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1 Introduction

In equity markets, the market price of risk is the excess return over the risk-free
rate per unit standard deviation ((μ − r)/σ ) that investors want as compensation
for taking risk, which is also called the Sharpe ratio. This ratio plays an important
role in derivatives valuation. If the underlying asset is a traded asset, it is possible to
build a risk-free portfolio by buying the derivative and selling the underlying asset or
vice versa. Consequently, the market price of risk does not appear in the derivatives
valuation model.

However, if the underlying asset is not a traded asset, there is no way of building a
riskless portfolio by buying the derivative and selling the underlying asset or vice versa;
therefore, we must know how much return is needed to compensate the unhedgeable
risk. This is why the market price of risk must be estimated to obtain a theoretical
value for the derivative asset.

In commodity markets, the market price of risk has a slightly different defini-
tion. As noted by Kolos and Ronn (2008), equities require a costly investment and,
consequently, return the risk-free rate under the risk-neutral measure. In the case of
commodities, it should be noted that sometimes there is a storage cost associated with
storing the commodity and also a convenience yield associated with holding the com-
modity rather than the derivative asset. Nevertheless, futures contracts are costless to
enter into; therefore, their risk-neutral drift is zero. Thus, the market price of risk in
commodity markets is defined as the ratio of the asset return to its standard devia-
tion (μ/σ). Additionally, whereas the market price of risk must be positive in equity
markets, it can be negative in commodity markets.

There have been several papers that have analyzed the properties of market prices
of risk in commodity markets and their relation with other variables. Fama and French
(1987, 1988) note the importance of allowing for time-varying market prices of risk
as negative correlations between spot prices and market prices of risk can generate
mean reversion in spot prices. Bessembinder (1992) shows that market prices of risk in
financial and commodity markets are related to the covariance of the market portfolio
and the futures returns. Routledge et al. (2001) and Bessembinder and Lemmon (2002)
relate market prices of risk to several measures of uncertainty, such as price volatility,
spikes and uncertainty in demand. Moosa and Al-Loughani (1994), Sardosky (2002)
and Jalali-Naini and Kazemi-Manesh (2006) find evidence of variable market prices
of risk in oil markets using GARCH models.

More recently, Kolos and Ronn (2008) estimate the market prices of risk for energy
commodities, finding positive long-term and negative short-term market prices of risk.
Lucia and Torro (2011) find that market prices of risk in the Nordic Power Exchange
(Nord Pool) vary seasonally over the year and are related to unexpected low reservoir
levels.

There are also several recent papers that find determinants of commodity market
prices of risk, such as Hong and Yogo (2012) or Archarya et al. (2013) among others.
Moreover, Trolle and Schwartz (2010) and Prokopczuk and Simen (2013) find that
the variance of market prices of risk varies through time. Baker and Routledge (2012)
analyze the dynamics of risk premium in oil markets by solving a Pareto risk-sharing
problem. Basu and Miffre (2013) find that systematic hedging pressure is a significant
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determinant of commodity futures risk premia. Le and Zhu (2013) find that risk premia
in gold lease rates are time-varying and increasing in the level and slope of gold lease
rates and volatility.

There have also been several papers that have analyzed the importance of allow-
ing for time-varying market prices of risk from the point of view of asset valuation.
Following the ideas in Fama (1984) and Fama and Bliss (1987), Duffee (2002) and
Dai and Singleton (2002) propose interest rate models where market prices of risk
are linear functions of the state variables. Casassus and Collin-Dufresne (2005) pro-
pose and estimate a three-factor model for commodity spot prices, convenience yields
and interest rates where convenience yields depend on spot prices and interest rates,
and time-varying (state depending) market prices of risk using a maximum likelihood
method. They also test the importance of time-varying market prices of risk and the
dependence of convenience yields on spot prices and interest rates on the valuation of
a set of theoretical commodity European call options.

More recently, Trolle and Schwartz (2009) and Casassus et al. (2013) propose
models with time-varying market prices of risk to value commodity derivatives within
an affine framework. Trolle and Schwartz (2009) allow for stochastic volatility within
a factor model for commodity prices, where market prices of risk depend only on the
volatility factors. Casassus et al. (2013) propose a multi-commodity factor model for
commodity prices, where market prices of risk depend on the model factors. They
apply their model to the valuation of crack-spread options. However, they do not
compare the effects of time-varying and constant market prices of risk from the point
of view of option valuation. Bhar and Lee (2011) propose a three-factor model for
crude oil prices with time-varying market prices of risk. They apply their model to
the valuation of crude oil futures prices, but they do not test the effect of time-varying
market prices of risk on option pricing.

In this paper, we extend these ideas by proposing and estimating a commodity
derivative valuation model with time-varying market prices of risk, which is applied
to the valuation of an extensive database of exchange-traded commodity American
options. Thus, there are three key questions that we try to address in this work:
(i) Are market prices of risk constant or depend on the state variables? (ii) Can a
two-factor model with time-varying market prices of risk help to understand the sto-
chastic behavior of commodity futures prices? and (iii) Can this model allowing for
time-varying market prices of risk help to reduce estimation errors when valuing
commodity American options compared to standard constant market prices of risk
models?

