0 to T . In
addition to n = 1 in the FSRPO’s pricing formula, the values of the parameters are S1(0) = K = 100,
r = 0.05, σ1 = 0.3, and T = 1. The dashed line represents the option value of the European plain vanilla
put option. Since both the payoffs for t = 0 and t = T for the single-asset reset put option are the same
as for (K − S1(T ))+, which equals the payoff of the European plain vanilla put option, the value of the
single-asset reset put option converges to the value of the European put option at t = 0 and t = T . The
dome-like curve reflects the different magnitudes of the benefits of the reset feature with respect to different
reset dates. The maximum option value for the single-asset reset put option is about 12.1154 at t = 0.557.
The results in this figure are consistent with those in Fig. 5 of Gray and Whaley (1999)

of the underlying assets, that is, r > 0. As a result, the benefit of the forward-
start feature persists, and even grows when t = T in the multi-asset case. More-
over, since the terminal payoff of FSRPOs depends on the relative levels of the
underlying asset prices at both t and T , we further anticipate that the benefit of the
forward-start feature should be affected by the correlation between the underlying
assets.

Due to the above results, we conclude that the rainbow and reset options in the
FSRPO could interact with each other such that the effect of the forward-start/reset
feature of FSRPOs is significantly different from that of single-asset reset put options.
Moreover, the magnitude of this difference depends on both the growth rate and the
correlations of the underlying assets.

4.2.2 Characteristics with respect to varying the correlation

Since the correlations between underlying assets are important to measure the diversi-
fication effect in the rainbow option and thus determine its value, this section examines
the impact of the correlations between underlying assets (or said the diversification
effect) on FSROs. Similar to classic rainbow put options, Fig. 3 shows that the value
of the FSRPO increases when the correlation ρ12 decreases. When the two underly-
ing assets are negatively correlated, due to the diversification effect, one can antic-
ipate that the expected strike price determined at t will increase and the expected
cheapest asset price at T will decrease in the payoff (4.1). Both effects benefit the
option holders and are strengthened when the underlying assets are more negatively
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The valuation of forward-start rainbow options 163

Fig. 3 Values of the FSRPO with respect to different correlation ρ12. This figure shows the FSRPO
values for different values of correlation ρ12, ranging from −1 to 1. The values of the other parameters
are S1(0) = S2(0) = K = 100, r = 0.05, σ1 = σ2 = 0.3, t = 0.25 and T = 1. The dashed line
corresponds to the option value of the classic European reset put option in the case of a single underlying
asset. The convergence to the value of the single-asset reset put option when ρ12 tends to one confirms that
the single-asset reset option is a special case of the FSRO for ρ12 = 1. In addition, similar to the classic
rainbow put option, the FSRPO’s value increases with the decrease of the correlation ρ12

correlated. On the other hand, these two kinds of benefits are weakened if the under-
lying assets become more positively correlated. In the most extreme case, when the
two underlying assets are perfectly positively correlated and with the same initial
price and volatility, the two-asset FSRPO behaves identically to the single-asset reset
put.

4.3 Price behavior and greek letters of FSRPOs

This section examines the behavior of the option values and Greek letters of the
FSRPO. Since the most important characteristics of the FSRPO are associated with
the delayed strike and multiple sources of uncertainty, we always report the option
values and Greek letters along the dimensions of the forward-start date t and the
correlation ρ12. In practice, three representative values for t (0.25, 0.5, and 0.75) and
three representative values for ρ12 (−0.5, 0, and 0.5) are selected when analyzing the
price behaviors as well as the Greek letters of the FSRPO.

4.3.1 Prices of FSRPOs for different initial asset prices and volatilities

Figure 4 plots the option price surfaces with respect to the initial asset prices S1(0)
and S2(0). In Panels (a), (b), and (c) of Fig. 4, the examined values of ρ12 are −0.5, 0,
and 0.5, respectively. By comparing these three panels, it can be noted that the value of
the FSRPO decreases with the increase of the correlation coefficient between the two
underlying assets, even when we consider various combinations of t , K , S1(0), and
S2(0). These results demonstrate that the diversification effect can influence FSROs
as well as classic rainbow options in a similar way. Moreover, it can be observed
that the patterns of the diagrams are highly analogous given different values of ρ12 in
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(a)

Fig. 4 Option values under different initial underlying prices. This figure depicts the values of the FSRPO
with respect to S1(0) and S2(0). We examine ρ12 = −0.5, 0, and 0.5 in (a), (b), and (c), respectively. Each
panel shows nine diagrams corresponding to different combinations of the guaranteed minimum strike price
K at 90, 100, and 110 and the forward-start date t at 0.25, 0.5, and 0.75. The values of the other parameters
are r = 0.05, σ1 = σ2 = 0.3, and T = 1. Similar to the results in Fig. 1, it can be observed that the option
value of the FSRPO increases with t . In addition, as expected, the FSRPO becomes more valuable with an
increase of K . Furthermore, there is one interesting phenomenon that when the initial price of one asset is
relatively small, e.g., S2(0) = 90, different from plain vanilla options, the option value is not a monotonic
function of the initial price of the other asset, e.g., S1(0), in the case of a relatively large K (see the diagram
corresponding to t = 0.25 and K = 110 for example). Also note this phenomenon is weakened when the
forward-start date t is relatively late, e.g., comparing the diagrams corresponding to t = 0.25 and t = 0.75
given K equal to 110. Finally, across these three panels, it can be noticed that although the option price
levels decrease with the increase of ρ12, the price behaviors of the FSRPO are highly similar given different
values of ρ12. a ρ12 = −0.5, b ρ12 = 0, c ρ12 = 0.5

Panels (a), (b), and (c). Due to the similarity among these three panels, we take Panels
(a) (ρ12 = −0.5) for example to investigate the price behavior of the FSRPO in the
following paragraphs.

First, via comparing the individual columns corresponding to different forward-
start date t , it is clear that the FSRPO value exhibits a positive relationship with
the forward-start date. According to the explanation associated with Fig. 1, we
know that this phenomenon is due to the impact of the rainbow option on the
forward-start/reset feature. As for the guaranteed minimum strike price K , the
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(b)

Fig. 4 continued

FSRPO value rises as K increases, especially when both S1(0) and S2(0) are rel-
atively low. The underlying intuition is that the larger the guaranteed minimum
strike price K , the more likely the option will be in the money at maturity, and
this phenomenon is more pronounced when K is significantly larger than S1(0) and
S2(0).

Certain subtle phenomena in Fig. 4 deserve more analysis. When K = 110, the
option price curve starting from (S1(0), S2(0)) = (90, 90) and along the positive
direction of either S1(0) or S2(0) is not monotonic but like a valley, and this phe-
nomenon is more pronounced when the forward-start date t is relatively early. First
note the downward portion of the option price curve in the diagram for K = 110
and t = 0.25. Given that both S1(0) and S2(0) are much smaller than K and the
period [0, t] is relatively short, the result of max[K , S1(t), S2(t)] is likely to be
K . Therefore, an increase in either S1(0) or S2(0) is expected to little affect the
result of max[K , S1(t), S2(t)] but to raise the result of min[S1(T ), S2(T )] more
pronouncedly, which results in a downward tendency in option prices. For a later
forward-start date t , the result of max[K , S1(t), S2(t)] is more likely to be deter-
mined by either S1(t) or S2(t) due to the positive growth rates of the underlying
assets. As a result, the expected result of max[K , S1(t), S2(t)] increases correspond-
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(c)

Fig. 4 continued

ing to an increase in either S1(0) or S2(0). This effect is strengthened with the delay
of the forward-start date, and when the forward-start date t approaches the matu-
rity date T , the expected increase in max[K , S1(t), S2(t)] will eventually dominate
the expected increase in min[S1(T ), S2(T )] due to the diversification effect. Thus,
the downward curve of the option price disappears given a later forward-start date
t , for example, see the most in front corner of the diagrams for K = 110 and
t = 0.75.

On the other hand, let us consider that one of the initial prices is high and the other
is low, for instance, suppose S1(0) is close to 110 and S2(0) is about 90. In this case,
the forward-start strike price computed via max[K , S1(t), S2(t)] is very likely to be
S1(t), and there is a high probability that min[S1(T ), S2(T )]will turn out to be S2(T ).
Consequently, the price curve increases along the positive direction of S1(0). When
S1(0) is small and S2(0) is large, the argument is similar, and the upward portion of
the option price curve is thus explained.

Figure 5 plots the FSRPO values with respect to different volatilities of the under-
lying assets. The results given ρ12 = −0.5, 0, and 0.5 are presented in Panels (a), (b),
and (c), respectively. In all these three panels, the option value surfaces with respect
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(a)

Fig. 5 Option values under different volatilities. This figure shows the values of the FSRPO with respect
to different volatilities σ1 and σ2. a, b, and c examine ρ12 = −0.5, 0, and 0.5, respectively, and inside
each of them, there are nine diagrams corresponding to the combination of three values of the guaranteed
minimum strike price K : 90, 100, and 110 and three value of the forward-start date t : 0.25, 0.5, and 0.75.
The values of the other parameters are S1(0) = S2(0) = 100, r = 0.05, and T = 1. Different from Fig. 4,
the FSRPO’s value is monotonically increasing with respect to both the volatilities σ1 and σ2. Note also
that the value of the FSRPO exhibits positive relationships with respect to both the forward-start date t and
the guaranteed minimum strike price K . By comparing Panels (a), (b), and (c), it is obvious that the value
of the FSRPO shows a negative relationship with respect to the value of ρ12. a ρ12 = −0.5, b ρ12 = 0,
c ρ12 = 0.5

to different combinations of volatilities are quite flat and the option value increases
monotonically with the underlying volatilities. In addition, it conforms to our intuition
that a higher value of K leads to a higher value of the FSRPO. Note also that the value
of the FSRPO exhibits positive relationship with respect to the forward-start date t ,
which is consistent with the results in Figs. 1 and 4. Therefore, we can conclude that
the increasing benefit of the forward-start feature with the delay of the forward-start
date t is a robust property of the FSRPO under various parameter values. Finally, by
comparing Panels (a), (b), and (c), it is obvious that the value of the FSRPO shows
a negative relationship with respect to the value of ρ12. It again demonstrates that
the diversification effect influences the FSRPO as well as the rainbow put option in a
similar manner.
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Fig. 5 continued

4.3.2 Delta, gamma, and cross gamma

This subsection is devoted to analyze the delta, gamma, and cross gamma of the
FSRPO. Since the analogous price behaviors under different ρ12 in Fig. 4 imply similar
patterns of the delta, gamma, and cross gammaunder differentρ12,we report the results
of the delta, gamma, and cross gamma only given ρ12 = −0.5 in Figs. 6, 7, 8 and 9.
Nevertheless, the diagrams of the delta, gamma, and cross gamma for ρ12 equal to 0
and 0.5 are available upon request.

Figure 6 depicts ∂P
∂S1

, the FSRPO’s delta for the first underlying asset. It shows

that ∂P
∂S1

increases as S1(0) increases and S2(0) decreases, and the FSRPO’s delta
can be negative as well as positive. Figure 7 shows that the gamma with respect to
S1(0), ∂2P

∂S21
, is positive, which is in accordance with Fig. 4 where the option value is

a convex function of the initial underlying asset prices. However, the cross gamma
with respect to S1(0) and S2(0) in Fig. 8, ∂2P

∂S1∂S2
, is negative. In contrast to the positive

gamma, a characteristic that favors option holders, the negative cross gamma indicates
an additional dimension of risk for the holders of the FSRPO.
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Fig. 5 continued

The intuitions behind the behaviors of the Greeks presented in Figs. 6, 7 and 8 are
elaborated as follows. First, suppose S1(0) is much smaller than K and S2(0). With a
high probability, the payoff (4.1) is around to bemax[K , S2(t)]−S1(T ), which implies
the option value decreases as S1(0) increases. Thus the delta ∂P

∂S1
is negative. When

S1(0) increases (but remains smaller than K and S2(0)), the option value decreases,
but not so much as it did, and the delta is less negative than it was. On the other hand,
∂P
∂S1

is positive when S1(0) is much larger than K and S2(0) since the payoff (4.1)

is very likely to be S1(t) − S2(T ) in this scenario. This argument explains why ∂P
∂S1

increases from negative values to positive values as S1(0) increases, and the gamma
with respect to S1(0), ∂2P

∂S21
, is positive.

Next, suppose S1(0) and S2(0) both increase by one unit. The option value then
declines since the expected value of max[K , S1(t), S2(t)] increases by less than that
of min[S1(T ), S2(T )]. The main reason is that the former value (which increases up to
t) is less than the latter one (which increases up to T ) according to the positive growth
rate, that is, r > 0. This explains why the cross gamma ∂2P

∂S1∂S2
is negative in Fig. 8

and equivalently the delta ∂P
∂S1

increases as S2(0) decreases in Fig. 6.
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Fig. 6 Values of delta with respect to the initial underlying price of the first asset. This figure shows the
values of the delta of the FSRPO with respect to S1(0) under different combinations of S1(0) and S2(0).
The examined values of parameters are r = 0.05, ρ12 = −0.5, σ1 = σ2 = 0.3, and T = 1. In addition,
three representative values for the guaranteed minimum strike price K are considered: 90, 100, and 110,
and three representative values for the forward-start date t are considered: 0.25, 0.5, and 0.75. Due to the
valley-like surface for the option value with respect to S1(0) and S2(0) in Fig. 4, unlike the negative delta
for the plain vanilla put option, the FSRPO’s delta can be negative as well as positive

To hedge the FSRPO, it should beworth noting the jumps of delta, gamma, and cross
gamma across the forward-start date. The values of delta, gamma, and cross gamma
near the forward-start date are shown in Fig. 9, where all the parameters examined
are the same as those in Figs. 6, 7 and 8, except considering a present date which is
near the forward-start date. Specifically, we consider t = 0.001 and T = 1 in Fig. 9.
In this scenario, the surfaces of delta, gamma, and cross gamma with respect to S1(0)
and S2(0) are different from the smooth ones in Figs. 6, 7 and 8, respectively.