Specifically, we propose an extended Schwartz and Smith (2000) two factor model
allowing for market prices of risk to depend on the long- and short-term model factors.
The model is estimated using crude oil, heating oil, gasoline and natural gas futures
prices traded on the NYMEX, through the Kalman filter method.

The valuation results obtained with an extensive sample of commodity American
options, traded on the NYMEX, show that the proposed model with time-varying
market prices of risk outperforms standard models with constant market prices of risk.
These results confirm the previous findings shown in the literature of non-constant
market prices of risk. It is important to note that in the papers by Trolle and Schwartz
(2009) and Casassus et al. (2013) models allowing for time-varying market prices
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of risk are presented and are applied to the valuation of exchange-traded options.
However, they do not analyze the effect of time-varying market prices of risk from the
point of view of option pricing, given that their objective is to incorporate stochastic
volatility effects in the first case (Trolle and Schwartz 2009) or to present a multi-
commodity factor model in the second one (Casassus et al. 2013). Therefore, the
main contribution of this paper is the analysis of the effect of time-varying market
prices of risk, compared to the constant case, on option pricing using exchange-traded
data.

The remainder of this paper is organized as follows. Section 2 presents the data sets
used in the paper. The factor model with time-varying market prices of risk is proposed
and estimated in Sect. 3. Section 4 presents the option valuation results obtained with
the models with time-varying and constant market prices of risk. Finally, Sect. 5
concludes with a summary and discussion.

2 Data

The data set used in this paper consists of weekly observations of WTI (light sweet)
crude oil, heating oil, unleaded gasoline (RBOB) and natural gas (Henry Hub) futures
prices traded on the NYMEX.

Currently, there are futures being traded on NYMEX for WTI crude oil with matu-
rities of 1 month to 7 years, for heating oil from 1 to 18 months, for gasoline from 1
to 12 months and for Henry Hub natural gas from 1 month to 6 years. However, there
is not enough liquidity for the futures with longer maturities, especially in the case
of gasoline. Therefore, in the cases of WTI crude oil and heating oil, our data set is
comprised of futures prices from 1 to 18 months (1,338 weekly observations) between
1/1/1985 and 8/16/2010. In the case of RBOB gasoline, the data set is comprised of
futures prices from 1 to 9 months (1,338 weekly observations) between 1/1/1985 and
8/16/2010. Finally, in the case of Henry Hub natural gas, the data set is comprised of
futures prices from 1 to 18 months (1,064 weekly observations) between 4/2/1990 and
8/16/2010. The main descriptive statistics of these variables are contained in Table 1.

To assess the robustness of the results, two different data sets have been employed for
each commodity. The first set contains more data (weeks) but fewer futures contracts,
while the second set contains fewer weeks but more futures contracts.

In the case of WTI crude oil, the first data set is comprised of contracts F1, F3, F5,
F7 and F9 from 1/1/1985 to 8/16/2010, yielding 180 quotations for each contract. F1 is
the contract for the month closest to maturity, F2 is the contract for the second-closest
month to maturity, and so on. The second data set for WTI crude oil is comprised
of contracts F1, F4, F7, F11, F15 and F18 from 9/9/1996 to 8/16/2010, yielding 82
quotations for each contract.

In the case of heating oil, the first data set is comprised of contracts F1, F3, F6,
F8 and F10 from 10/14/1985 to 8/16/2010, yielding 177 quotations for each contract.
The second data set for heating oil is comprised of contracts F1, F4, F8, F11, F15 and
F18 from 9/9/1996 to 8/16/2010, yielding 82 quotations for each contract.

In the case of RBOB gasoline, the first data set is comprised of contracts F1, F3,
F4, F5 and F7 from 4/29/1985 to 8/16/2010, yielding 181 quotations for each contract.
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Table 1 Descriptive statistics

WTI crude oil Heating oil RBOB gasoline Henry Hub natural gas

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

F1 33.39 23.56 38.91 27.65 39.76 26.01 4.04 2.60

F2 33.4 23.79 38.94 27.94 39.53 26.01 4.13 2.66

F3 33.37 23.97 38.98 28.22 39.34 25.97 4.19 2.71

F4 33.32 24.11 38.99 28.46 39.16 25.91 4.22 2.73

F5 33.26 24.23 38.97 28.65 39.03 25.93 4.25 2.75

F6 33.2 24.33 38.94 28.81 38.92 25.97 4.27 2.76

F7 33.14 24.41 39 29.06 38.95 26.17 4.29 2.77

F8 33.08 24.48 38.98 29.17 39.56 26.71 4.3 2.78

F9 33.03 24.54 38.94 29.21 40.52 27.28 4.3 2.78

F10 33.15 24.67 38.94 29.27 4.29 2.76

F11 33.6 24.96 39.39 29.59 4.29 2.74

F12 34.24 25.27 40.44 30.17 4.33 2.73

F13 35.1 25.63 42.17 30.92 4.53 2.73

F14 35.35 25.75 42.78 31.25 4.52 2.73

F15 35.6 25.96 43.79 31.77 4.52 2.73

F16 35.7 26.09 44.62 32.29 4.52 2.73

F17 35.8 26.17 46.5 33.03 4.53 2.73

F18 36.2 26.43 49.27 33.84 4.56 2.73

The table shows the mean and standard deviation (S.D.) of the four commodity series prices. F1 is the
futures contract closest to maturity, F2 is the contract second-closest to maturity and so on. In the cases
of WTI crude oil and heating oil the data set is comprised of futures prices from 1 to 18 months (1,338
weekly observations) from 1/1/1985 to 8/16/2010. In the case of RBOB gasoline, the data set is comprised
of futures prices from 1 to 9 months (1,338 weekly observations) from 1/1/1985 to 8/16/2010. In the case
of Henry Hub natural gas, the data set is comprised of futures prices from 1 to 18 months (1,064 weekly
observations) from 4/2/1990 to 8/16/2010

The second data set for heating oil is comprised of contracts F1, F3, F5, F7 and F9
from 7/17/1995 to 8/16/2010, yielding 92 quotations for each contract.

Finally, in the case of Henry Hub natural gas, the first data set is comprised of
contracts F1, F4, F6, F9 and F11 from 4/16/1990 to 8/16/2010, yielding 135 quotations
for each contract. The second data set for Henry Hub natural gas prices is comprised
of contracts F1, F4, F8, F12, F15, F18, F22, F26, F29, F31 and F35 from 5/28/1997
to 8/16/2010, yielding 76 quotations for each contract.

3 A factor model with time-varying market prices of risk

In this section, a factor model with time-varying market prices of risk depending on
the model factors is proposed and estimated. The model will be an extension of the
Schwartz and Smith (2000) two-factor model, which is one of the most popular models
in the literature to capture the stochastic behavior of commodity prices.
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In the Schwartz and Smith (2000) model, the log-spot price (Xt ) is assumed to
be the sum of two stochastic factors, a short-term deviation (χt ) and a long-term
equilibrium price level (ξt ).1 Thus,

Xt = ξt + χt (1)

The stochastic differential equations (SDEs) for these factors are as follows:

{
dξt = μξdt + σξdWξ t

dχt = −κχt dt + σχdWχ t
(2)

where dWξ t and dWχ t can be correlated (dWξ t dWχ t = ρξχdt) and with ρξχ repre-
senting the coefficient of correlation between long- and short-term factors.

To value derivative contracts, we must rely on the “risk-neutral” version of the
model. The SDEs for the factors under the equivalent martingale measure can be
expressed as: {

dξt = (μξ − λξ )dt + σξdW ∗
ξ t

dχt = (−κχt − λχ)dt + σχdW ∗
χ t

(3)

where λξ and λχ are the market prices of risk for the long- and short-term factors,
respectively, and W ∗

ξ t and W ∗
χ t are the factor Brownian motions under the equivalent

martingale measure.
Moreover, in the cases of commodities, such as natural gas, heating oil and gaso-

line, a deterministic seasonal component is added, as suggested by Sorensen (2002).2

Therefore, the log spot price for heating oil, gasoline and natural gas (Xt ) is assumed to
be the sum of two stochastic factors (χt and ξt ) and a deterministic seasonal trigono-
metric component (αt ), Xt = ξt + χt + αt . The SDEs for ξt and χt are given by
expressions (2) and:

dαt = 2πϕα∗
t dt

dα∗
t = −2πϕαt dt (4)

where α∗
t is the other seasonal factor, which complements αt , and ϕ is the seasonal

period.
The model with time-varying market prices of risk will be an extension of the two-

factor model described above, where the log spot price for heating oil, gasoline and
natural gas (Xt ) is assumed to be the sum of two stochastic factors (χt and ξt ) and a
deterministic seasonal trigonometric component (αt ), Xt = ξt +χt +αt (Xt = ξt +χt

for crude oil). The SDEs for the long- and short- term factors under the equivalent
martingale measure, with time-varying market prices of risk, can be expressed as:

1 In this model large moves affecting the long-term run are captured through the long-term factor, whereas
small, short-term deviations from the long-term run are captured through the short-term factor.
2 Sorensen (2002) suggests introducing into the model a deterministic seasonal component for agricultural
commodities. Here, we use Sorensen’s proposal for heating oil, gasoline and natural gas, which present a
strong seasonal behavior (see, for example, Mirantes et al. 2012a).
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{
dξt = (μξ − λξt )dt + σξdW ∗

ξ t
dχt = (−κχt − λχt )dt + σχdW ∗

χ t
(5)

where, as before, W ∗
ξ t and W ∗

χ t are the factor Brownian motions under the equivalent
martingale measure, and λξ t and λχ t are time-varying market prices of risk for the
long- and short-term factors, respectively.3,4

Following Duffee (2002), Dai and Singleton (2002) and Casassus and Collin-
Dufresne (2005), the market prices of risk are expressed as linear functions of the
underlying long- and short-term factors:

λξ t = λξ0 + λξ1 · ξt + λξ2 · χt

λχ t = λχ0 + λχ1 · ξt + λχ2 · χt (6)

As stated in previous studies, one of the main difficulties in estimating the parame-
ters of the two-factor model is that the short- and long-term factors (or state variables)
are not directly observable. Instead, they must be estimated from spot and/or futures
prices.5

The formal method to estimate the model is to use the Kalman filter methodology,
which is briefly described in the “Appendix”. The results of the estimation of this factor
model with time-varying market prices of risk, together with the results of the standard
two-factor Schwartz and Smith (2000) model with constant market prices of risk for
the four commodity series using both the first and the second data sets described in
Sect. 2 are shown in Table 2 (WTI crude oil), Table 3 (heating oil), Table 4 (RBOB
gasoline) and Table 5 (Henry Hub natural gas).