As shown in Fig. 9, the discontinuities in the delta and gamma with respect to S1(0)
occur near the points {(S1(0), S2(0)) : K ≤ S1(0) = S2(0) or S2(0) ≤ S1(0) = K }.
The discontinuity points for the delta and gamma with respect to S2(0) can be simply
obtained by interchanging the roles of S1(0) and S2(0) in the above point set, i.e.,
{(S1(0), S2(0)) : K ≤ S2(0) = S1(0) or S1(0) ≤ S2(0) = K }. As for the cross
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Fig. 7 Values of gamma with respect to the initial underlying price of the first asset. This figure illustrates
the values of the gamma of the FSRPO with respect to S1(0) under different values of S1(0) and S2(0). We
consider the guaranteed minimum strike price K to be 90, 100, and 110, the forward-start date t to be 0.25,
0.5, and 0.75, and r = 0.05, ρ12 = −0.5, σ1 = σ2 = 0.3, and T = 1. The values of gamma are positive
since the option value is shown to be a convex function with respect to S1(0) in Fig. 4

gamma, the set of the discontinuity points should be theoretically the union of the
point sets for the discontinuities of the delta with respect to either S1(0) or S2(0), i.e.,
{(S1(0), S2(0)) : K ≤ S1(0) = S2(0), S2(0) ≤ S1(0) = K , or S1(0) ≤ S2(0) = K }.
The results of the jumps of delta and gamma are consistent with the findings in Cheng
and Zhang (2000) and Liao and Wang (2003).

5 Conclusion

This paper examines a new type of path-dependent rainbow options–forward-start
rainbow options. The analytic pricing formula for forward-start rainbow options is
first proposed, and it can be a general formula for several existing options, including
options on the maximum or minimum of multiple assets, single-asset reset options,
and plain vanilla options. In addition, the delta, gamma, and cross gamma for forward-
start rainbow options are derived analytically. Equipped with these analytic formulae,
numerical experiments are conducted to examine the characteristics of the option value
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Fig. 8 Values of cross gamma. This figure plots the values of the cross gamma of the FSRPO with respect
to S1(0) and S2(0). Given each combination of the guaranteed minimum strike price K (chosen from 90,
100, 110) and the forward-start date t (chosen from 0.25, 0.5, and 0.75), the values of the other parameters
are r = 0.05, ρ12 = −0.5, σ1 = σ2 = 0.3, and T = 1. Note that the cross gamma of the FSRPO is
negative. This negative cross gamma indicates an additional dimension of risk imposing on the holders of
the FSRPOs

and Greek letters of forward-start rainbow options. It is the first time to find that the
price behavior of forward-start rainbow options is significantly different from that of
single-asset forward-start/reset options.

Furthermore, another contribution of this paper is the proposal of a novelmartingale
pricing technique that can be applied to pricing not only the forward-start rainbow
options but also other options dependent on multiple assets and time points, such as
discrete-sampling lookback rainbowoptions.Due to thewide applicability of this novel
technique, this paper broaches a new direction in designing new option contracts with
payoffs that depend on both multiple underlying assets and path-dependent features.
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Fig. 9 Jumps of delta, gamma, and cross gamma near the forward-start date. This figure illustrates the pos-
sible jumps for the delta, gamma, and cross gamma of the FSRPO when the forward-start date t approaches
zero. More specifically, we consider t = 0.001 to generate all diagrams in this figure. The other parameters
are r = 0.05, ρ12 = −0.5, σ1 = σ2 = 0.3, T = 1, and K = 90, 100, and 110. It is clear that the
discontinuities of these Greek letters appear when t approaches zero, so the surfaces of delta, gamma, and
cross gamma with respect to S1(0) and S2(0) are different from the smooth ones in Figs. 6, 7 and 8. The
results of the possible jumps of the delta and gamma are consistent with the findings in Cheng and Zhang
(2000) and Liao and Wang (2003)

Acknowledgments The authors thank theMinistry of Science and Technology of Taiwan for the financial
support.

6 Appendix 1: Proof of Theorem 2.1

The martingale pricing method relies heavily on the Cameron–Martin–Girsanov the-
orem, which is the key to evaluating the conditional expectation of the price processes
with the multivariate standard normal cumulative distribution function (CDF). There-
fore, the proof starts with the review of the general n-dimensional Cameron-Martin-
Girsanov theorem based on the description in Baxter and Rennie (2000), with a slight
change in notations.
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Cameron–Martin–Girsanov Theorem Let 	WQ(z) = (WQ
1 (z), . . . ,WQ

n (z)) be a
vector of n-dimensional independent Q-Brownian motions up to time T adapted with
the natural filtration F . Suppose that 	ν(z) = (ν1(z), . . . , νn(z)) is an F-previsible
n-vector process that satisfies the condition EQ[exp( 12

∫ T
0

∣∣	ν2(τ )
∣∣ dτ)] < ∞. Then

there is a new measure R such that

1. Q is equivalent to R up to time T ,

2. dR
dQ = exp

(
n∑
j=1

∫ T
0 ν j (τ )dWQ

j (τ ) − 1
2

∫ T
0 |	ν(τ)|2 dτ

)
, and

3. W R
j (z) = WQ

j (z) − ∫ z
0 ν j (τ )dτ, and 	WR(z) = (WR

1 (z), . . . ,WR
n (z)) is a vector

of n-dimensional R-Brownian motion up to time T .

Based upon the general n-dimensional Cameron–Martin–Girsanov theorem, the
most important finding in this paper is stated in Theorem 2.1.

Theorem 2.1 Let W Q
j (z)and WQ

i (z) be two correlated Q-Brownian motions, and
ρ j i is their correlation coefficient. By defining the Radon–Nikodym derivative as

dRis/dQ = exp(σiW
Q
i (s) − σ 2

i s/2), we can obtain that

W Ris
j (z) = WQ

j (z) − ρ j iσi min(s, z)

is an Ris-Brownian motion for any time points s and z.

Before proving Theorem 2.1, we state a useful identity equation. Suppose
WP

j (z) and WP
i (z) are correlated Brownian motions with a correlation coeffi-

cient ρ j i under any probability measure P . Once we define W̃ P
j (z) ≡ (WP

j (z) −
ρ j iW P

i (z))/
√
1 − ρ2

j i , then W̃
P
j (z) is an independent P-Brownianmotionwith respect

to WP
i (z). Rearranging the above equation, we can obtain

WP
j (z) = ρ j iW

P
i (z) +

√
1 − ρ2

j i W̃
P
j (z), (6.1)

an equation that is helpful in the following proof.

Proof Suppose WQ
i (z) and W̃ Q

j (z) are two independent Q-Brownian motions sat-

isfying Eq. (6.1), that is, WQ
j (z) = ρ j iW

Q
i (z) +

√
1 − ρ2

j i W̃
Q
j (z). By considering

	ν(z) = (νi (z), ν j (z)) = (σi · I (z ≤ s), 0) in the Cameron–Martin–Girsanov theorem,
the Radon–Nikodym derivative can be derived as

dRis

dQ
= exp(

∑

u=i, j

∫ T

0
νu(τ )dWQ

u (τ ) − 1

2

∫ T

0
|	ν(τ)|2 dτ)

= exp(σiW
Q
i (s) − 1

2
σ 2
i s),
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and for any time point z,

WRis
i (z) = WQ

i (z) −
∫ z

0
νi (τ )dτ = WQ

i (z) −
∫ z

0
σi · I (τ ≤ s)dτ

= WQ
i (z) − σi min(s, z),

W̃ Ris
j (z) = W̃ Q

j (z) −
∫ z

0
ν j (τ )dτ = W̃ Q

j (z).

Finally, we have the following equations and the proof is complete:

WRis
j (z) = ρ j iW

Ris
i (z) +

√
1 − ρ2

j i W̃
Ris
j (z) (by (6.1))

= ρ j i (W
Q
i (z) − σi min(s, z)) +

√
1 − ρ2

j i W̃
Q
j (z)

= ρ j iW
Q
i (z) +

√
1 − ρ2

j i W̃
Q
j (z) − ρ j iσi min(s, z)

= WQ
j (z) − ρ j iσi min(s, z). (by (6.1)).

��
After proving Theorem 2.1, we would like to illustrate the specialty of Theorem

2.1 regarding the time dimension by evaluating EQ[Sa(s) · I (Sb(u) ≥ Sc(v))] (given
u ≤ s ≤ v for example), which is a problem arising exclusively when pricing FSROs
or other path-dependent rainbow options. To evaluate this expectation, we first rewrite
it with Sa(s) = Sa(0) exp((r − σ 2

a /2)s + σaW
Q
a (s)), i.e.,

EQ [Sa(s) · I (Sb(u) ≥ Sc(v))]

= Sa(0)e
rs EQ

[
exp(σaW

Q
a (s) − σ 2

a s/2) · I (Sb(u) ≥ Sc(v))
]
. (6.2)

By defining the Radon–Nikodym derivative as dRas/dQ = exp(σaW
Q
a (s) −

σ 2
a s/2) and applying Theorem 2.1, we can obtain

WRas
b (u) = WQ

b (u) − ρbaσa min(s, u) = WQ
b (u) − ρbaσau, (6.3)

WRas
c (v) = WQ

c (v) − ρcaσa min(s, v) = WQ
c (v) − ρcaσas. (6.4)

As a result, Eq. (6.2) can be expressed as

Sa(0)e
rs E Ras [I (Sb(u) ≥ Sc(v))]

= Sa(0)e
rs Pr Ras (Sb(u) ≥ Sc(v))

= Sa(0)e
rs Pr Ras (ln Sb(u) ≥ ln Sc(v))

= Sa(0)e
rs Pr Ras (ln Sb(0) + (r − σ 2

b /2)u + σb(W
Ras
b (u) + ρbaσau)

≥ ln Sc(0) + (r − σ 2
c /2)v + σc(W

Ras
c (v) + ρcaσas))
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The last equation is derived by replacing WQ
b (u) and WQ

c (v) according to Eqs.
(6.3) and (6.4), respectively. The straightforward algebraic calculation leads to

Sa(0)e
rs Pr Ras

⎛

⎝ σcW
Ras
c (v) − σbW

Ras
b (u)

√
var(σcW

Ras
c (v) − σbW

Ras
b (u))

≤
⎛

⎝ ln(Sb(0)/Sc(0)) + r(u − v) + σ 2
c v/2 − σ 2

b u/2 + ρbaσbσau − ρcaσcσas√
var(σcW

Ras
c (v) − σbW

Ras
b (u))

⎞

⎠

≡ Sa(0)e
rs Pr Ras (Z Ras

bu,cv ≤ dRas
bu,cv)

= Sa(0)e
rs N (dRas

bu,cv),

where var(σcW
Ras
c (v) − σbW

Ras
b (u)) equals σ 2

c v − 2ρcbσcσb min(v, u) + σ 2
b u by

definition. In addition, since Z Ras
bu,cv ≡ σcW

Ras
c (v)−σbW

Ras
b (u)√

var(σcW Ras
c (v)−σbW

Ras
b (u))

follows the standard

normal distribution, the last equation in the above can be derived with defining N (·)
as the cumulative distribution function of the standard normal distribution.

It should be noted that when we transform WQ
b (u) to WRas

b (u) in Eq. (6.3), the
adjustment term is ρbaσau, which is proportional to u as expected. On the other
hand, when we transform WQ

c (v) to WRas
c (v) in Eq. (6.4), although both WQ

c (v) and
WRas

c (v) are Brownian motions evolving up to the time point v, the adjustment term
is ρcaσas rather than ρcaσav according to Theorem 2.1. In fact, if we apply, without
any modification, the commonly used change-of-probability-measure techniques for
option pricing, e.g., those in Ouwehand and West (2006) and Liao and Wang (2003),
this special characteristic associated with the time dimension cannot be captured such
that we cannot derive the correct formula corresponding to EQ[Sa(s) · I (Sb(u) ≥
Sc(v))].

7 Appendix 2: Derivations of the pricing formula

Theorem 2.1 makes it straightforward to derive the pricing formula for the FSRPO.
Recall that in Eq. (2.5) the price today is

P(0) = e−rT EQ [P(T )|F0]

=
n∑

m=1

Ke−rT EQ [
I
({K ≥ Si (t)}1≤i≤n ,

{
S j (T ) ≥ Sm(T )

}
1≤ j �=m≤n , K ≥ Sm(T )

)
|F0

]

−
n∑

m=1

e−rT EQ [
Sm(T ) · I ({K ≥ Si (t)}1≤i≤n ,

{
S j (T ) ≥ Sm(T )

}
1≤ j �=m≤n , K ≥ Sm(T )

)
|F0

]
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+
∑

1≤m,M≤n

e−rT EQ [
SM (t) · I ({SM (t) ≥ Sit }1≤i≤n ,

{
S j (T ) ≥ Sm(T )

}
1≤ j �=m≤n , SM (t) ≥ Sm(T )

)
|F0

]

−
∑

1≤m,M≤n

e−rT EQ [
Sm(T ) · I ({SM (t) ≥ Sit }1≤i≤n ,

{
S j (T ) ≥ Sm(T )

}
1≤ j �=m≤n , SM (t) ≥ Sm(T )

)
|F0

]
, (7.1)

where Sit ≡
{
K i = M
Si (t) i �= M

.

We evaluate the option value in Eq. (7.1) term by term in the following paragraphs.

7.1 The first summation in Eq. (7.1)

The expectation inside the first summation in Eq. (7.1) can be evaluated directly in the
probability measure Q:

EQ
[
I
(
{K ≥ Si (t)}1≤i≤n ,

{
S j (T ) ≥ Sm(T )

}
1≤ j �=m≤n , K ≥ Sm(T )

)
|F0

]

= PrQ
(
{K ≥ Si (t)}1≤i≤n ,

{
S j (T ) ≥ Sm(T )

}
1≤ j �=m≤n , K ≥ Sm(T )|F0

)

= PrQ
({

dQK ,i t ≥ ZQ
K ,i t

}

1≤i≤n
,
{
dQjT,mT ≥ ZQ

jT,mT

}

1≤ j �=m≤n
, dQK ,mT ≥ ZQ

K ,mT |F0

)

= N2n

({
dQK ,i t

}

1≤i≤n
,
{
dQjT,mT

}

1≤ j �=m≤n
, dQK ,mT ; RK ,m

)
,

where

dQ
K ,i t = ln(K/Si (0))−(r−σ 2

i /2)t

σi
√
t

, ZQ
K ,i t = WQ

i (t)√
t

,

dQ
jT,mT = ln(S j (0)/Sm (0))+(σ 2

m−σ 2
j )T/2

σ jm
√
T

, ZQ
jT,mT = σmW

Q
m (T )−σ j W

Q
j (T )

σ jm
√
T

,

dQ
K ,mT = ln(K/Sm (0))−(r−σ 2

m/2)T

σm
√
T

, ZQ
K ,mT = WQ

m (T )√
T

.