The results in Tables 2, 3, 4 and 5 confirm what we can find in other papers like
Schwartz (1997) or Schwartz-Smith (2000), that is, the presence of the mean rever-
sion effect, typically observed in commodity markets (parameter κ is significant in
all cases). Moreover, as expected, both long- and short-term factors are found to be
stochastic (their corresponding standard deviations, σξ and σχ , respectively, are sig-
nificant), although the short-term standard deviation is found to be higher than the
corresponding long-term standard deviation, suggesting that short-term effects have

3 As shown in Schwartz and Smith (2000), their short-term/long-term model is equivalent to the stochastic
convenience yield model by Gibson and Schwartz (1990), in which the convenience yield is assumed to
follow an Ornstein–Uhlenbeck process. Therefore, although not explicitly considered in our model with
time-varying market prices of risk, convenience yields are assumed to follow a mean-reverting process.
Recently, Bakshi et al. (2013) point out that a third factor, the commodity momentum, is needed to describe
the cross-sectional and time-series variation of commodity returns.
4 Here we assume homoskedasticity in the error terms. Trolle and Schwartz (2009) present a model allowing
for stochastic volatility for crude oil prices, using daily data. More recently, Christoffersen et al. (2013)
present a discrete-time GARCH-type model allowing for both time-varying volatility and jumps. However,
in this paper we have confined ourselves to the constant volatility case with no jumps for several reasons.
Firstly, here we are using weekly data. Secondly, a stochastic volatility model with jumps is probably more
realistic, but also more complex so much the Kalman filter formulae cannot be computed explicitly in an
exact way and it is necessary the use of approximations, such as the extended Kalman filter, whereas all the
formulae in this article are exact.
5 The exact expression for the futures price under the Schwartz and Smith (2000) two-factor model with
seasonal factors can be found in Mirantes et al. (2012a).
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Table 2 Estimation results of the factor models with time-varying and constant market prices of risk WTI
crude oil

First data set Second data set

WTI WTI WTI WTI
Constant Variable Constant Variable
MPR MPR MPR MPR

μξ 0.0452∗ 0.0404 0.1128∗∗∗ 0.0868∗∗
(0.0270) (0.0268) (0.0334) (0.0410)

κ 1.9748∗∗∗ 1.1859∗∗∗ 1.1254∗∗∗ 1.3257∗∗∗
(0.0234) (0.2318) (0.0103) (0.2478)

σξ 0.1936∗∗∗ 0.1919∗∗∗ 0.1761∗∗∗ 0.2160∗∗∗
(0.0030) (0.0170) (0.0037) (0.0283)

σχ 0.2467∗∗∗ 0.1799∗∗∗ 0.2763∗∗∗ 0.1393∗∗∗
(0.0043) (0.0266) (0.0065) (0.0384)

λξ0 0.0907∗∗∗ 0.3821∗ 0.1669∗∗∗ 0.4945∗∗∗
(0.0271) (0.1991) (0.0334) (0.1505)

λξ1 – −0.0856 – −0.1009∗∗∗
(0.0569) (0.0387)

λξ2 – 0.8030∗ – 1.2291∗
(0.4184) (0.6864)

λ 0.0453 1.1308∗∗∗ −0.0333 0.3670∗∗
(0.0346) (0.3736) (0.0524) (0.1758)

λχ1 – −0.3251∗∗∗ – −0.1022∗∗
(0.1084) (0.0473)

λχ2 – 0.8121∗∗∗ – −0.1048

(0.2647) (0.2702)

ρξχ 0.1494∗∗∗ 0.5775∗∗∗ 0.0445 0.7349∗∗∗
(0.0239) (0.0949) (0.0320) (0.0791)

ση 0.0079∗∗∗ 0.0078∗∗∗ 0.0093∗∗∗ 0.0093∗∗∗
(0.0001) (0.0001) (0.0001) (0.0001)

Log-L 50,007.70 50,160.36 32,146.72 32,163.08

AIC 49,991.70 50,136.36 32,130.72 32,139.08

SIC 49,950.11 50,073.97 32,093.99 32,084.00

The table shows the estimation results of the model with time-varying market prices of risk (MPR), depend-
ing on the model long- and short-term factors, together with those obtained with the standard Schwartz and
Smith (2000) two-factor model with constant market prices of risk. The table shows the results obtained
with both the first and the second data sets described in Sect. 2. Standard errors are in parentheses. The
estimated values are reported with ∗ denoting significance at 10 %, ∗∗ denoting significance at 5 %, and ∗∗∗
denoting significance at 1 %

a higher impact on spot prices than long-term effects.6 However, as explained above,
it must be kept in mind that short-term effects tend to disappear with time (the short-