In the above equations, σab is defined as
√

σ 2
a − 2ρabσaσb + σ 2

b , and the notation

dP
as,bτ is referred to as the parameter of the multivariate standard normal CDF under
the event {Sa(s) ≥ Sb(τ )} with respect to any probability measure P . The notation
dP
K ,bτ is defined similarly but corresponding to the event {K ≥ Sb(τ )}.
For the correlation matrix RK ,m , we first concatenate {ZQ

K ,i t }1≤i≤n ,

{ZQ
jT,mT }1≤ j �=m≤n , and ZQ

K ,mT to form {ZK ,m
p }1≤p≤2n , i.e., {ZK ,m

p }1≤p≤2n ≡
{{ZQ

K ,i t }1≤i≤n,{ZQ
jT,mT }1≤ j �=m≤n, Z

Q
K ,mT }. Similarly, {ZK ,m

q }1≤q≤2n ≡{{ZQ
K ,kt }1≤k≤n ,

{ZQ
lT,mT }1≤l �=m≤n, Z

Q
K ,mT }. In addition, we also define ρ

K ,m
p,q ≡ corr(ZK ,m

p , ZK ,m
q ),
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and RK ,m ≡ (ρ
K ,m
p,q )1≤p,q≤2n is a 2n × 2n correlation coefficient matrix as follows:

RK ,m =
⎛

⎝
(I )n×n

(I I )
′
(n−1)×n

(I I I )
′
1×n

(I I )n×(n−1)
(I V )(n−1)×(n−1)

(V )
′
1×(n−1)

(I I I )n×1
(V )(n−1)×1

1

⎞

⎠

2n×2n

,

where

(I )n×n =
(
corr(ZQ

K ,i t , Z
Q
K ,kt )

)
1≤i≤n
1≤k≤n

=
(
corr

(
WQ

i (t)√
t

,
WQ

k (t)√
t

))

1≤i≤n
1≤k≤n

= (ρik)1≤i≤n
1≤k≤n

,

and other parts listed below can be computed similarly:

(I I )n×(n−1) =
(
corr(ZQ

K ,i t , Z
Q
lT,mT )

)
1≤i≤n

1≤l �=m≤n
=
(

ρimσm−ρilσl

σlm

√
t

T

)

1≤i≤n
1≤l �=m≤n

,

(I I I )n×1 =
(
corr(ZQ

K ,i t , Z
Q
K ,mT )

)

1≤i≤n
=

(
ρim

√
t

T

)

1≤i≤n

,

(I V )(n−1)×(n−1) =
(
corr(ZQ

jT,mT , ZQ
lT,mT )

)
1≤l �=m≤n
1≤l �=m≤n

=
(

σ 2
m − ρlmσmσl − ρ jmσ jσm + ρ jlσ jσl

σ jmσlm

)

1≤ j �=m≤n
1≤l �=m≤n

,

(V )(n−1)×1 =
(
corr(ZQ

jT,mT , ZQ
K ,mT )

)

1≤l �=m≤n
=

(
σm − ρ jmσ j

σ jm

)

1≤ j �=m≤n

.

7.2 The second summation in Eq. (7.1)

Under the risk-neutral measure Q, the underlying price of asset m at time T is

Sm(T ) = Sm(0) exp
(
(r − σ 2

m/2)T + σmW
Q
m (T )

)
.

It is convenient to introduce the probability measure RmT by setting the corresponding
Radon–Nikodym derivative to

dRmT

dQ
= exp

(
σmW

Q
m (T ) − σ 2

mT/2
)

.

With Theorem 2.1, WRmT
j (z) = WQ

j (z) − ρ jmσm min(z, T ) = WQ
j (z) − ρ jmσmz

is a standard Brownian motion under the probability measure RmT , where j is the
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index for the underlying asset. Then we can rewrite the expectation inside the second
summation in Eq. (7.1) evaluated with respect to the RmT measure as follows:

EQ
[
Sm(T ) · I

(
{K ≥ Si (t)}1≤i≤n ,

{
S j (T ) ≥ Sm(T )

}
1≤ j �=m≤n , K ≥ Sm(T )

)
|F0

]

= Sm(0)erT E RmT
[
I
(
{K ≥ Si (t)}1≤i≤n ,

{
S j (T ) ≥ Sm(T )

}
1≤ j �=m≤n ,

K ≥ Sm(T )) |F0]

= Sm(0)erT Pr RmT

({
dRmT
K ,i t ≥ Z RmT

K ,i t

}

1≤i≤n
,
{
dRmT
jT,mT ≥ Z RmT

jT,mT

}

1≤ j �=m≤n
,

dRmT
K ,mT ≥ Z RmT

K ,mT |F0

)

= Sm(0)erT N2n

({
dRmT
K ,i t

}

1≤i≤n
,
{
dRmT
jT,mT

}

1≤ j �=m≤n
, dRmT

K ,mT ; RK ,m
)

,

where

dRmT
K ,i t = ln(K/Si (0))−(r−(σ 2

im−σ 2
m )/2)t

σi
√
t

, Z RmT
K ,i t = W

RmT
i (t)√

t
,

dRmT
jT,mT = ln(S j (0)/Sm(0))−σ 2

jmT/2

σ jm
√
T

, Z RmT
jT,mT = σmW

RmT
m (T )−σ j W

RmT
j (T )

σ jm
√
T

,

dRmT
K ,mT = ln(K/Sm (0))−(r+σ 2

m/2)T

σm
√
T

, Z RmT
K ,mT = W

RmT
m (T )√

T
.

It is worth noting that Z RmT•,• are essentially the same as ZQ•,• in the first summation of
Eq. (7.1) except under a different probabilitymeasure. Hence for the expectation inside
the second summation, the correlationmatrix of the multivariate standard normal CDF
is the same as RK ,m in the first summation in Eq. (7.1).

7.3 The third summation in Eq. (7.1)

Following the same technique, we compute the expectation inside the third summation
in Eq. (7.1). The underlying price of asset M at time t under the risk-neutral measure
Q is

SM (t) = SM (0) exp
(
(r − σ 2

M/2)t + σMWQ
M (t)

)
.

Let RMt be the equivalent probability measure defined by

dRMt

dQ
= exp

(
σMWQ

M (t) − σ 2
Mt/2

)
.