6 This fact is also found in Schwartz and Smith (2000) and Mirantes et al. (2012b), among others.
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Table 3 Estimation results of the factor models with time-varying and constant market prices of risk heating
oil

First data set Second data set

Heating oil Heating oil Heating oil Heating oil
Constant Variable Constant Variable
MPR MPR MPR MPR

μξ 0.1659∗∗∗ 0.3994∗∗∗ 0.2248∗∗∗ 0.0635

(0.0310) (0.1237) (0.0327) (0.0283)

κ 1.8522∗∗∗ 1.1312∗∗∗ 1.7080∗∗∗ 0.4026∗∗∗

(0.0911) (0.0205) (0.0158) (0.0000)

σξ 0.1770∗∗∗ 0.3691∗∗∗ 0.1696∗∗∗ 0.1905∗∗∗

(0.0035) (0.0031) (0.0037) (0.0000)

σχ 0.3343∗∗∗ 0.6105∗∗∗ 0.2441∗∗∗ 0.3758∗∗∗

(0.0158) (0.0206) (0.0072) (0.0000)

ϕ 0.9976∗∗∗ 0.9974∗∗∗ 0.9972∗∗∗ 0.9974∗∗∗

(0.0000) (0.0000) (0.0002) (0.0002)

λξ0 0.2239∗∗∗ 0.3642 0.2322∗∗∗ 0.2883

(0.0327) (0.2214) (0.0329) (0.0000)

λξ1 – −0.2846∗∗∗ – 0.0216∗∗∗

(0.0000) (0.0000)

λ2 – −0.8459∗∗∗ – −0.5506∗∗∗

(0.0225) (0.0198)

λχ0 0.6999∗∗∗ 0.5173∗∗ 0.3546∗∗∗ −0.9568∗∗∗

(0.1079) (0.2067) (0.0496) (0.0000)

λχ1 – 0.5407∗∗∗ – 0.0462∗∗∗

(0.0198) (0.0000)

λχ2 – 0.6409∗∗∗ – 1.1536∗∗∗

(0.0378) (0.0000)

ρξχ −0.1229∗∗∗ −0.5889∗∗∗ 0.4488∗∗∗ −0.4248∗∗∗

(0.0431) (0.0340) (0.0307) (0.0000)

ση 0.0209∗∗∗ 0.0143∗∗∗ 0.0190∗∗∗ 0.0187∗∗∗

(0.0003) (0.0001) (0.0001) (0.0001)

Log-L 47,709.23 51,511.79 42,417.57 42,573.40

AIC 47,691.23 51,485.79 42,399.57 42,547.40

SIC 47,644.72 51,418.61 42,358.26 42,487.73

The table shows the estimation results of the model with time-varying market prices of risk (MPR), depend-
ing on the model long- and short-term factors, together with those obtained with the standard Schwartz and
Smith (2000) two-factor model with constant market prices of risk. The table shows the results obtained
with both the first and the second data sets described in Sect. 2. Standard errors are in parentheses. The
estimated values are reported with ∗ denoting significance at 10 %, ∗∗ denoting significance at 5 %, and ∗∗∗
denoting significance at 1 %

term process is stationary), whereas long-term effects do not disappear with time (the
long-term process is integrated).

However, the most important issue in Tables 2, 3, 4 and 5 from the point of view
of the goal of this paper, is that the parameters associated with the market prices of
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Table 4 Estimation results of the factor models with time-varying and constant market prices of risk rbob
gasoline

First data set Second data set

RBOB RBOB RBOB RBOB
Constant Variable Constant Variable
MPR MPR MPR MPR

μξ −0.4000∗∗∗ 0.2855∗∗∗ 0.2621∗∗∗ 0.0909

(0000) (0.0173) (0.0315) (0.0200)

κ 3.1144∗∗∗ 0.4002∗∗∗ 2.0500∗∗∗ 2.1285∗∗∗
(0.0916) (0.0206) (0.0558) (0.1590)

σξ 0.2093∗∗∗ 0.3023∗∗∗ 0.1877∗∗∗ 0.2458∗∗∗
(0.0034) (0.0000) (0.0045) (0.0000)

σχ 0.3770∗∗∗ 0.3212∗∗∗ 0.3084∗∗∗ 0.5067∗∗∗
(0.0088) (0.0000) (0.0084) (0.0000)

ϕ 0.9947∗∗∗ 0.9940∗∗∗ 1.0028∗∗∗ 1.0002∗∗∗
(0.0001) (0.0000) (0.0004) (0.0003)

λξ0 −0.3919∗∗∗ 0.6893∗∗∗ 0.3439∗∗∗ 0.0298

(0.0041) (0.0000) (0.0323) (0.1130)

λξ1 – 0.0576∗∗∗ – −0.0045

(0.0140) (0.0396)

λξ2 – 0.3876∗∗∗ – −0.8974∗∗∗
(0.0000) (0.0000)

λχ0 −0.3849∗∗∗ 0.6412∗ 0.3791∗∗∗ 0.9855∗∗∗
(0.0288) (0.0000) (0.0548) (0.2980)

λχ1 – 0.4053∗∗∗ – −0.1642∗
(0.0000) (0.0901)

λχ2 – 1.1309∗∗∗ – −0.0410

(0.0482) (0.1778)

ρξχ 0.0764∗∗ −0.2500∗∗∗ 0.1072∗∗∗ −0.7064∗∗∗
(0.0322) (0.0000) (0.0404) (0.0000)

ση 0.0162∗∗∗ 0.0151∗∗∗ 0.0162∗∗∗ 0.0159∗∗∗
(0.0001) (0.0001) (0.0002) (0.0002)

Log-L 42,227.28 42,409.56 25,273.54 25,374.57

AIC 42,209.28 42,383.56 25,255.54 25,348.57

SIC 42,162.60 42,316.14 25,213.51 25,287.86

The table shows the estimation results of the model with time-varying market prices of risk (MPR), depend-
ing on the model long- and short-term factors, together with those obtained with the standard Schwartz and
Smith (2000) two-factor model with constant market prices of risk. The table shows the results obtained
with both the first and the second data sets described in Sect. 2. Standard errors are in parentheses. The
estimated values are reported with ∗ denoting significance at 10 %, ∗∗ denoting significance at 5 %, and ∗∗∗
denoting significance at 1 %

risk (λξ0, λξ1, λξ2, λχ0, λχ1 and λχ2) are significant in most of the cases, confirming
that market prices of risk vary through time depending on the economic conditions
(proxied in this paper by the model long- and short-term factors).
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Table 5 Estimation results of the factor models with time-varying and constant market prices of risk Henry
Hub natural gas

First data set Second data set

Henry Hub Henry Hub Henry Hub Henry Hub
Constant Variable Constant Variable
MPR MPR MPR MPR

μξ −0.3996∗∗∗ −0.2996∗∗∗ 0.0719∗∗∗ 0.0284∗∗∗
(0.0307) (0.0621) (0.0252) (0.0000)

κ 1.8158∗∗∗ 0.8416∗∗∗ 1.1163∗∗∗ 1.0458∗∗∗
(0.0000) (0.0607) (0.0138) (0.0000)

σξ 0.2515∗∗∗ 0.2334∗∗∗ 0.1297∗∗∗ 0.3325∗∗∗
(0.0000) (0.0295) (0.0040) (0.0000)

σχ 0.5547∗∗∗ 0.5475∗∗∗ 0.4779∗∗∗ 0.1714∗∗∗
(0.0087) (0.0285) (0.0155) (0.0000)

ϕ 0.9957∗∗∗ 0.9997∗∗∗ 0.9999∗∗∗ 0.9992∗∗∗
(0.0001) (0.0002) (0.0001) (0.0001)

λξ0 −0.1397∗∗∗ 0.4892∗∗∗ 0.1236∗∗∗ −0.0587∗∗∗
(0.0488) (0.0284) (0.0253) (0.0000)

λξ1 – −0.3987∗∗∗ – −0.0029

(0.0539) (0.0506)

λξ2 – −0.3539∗∗∗ – 1.9929∗∗∗
(0.0768) (0.0000)

λχ0 0.0008 0.4166∗ −0.2177∗∗ −0.0252∗∗∗
(0.0994) (0.1922) (0.0928) (0.0000)

λχ1 – 0.1618 – −0.0358

(0.1466) (0.0212)

λχ2 – 0.8608∗∗∗ – 0.0452∗∗∗
(0.0000) (0.0000)

ρξχ −0.5678∗∗∗ −0.7205∗∗∗ −0.0222 0.9166∗∗∗
(0.0000) (0.0677) (0.0471) (0.0000)

ση 0.0916∗∗∗ 0.0914∗∗∗ 0.0399∗∗∗ 0.0383∗∗∗
(0.0006) (0.0006) (0.0002) (0.0002)

Log-L 22,625.01 22,758.45 39,438.12 40,032.74

AIC 22,607.01 22,732.45 39,420.12 40,006.74

SIC 22,562.30 22,667.87 39,379.28 39,947.75

The table shows the estimation results of the model with time-varying market prices of risk (MPR), depend-
ing on the model long- and short-term factors, together with those obtained with the standard Schwartz and
Smith (2000) two-factor model with constant market prices of risk. The table shows the results obtained
with both the first and the second data sets described in Sect. 2. Standard errors are in parentheses. The
estimated values are reported with ∗ denoting significance at 10 %, ∗∗ denoting significance at 5 %, and ∗∗∗
denoting significance at 1 %

If we define the Schwartz information criterion (SIC) as ln(L M L)−q ln(T ), where
q is the number of estimated parameters, T is the number of observations and L M L

is the value of the likelihood function using the q estimated parameters, then the fit
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Table 6 Likelihood ratio tests

Statistic WTI WTI Heating oil Heating oil
First data set Second data set First data set Second data set

Log-L Const. MPR 50,007.70 32,146.72 47,709.23 42,417.57

Log-L Var. MPR 50,160.36 32,163.08 51,511.79 42,573.40

LR (p value) 305.32 (0.00) 32.72 (0.00) 7,605.12 (0.00) 311.66 (0.00)