According to Theorem 2.1, WRMt
j (z) = WQ

j (z) − ρ jMσM min(z, t) is a standard
Brownian motion under the probability measure RMt , where j is the index for the
underlying asset. Note that if the examined time point z is before t , WRMt

j (z) =
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WQ
j (z) − ρ jMσMz; if the examined time point z is after t , WRMt

j (z) = WQ
j (z) −

ρ jMσMt even though both WRMt
j (z) and WQ

j (z) evolve up to z. The expectation
inside the third summation in Eq. (7.1) evaluated with respect to the RMt measure is
as follows:

EQ
[
SM (t) · I

(
{SM (t) ≥ Sit }1≤i≤n ,

{
S j (T ) ≥ Sm(T )

}
1≤ j �=m≤n ,

SM (t) ≥ Sm(T )) |F0

]

= SM (0)ert Pr RMt

({
dRMt
i t ≥ Z RMt

i t

}

1≤i≤n
,
{
dRMt
jT,mT ≥ Z RMt

jT,mT

}

1≤ j �=m≤n
,

dRMt
Mt,mT ≥ Z RMt

Mt,mT |F0

)

= SM (0)ert N2n

({
dRMt
i t

}

1≤i≤n
,
{
dRMt
jT,mT

}

1≤ j �=m≤n
, dRMt

Mt,mT ; RM,m
)

,

where

dRMt
i t =

⎧
⎨

⎩
dRMt
Mt,K = ln(SM (0)/K )+(r+σ 2

M/2)t

σM
√
t

i = M

dRMt
Mt,i t = ln(SM (0)/Si (0))+σ 2

iM t/2

σiM
√
t

i �= M
,

Z RMt
i t =

⎧
⎪⎨

⎪⎩

Z RMt
Mt,K = −W

RMt
M (t)√

t
i = M

ZRMt
Mt,i t = σi W

RMt
i (t)−σMW

RMt
M (t)

σiM
√
t

, i �= M
,

dRMt
jT,mT = ln(S j (0)/Sm (0))+(σ 2

Mt,mT −σ 2
Mt, jT )/2

σ jm
√
T

, Z RMt
jT,mT = σmW

RMt
m (T )−σ j W

RMt
j (T )

σ jm
√
T

,

dRMt
Mt,mT = ln(SM (0)/Sm (0))+r(t−T )+σ 2

Mt,mT /2
σMt,mT

, Z RMt
Mt,mT = σmW

RMt
m (T )−σMW

RMt
M (t)

σMt,mT
,

and the notation σas,bτ is defined as
√

σ 2
a s − 2ρabσaσb min(s, τ ) + σ 2

b τ .

Next, we define {ZM,m
p }1≤p≤2n ≡ {{Z RMt

i t }1≤i≤n, {Z RMt
jT,mT }1≤ j �=m≤n, Z

RMt
Mt,mT },

{ZK ,m
q }1≤q≤2n ≡ {{Z RMt

kt }1≤i≤n, {Z RMt
lT,mT }1≤ j �=m≤n, Z

RMt
Mt,mT }, ρ

M,m
p,q ≡

corr(ZM,m
p , ZM,m

q ), and RM,m ≡ (ρ
M,m
p,q )1≤p,q≤2n as a 2n × 2n correlation coef-

ficient matrix. For simplicity, we abuse the notation slightly and set σi = 0 when

i = M . Consequently, as i = M , σiM =
√

σ 2
i − 2ρiMσiσM + σ 2

M =
√

σ 2
M = σM .

Then the correlation coefficient matrix RM,m is presented as follows:

RM,m =
⎛

⎜⎝
(V I )n×n (V I I )n×(n−1) (V I I I )n×1

(V I I )
′
(n−1)×n (I X)(n−1)×(n−1) (X)(n−1)×1

(V I I I )
′
1×n (X)

′
1×(n−1) 1

⎞

⎟⎠

2n×2n

,
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where

(V I )n×n =
(
corr(Z RMt

i t , Z RMt
kt )

)
1≤i≤n
1≤k≤n

=
(

ρikσiσk − ρkMσkσM − ρiMσiσM + σ 2
M

σiM σkM

)

1≤i≤n
1≤k≤n

,

(V I I )n×(n−1) =
(
corr(Z RMt

i t , Z RMt
lT,mT )

)
1≤i≤n

1≤l �=m≤n

=
(

ρimσiσm − ρilσiσl − ρmMσmσM + ρlMσlσM

σiM σlm

√
t

T

)

1≤i≤n
1≤l �=m≤n

,

(V I I I )n×1 =
(
corr(Z RMt

i t , Z RMt
Mt,mT )

)

1≤i≤n

=
(

ρimσiσm − ρiMσiσM − ρmMσmσM + σ 2
M

σiM σMt,mT

√
t

)

1≤i≤n

,

(I X)(n−1)×(n−1) =
(
corr(Z RMt

jT,mT , Z RMt
lT,mT )

)
1≤l �=m≤n
1≤l �=m≤n

=
(

σ 2
m − ρ jmσ jσm − ρlmσlσm + ρ jlσ jσl

σ jm σlm

)

1≤ j �=m≤n
1≤l �=m≤n

,

(X)(n−1)×1 =
(
corr(Z RMt

jT,mT , Z RMt
Mt,mT )

)

1≤l �=m≤n

=
(

σ 2
mT − ρmMσmσMt − ρ jmσ jσmT + ρ jMσ jσMt

σ jm
√
T σMt,mT

)

1≤ j �=m≤n

.

7.4 The fourth summation in Eq. (7.1)

The probability measure RmT used for the expectation inside the fourth summation
in Eq. (7.1) is the same as that in the second summation of Eq. (7.1). In addition,
comparing with the derivation details of the third summation, it can be easily shown
that Z RmT•,• are in essence the sameas Z RMt•,• except under a different probabilitymeasure.
Hence the correlationmatrix for themultivariate standard normalCDF inside the fourth
summation will be RM,m . Consequently, the expectation inside the fourth summation
in Eq. (7.1) is evaluated as follows:

EQ
[
Sm(T ) · I

(
{SM (t) ≥ Sit }1≤i≤n ,

{
S j (T ) ≥ Sm(T )

}
1≤ j �=m≤n ,

SM (t) ≥ Sm(T )) |F0

]

= Sm(0)erT Pr RmT

({
dRmT
it ≥ Z RmT

it

}

1≤i≤n
,
{
dRmT
jT,mT ≥ Z RmT

jT,mT

}

1≤ j �=m≤n
,
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dRmT
Mt,mT ≥ Z RmT

Mt,mT |F0

)

= Sm(0)erT N2n

({
dRmT
it

}

1≤i≤n
,
{
dRmT
jT,mT

}

1≤ j �=m≤n
, dRmT

Mt,mT ; RM,m
)

,

where

dRmT
it =

⎧
⎨

⎩
dRmT
Mt,K = ln(SM (0)/K )+(r−(σ 2

Mm−σ 2
m )/2)t

σM
√
t

i = M

dRmT
Mt,i t = ln(SM (0)/Si (0))+(σ 2

im−σ 2
Mm )t/2

σiM
√
t

i �= M
,

Z RmT
it =

⎧
⎪⎨

⎪⎩

Z RmT
Mt,K = −W

RmT
M (t)√

t
i = M

ZRmT
Mt,i t = σi W

RmT
i (t)−σMW

RmT
M (t)

σiM
√
t

i �= M
,

dRmT
jT,mT = ln(S j (0)/Sm (0))−σ 2

jmT/2

σ jm
√
T

, Z RmT
jT,mT = σmW

RmT
m (T )−σ j W

RmT
j (T )

σ jm
√
T

,

dRmT
Mt,mT = ln(SM (0)/Sm (0))+r(t−T )−σ 2

Mt,mT /2
σMt,mT

, Z RmT
Mt,mT = σmW

RmT
m (T )−σMW

RmT
M (t)

σMt,mT
.