Statistic RBOB RBOB Henry Hub Henry Hub

First data set Second data set First data set Second data set

Log-L Const. MPR 42,227.28 25,273.54 22,625.01 39,438.12

Log-L Var. MPR 42,409.56 25,374.57 22,758.45 40,032.74

LR (p value) 364.56 (0.00) 202.06 (0.00) 266.88 (0.00) 1189.24 (0.00)

The Table shows the values of the maximized log-likelihood function (Log-L) for the models with constant
and time-varying market prices of risk (MPR), the likelihood ratio (LR) and asymptotic p values for the
four commodities under study and for the two data sets employed in the estimation procedure

is better when the SIC is higher. The same conclusions are obtained with the Akaike
information criterion (AIC), which is defined as ln(L M L)− 2q. It is worth noting that
in Tables 2, 3, 4 and 5, the values of the SIC and the AIC are higher in the model
with time-varying market prices of risk. This finding confirms the results obtained by
Casassus and Collin-Dufresne (2005), in that allowing for time-varying market prices
of risk improves the estimation results.7

A similar way of comparing the models is to compute a likelihood ratio test. The
model with time-varying market prices of risk nests the constant market prices of risk
one when λξ1 = λξ2 = λχ1 = λχ2 = 0 in Eq. (6). Therefore, the restrictions imposed
by the constant market prices of risk model can be tested by means of a likelihood
ratio test. The results are contained in Table 6. The value of the LR statistic is quite
large in all cases, indicating the rejection of the null hypothesis that the true model is
the restricted one, i.e., the constant market prices of risk one.

In the next section, we use these results for commodity option valuation purposes.
Specifically, we show the importance of allowing for time-varying market prices of risk
in valuing a set of market traded commodity options. As stated in the Introduction, there
have been several papers that have estimated factor models allowing for time-varying
market prices of risk (Casassus and Collin-Dufresne 2005; Trolle and Schwartz 2009;
Bhar and Lee 2011; 2013). However, they do not analyze the effect of time-varying
market prices of risk, compared to the constant case, from the point of view of the
valuation of exchange-traded options.

4 Option valuation with time-varying market prices of risk

As stated above, in this section, we apply our model with time-varying market prices
of risk to the valuation of an extensive set of commodity market traded options.

7 It should be noted that in the paper by Casassus and Collin-Dufresne (2005) the estimation is carried out
using the the maximum likelihood method, whereas in the present paper we use the Kalman filter method.
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4.1 Option data

The data set used in the estimation procedure consists of daily observations of WTI,
heating oil, RBOB gasoline and Henry Hub natural gas American call and put options
quoted at the NYMEX and corresponding to the years from 2006 until 2010. The
number of series is 1,293 call and 2,153 put (223,272 and 118,316 observations,
respectively) in the case of WTI crude oil; 1,567 call and 302 put (177,927 and 45,725
observations, respectively) in the case of heating oil; 1,633 call and 938 put (145,354
and 59,576 observations, respectively) in the case of RBOB gasoline; and 681 call
and 758 put (79,957 and 99,828 observations, respectively) in the case of Henry Hub
natural gas.

In the NYMEX, WTI option contracts mature each month for the current year and
for the next 5 years. Additionally, the June and December months are listed beyond
the sixth year. Strike prices are the one at-the-money strike price, twenty strike prices
in increments of $0.50 per barrel above and below the at-the-money strike price, and
the next 10 strike prices in increments of $2.50 above the highest and below the lowest
existing strike prices for a total of at least 61 strike prices.

In the case of heating oil and RBOB gasoline options, there are listed contracts
for the next 36 consecutive months, and available strike prices are the at-the-money,
twenty strike prices in $0.01 per gallon increments above and below the at-the-money
strike price, and the next 10 strike prices in $0.05 increments above the highest and
below the lowest existing strike prices for a total of at least 61 strike prices.

Finally, in the case of Henry Hub natural gas options, there are listed contracts for
the consecutive months for the balance of the current year plus 5 additional years.
Strike prices are the one at-the-money strike prices, twenty strike prices in increments
of $0.05 per mmBtu above and below the at-the-money strike price in all months,
plus an additional 20 strike prices in increments of $0.05 per mmBtu above the at-the-
money price will be offered in the first three nearby months, and the next 10 strike
prices in increments of $0.25 per mmBtu above the highest and below the lowest
existing strike prices in all months, for a total of at least 81 strike prices in the first
three nearby months and a total of at least 61 strike prices for 4 months and beyond.8

In all cases, the underlying asset is the corresponding WTI, heating oil, RBOB
gasoline or Henry Hub natural gas futures contract.

4.2 Option valuation methodology

The computation of American option prices is a challenging problem which implies
solving an optimal stopping problem. The problem can be simplified employing Monte
Carlo techniques. The starting point of these methods is to replace the time interval
of exercise dates by a finite subset. The solution of the corresponding discrete opti-
mal stopping problem reduces to an effective implementation of the dynamic pro-
gramming principle. However, the conditional expectations involved in the iterations
of the dynamic programming cause the main difficulty for the development of the

8 Additional details about the contracts can be found on the CME Group web page.
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Monte Carlo techniques. One way of treating this problem is the method presented
in Longstaff and Schwartz (2001), which is one of the most popular American option
valuation methods and will be the method used in this section to value commodity
American options.