As a result, the pricing formula of the forward-start put option can be summarized as
follows.

n∑

m=1

Ke−rT N2n

({
dQ
K ,i t

}

1≤i≤n
,
{
dQ
jT,mT

}

1≤ j �=m≤n
, dQ

K ,mT ; RK ,m
)

−
n∑

m=1

Sm(0) N2n

({
dRmT
K ,i t

}

1≤i≤n
,
{
dRmT
jT,mT

}

1≤ j �=m≤n
, dRmT

K ,mT ; RK ,m
)

+
∑

1≤m,M≤n

SM (0)e−r(T−t) N2n

(
{dRMt

i t }1≤i≤n,
{
dRMt
jT,mT

}

1≤ j �=m≤n
, dRMt

Mt,mT ; RM,m
)

−
∑

1≤m,M≤n

Sm(0) N2n

({
dRmT
it

}

1≤i≤n
,
{
dRmT
jT,mT

}

1≤ j �=m≤n
, dRmT

Mt,mT ; RM,m
)

.

8 Appendix 3: Delta and gamma

The delta of an option can be directly derived by differentiating the pricing formula
with respect to the initial price of the underlying asset. However, here we employ
an alternative method that uses the linear homogeneity of the option pricing for-
mula to derive the formula for delta. For any linearly homogeneous function, that is,
f (λx, λy) = λ f (x, y), the Euler’s rule implies

x
∂ f

∂x
+ y

∂ f

∂y
= f (x, y).
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To simplify the expression,we use Si as shorthand for Si (0) hereafter. Since the general
pricing formula (2.6) is linearly homogeneous, that is,

P(λS1, λS2, . . . , λSn, λK ) = λP(S1, S2, . . . , Sn, K ),

by the Euler’s rule the equation can be written as

P(S1, S2, . . . , Sn, K ) =
n∑

a=1

Sa
∂P

∂Sa
+ K

∂P

∂K
= S1

∂P

∂S1
+ · · · + Sn

∂P

∂Sn
+ K

∂P

∂K
.

To obtain the delta with respect to the a-th asset, ∂P
∂Sa

, we need to collect all the
terms that contain Sa . Recall that the pricing formula of P(0) in Eq. (2.6) is

n∑

m=1

Ke−rT N2n

({
dQ
K ,i t

}

1≤i≤n
,
{
dQ
jT,mT

}

1≤ j �=m≤n
, dQ

K ,mT ; RK ,m
)

−
n∑

m=1

SmN2n

({
dRmT
K ,i t

}

1≤i≤n
, {dRmT

jT,mT }1≤ j �=m≤n, d
RmT
K ,mT ; RK ,m

)

+
∑

1≤m,M≤n

SMe−r(T−t) N2n

({
dRMt
i t

}

1≤i≤n
, {dRMt

jT,mT }1≤ j �=m≤n, d
RMt
Mt,mT ; RM,m

)

−
∑

1≤m,M≤n

SmN2n

({
dRmT
it

}

1≤i≤n
,
{
dRmT
jT,mT

}

1≤ j �=m≤n
, dRmT

Mt,mT ; RM,m
)

. (8.1)

Inside the above formula, Sa appears in the terms of the second and fourth sum-
mations when m is equal to a and in the third summation when M is equal to a. The
term that contains Sa in the second summation of the formula (8.1) is

−SaN2n

({
dRaT
K ,i t

}

1≤i≤n
,
{
dRaT
jT,aT

}

1≤ j �=a≤n
, dRaT

K ,aT ; RK ,a
)

.

Similarly, the termswith Sa in the third summation of the formula (8.1) can be grouped
as follows.

n∑

a′=1

Sae
−r(T−t)N2n

({
dRat
i t

}

1≤i≤n
,
{
dRat
jT,a′T

}

1≤ j �=a′≤n
, dRat

at,a′T ; Ra,a′
)

,

where a′ is merely an index of the underlying assets. Finally, we consider the terms
that contain Sa in the fourth summation of the formula (8.1) and the corresponding
sum of these terms is

−
n∑

a′=1

SaN2n

({
dRaT
it

}

1≤i≤n
,
{
dRaT
jT,aT

}

1≤ j �=a≤n
, dRaT

a′t,aT ; Ra′,a
)

.
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After rearranging the terms in the formula (8.1) with respect to each Sa and the
strike price K , we can obtain the formula for delta with respect to the a-th asset as
follows:

∂P

∂Sa
= −N2n

({
dRaT
K ,i t

}

1≤i≤n
,
{
dRaT
jT,aT

}

1≤ j �=a≤n
, dRaT

K ,aT ; RK ,a
)

+
n∑

a′=1

e−r(T−t)N2n

({
dRat
i t

}

1≤i≤n
,
{
dRat
jT,a′T

}

1≤ j �=a′≤n
, dRat

at,a′T ; Ra,a′
)

−
n∑

a′=1

N2n

({
dRaT
it

}

1≤i≤n
,
{
dRaT
jT,aT

}

1≤ j �=a≤n
, dRaT

a′t,aT ; Ra′,a
)

.

Based on the formula for delta, we can proceed to derive the formulae for gamma
with respect to the a-th asset and cross gamma with respect to the a-th and b-th assets,
∂2P
∂S2a

and ∂2P
∂Sa∂Sb

. Consider the derivation of ∂2P
∂S2a

first:

∂2P

∂S2a
= ∂

∂Sa

(
∂P

∂Sa

)

= − ∂

∂Sa
N2n

({
dRaT
K ,i t

}

1≤i≤n
,
{
dRaT
jT,aT

}

1≤ j �=a≤n
, dRaT

K ,aT ; RK ,a
)

+
n∑

a′=1

e−r(T−t) ∂

∂Sa
N2n

({
dRat
i t

}

1≤i≤n
,
{
dRat
jT,a′T

}

1≤ j �=a′≤n , dRat
at,a′T ; Ra,a′

)

−
n∑

a′=1

∂

∂Sa
N2n

({
dRaT
it

}

1≤i≤n
,
{
dRaT
jT,aT

}

1≤ j �=a≤n
, dRaT

a′t,aT ; Ra′,a
)

.

We obtain the derivative of the first term in the above equation by the chain rule.

∂

∂Sa
N2n

({
dRaT
K ,i t

}

1≤i≤n
,
{
dRaT
jT,aT

}

1≤ j �=a≤n
, dRaT

K ,aT ; RK ,a
)

=
∑

1≤i≤n

∂N2n

∂dRaT
K ,i t

∂dRaT
K ,i t

∂Sa
+

∑

1≤ j �=a≤n

∂N2n

∂dRaT
jT,aT

∂dRaT
jT,aT

∂Sa
+ ∂N2n

∂dRaT
K ,aT

∂dRaT
K ,aT

∂Sa
.

The key element in deriving the formula for gamma is the calculation of the deriv-
atives of the multivariate standard normal CDFs. The method adopted in this paper
is as follows. Let {du}1≤u≤2n ≡ {{dRaT

K ,i t }1≤i≤n, {dRaT
jT,aT }1≤ j �=a≤n, d

RaT
K ,aT }, and ρ

K ,a
u,v

be the correlation coefficient element of RK ,a . Taking ∂N2n/∂d
RaT
K ,aT as an example,

we rewrite the above multivariate standard normal CDF according to the results in
Curnow and Dunnett (1962).

123



The valuation of forward-start rainbow options 185

N2n

({
dRaT
K ,i t

}

1≤i≤n
,
{
dRaT
jT,aT

}

1≤ j �=a≤n
, dRaT

K ,aT ; RK ,a
)

= N2n

(
{du}1≤u≤2n ; RK ,a

)

=
∫ d2n

−∞
N2n−1

(
{
d̂u (x)

}
1≤u<2n ;

(
ρ̂K ,a
u,v

)
1≤u<2n
1≤v<2n

)
φ (x) dx .

where

d2n ≡ dRaT
K ,aT , d̂u(x)=

du − ρ
K ,a
u,2nx√

1 −
(
ρ
K ,a
u,2n

)2
, and ρ̂K ,a

u,v = ρ
K ,a
u,v − ρ

K ,a
u,2nρ

K ,a
v,2n√

1 −
(
ρ
K ,a
u,2n

)2
√
1 −

(
ρ
K ,a
v,2n

)2
,

and φ(x) is the standard normal probability density function. Hence, ∂N2n/∂d2n =
∂N2n/∂d

RaT
K ,aT can be calculated as

∂N2n

∂d2n
= N2n−1

(
{
d̂u(x)

}
1≤u<2n ;

(
ρ̂K ,a
u,v

)
1≤u<2n
1≤v<2n

)
φ(x)

∣∣∣∣∣
x=d2n=d

RaT
K ,aT

.

After similarly calculating other terms, we obtain the formula for the FSRPO’s
gamma. This paper only briefly describes the method to derive the formulae of gamma
and cross gamma, and the detailed formulae are omitted for brevity but available upon
request.

9 Appendix 4: Formulae of discrete-sampling lookback options

This appendix demonstrates the generality of our main theorem by applying it to
discrete-sampling lookback rainbow options. In order to describe the formulae more
clearly, the notation is slightly different from that in Sect. 2. Let Si (t j ) denote the
price of the i-th stock at time t j for i = 1, 2, . . . ,m, j = 1, 2, . . . , n, and 0 = t0 <

t1 < · · · < tn = T . The return dynamics of Si for i = 1, 2, . . . ,m follow the same
stochastic differential equations as Eq. (2.2). In addition, M denotes the historical
highest price up to now. Except for above differences, the rest of the notation, such as
r , σi , K , T , and ρi j , is the same.

Consider the discrete-sampling lookback rainbow option that is a call option on the
maximum among all the prices of every risky asset at every monitoring time during the
option’s life. Let Cmax(T ) be the payoff of this option at maturity T with the historical
highest price M until t0 and constant strike price K :

Cmax(T ) =
(
max
k,l

(M, Sk(tl)) − K

)+
=

(
max
k,l

(M, Sk(tl)) − K

)
· IA,
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where

Ai j =
{
Si (t j ) = max

k,l
(M, Sk(tl)) ≥ K

}
,

AM =
{
M = max

k,l
(M, Sk(tl)) ≥ K

}
,

A = ∪
i, j

{
Si (t j ) = max

k,l
(M, Sk(tl)) ≥ K

}
∪
{
M = max

k,l
(M, Sk(tl)) ≥ K

}

=
(

∪
i, j

Ai j

)
∪ AM .

By the risk-neutral valuation, the option value today can be expressed as follows:

Cmax(0) = e−rT EQ[Cmax(T )]
= e−rT EQ[(max

k,l
(M, Sk(tl)) − K ) · IA]

= e−rT EQ[(max
k,l

(M, Sk(tl)) · IA] − Ke−rT EQ[IA]

= e−rT
∑

i, j

E Q[(Si (t j ) · IAi j )] + Me−rT EQ[IAM ] − Ke−rT EQ[IA].

(9.1)

As M ≥ K , IA = 1, the equation (9.1) can be expressed as

Cmax(0) = e−rT
∑

i, j

E Q[(Si (t j ) · IAi j )] + Me−rT EQ [
IAM

] − Ke−rT

=
⎧
⎨

⎩
∑

i, j

Si (0)e
−r(T−t j )Nmn

[(
D1i jkl

)

mn
;
(
F1i jkl,pq

)

mn×mn

]⎫⎬

⎭

+ Me−rT Nmn
[(
d1i j

)
mn ; ( f 1i j,kl)mn×mn

] − Ke−rT , (9.2)

where

d1i j = − ln(Si (0)/M) + (r − 1
2σ

2
i )t j

σi
√
t j

,

f 1i j,kl = ρik min(t j , tl)√
t j · tl ,

D1i jkl =
⎧
⎨

⎩

ln(Si (0)/M)+(r+ 1
2 σ 2

i )t j
σi

√
t j

for k = i and l = j
ln(Si (0)/Sk (0))+r(t j−tl )+ 1

2	2
i jkl

	i jkl
otherwise

,
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F1i jkl,pq =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 for kl = pq = i j
σi t j−ρi pσp min(t j ,tq )√

t j	i j pq
for kl = i j , pq �= i j

σi t j−ρikσk min(t j ,tl )√
t j	i jkl

for kl �= i j , pq = i j
H

	i jkl	i j pq
for kl �= i j , pq �= i j

,

and

	i jkl =
√

σ 2
i t j − 2ρikσiσk min(t j , tl) + σ 2

k tl ,

and

H = σ 2
i t j − ρikσiσk min(t j , tl) − ρi pσiσp min(t j , tq) + ρkpσkσp min(tl , tq).

In the other case of M < K , IAM = 0, the formula is similar to the case of M ≥ K ,

and Eq. (9.1) can be expressed as

Cmax(0) = e−rT
∑

i, j

E Q [
(Si (t j ) · IAi j )

] − Ke−rT EQ[IA]

=
⎧
⎨

⎩
∑

i, j

Si (0)e
−r(T−t j )Nmn

[
(D2i jkl)mn; (F2i jkl,pq)mn×mn

]
⎫
⎬

⎭

− Ke−rT (
1 − Nmn

[(
d2i j

)
mn ; ( f 2i j,kl)mn×mn

])
, (9.3)

where

d2i j = − ln(Si (0)/K ) + (r − 1
2σ

2
i )t j

σi
√
t j

,

f 2i j,kl = f 1i j,kl ,

D2i jkl =
{

ln(Si (0)/K )+(r+ 1
2 σ 2

i )t j
σi

√
t j

for k = i and l = j

D1i jkl otherwise
,

F2i jkl,pq = F1i jkl,pq .

This appendix shows that the pricing technique of Theorem 2.1 can be employed to
price different types of discrete-sampling path-dependent rainbow options. Therefore,
the technique proposed in this paper can broach many possible directions in the design
of new contracts with both the path dependent and multiple asset features.
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