Specifically, the method proposed by Longstaff and Schwartz (2001) consists of
estimating the conditional expected pay-off to the holder of the option from continu-
ation using least squares regression techniques.

For the purpose of option valuation, we need a full description of the model. In
matrix form, the state dynamics can be described as follows:

d Zt = (μ+ AZt ) dt + dWt . (7)

To clarify, let us take Ut to be a unit of Brownian motion (i.e., dUt dU T
t = I dt)

and rewrite (7) as:
d Zt = (μ+ AZt ) dt + RdUt . (8)

For parameter estimation purposes, we use Kalman filter equations to esti-
mate Zt |t−1 = E

[
Zt/Z1, . . . , Zt−1

]
, and as an intermediate result, Zt−1|t−1 =

E
[
Zt−1/Z1, . . . , Zt−1

]
. This process (estimating using current or even future infor-

mation) is termed “aliasing” in the Kalman filter literature. The series Zt |t is used as
initial states for option valuation.

4.3 Option valuation results

Table 7 presents several metrics to analyze the predictive power ability of the models
for the data set of WTI, heating oil, RBOB gasoline and Henry Hub natural gas
American options. The models considered are the time-varying market prices of risk
and the standard constant (two-factor) market prices of risk. Moreover, the results
shown in the table are based on the estimation results obtained from both the first and
the second data sets described in Sect. 2.

The statistics presented in Table 7 are the root mean squared error (RMSE), the
percentage root mean squared error (PRMSE) and the mean absolute error (MAE),
which are defined as:

RM SE =
√√√√1

n

n∑
i=1

(
fi,m − fi,t

)2

P RM SE =

√
1
n

n∑
i=1

(
fi,m − fi,t

)2

√
1
n

n∑
i=1

f 2
i,m

M AE = 1

n

n∑
i=1

∣∣ fi,m − fi,t
∣∣

123



Commodity derivative valuation 89

Table 7 American option valuation results error descriptive statistics

Constant MPR Time-varying MPR

RMSE PRMSE MAE RMSE PRMSE MAE

Panel A: WTI American options

First data set 0.9727 27.4746 0.6853 0.8974 25.20429 0.6416

Second data set 0.9675 28.49709 0.6835 0.9313 26.39755 0.6672

Panel B: Heating oil American options

First data set 3.1407 43.2489 2.7943 1.3379 14.0521 1.0127

Second data set 1.3484 16.3243 1.1052 1.3807 17.0274 1.0706

Panel C: RBOB gasoline American options

First data set 5.5027 164.1529 4.6894 1.4065 39.7270 1.0744

Second data set 1.4952 37.8901 1.1821 0.9294 28.1595 0.7342

Panel D: Henry Hub natural gas American options

First data set 0.1192 64.2655 0.0913 0.1124 54.8146 0.0878

Second data set 0.1055 71.8211 0.0846 0.0864 14.0521 0.0678

The table presents several metrics, root mean squared error (RMSE), percentage root mean squared error
(PRMSE) and mean absolute error (MAE), to analyze the predictive power ability of the models under
study: the time-varying market prices of risk (MPR) model and the standard (two-factor) model with
constant market prices of risk. The data set is comprised of daily observations of WTI American call
and put options quoted at NYMEX during the years 2006–2010. For each series, we have calculated the
corresponding statistic. These results correspond to the median value of these multiple means. The total
number of observations is 341,588, 223,652, 204,930 and 179,785 for WTI crude oil, heating oil, RBOB
gasoline and Henry Hub natural gas respectively

where fi,m and fi,t are the market and the theoretical prices, respectively, of option i .
The values shown in the table are the median of the different means for each option

series. It can be observed that we achieve better results with the time-varying market
prices of risk model for all commodities under study with all three statistics (except
in the case of heating oil using the RMSE with the second data set). It is also worth
noting that, in general, we achieve better results using the first data set (at least in
the case of WTI crude oil, heating oil and RBOB gasoline). Furthermore, it can be
appreciated that the best results of the time-varying model are achieved with RBOB
gasoline, followed by heating oil.

These results confirm that the constant market price of risk assumption in standard
option valuation models has an important effect in terms of valuation errors. Therefore,
the fact that market prices of risk vary over time according to the market conditions
(proxied by the model long- and short-term factors) must be taken into account in
option valuation models. In this paper, we have seen that, in fact, by allowing for
time-varying (state-depending) market prices of risk option valuation, errors can be
reduced compared to those obtained with standard (constant market prices of risk)
models.

Finally, as stated above, there have been several papers that have estimated factor
models allowing for time-varying market prices of risk (Casassus and Collin-Dufresne
2005; Trolle and Schwartz 2009; Bhar and Lee 2011; Casassus et al. 2013). However,
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these papers do not test the importance of time-varying market prices o f risk on the
valuation of exchange-traded options, compared to the constant market prices of risk
case.

5 Conclusions

In this paper, we note the importance of allowing for time-varying market prices of
risk in a commodity derivative model.

Based on previous research showing that market prices of risk vary over time,
a factor model with market prices of risk depending on the market conditions and
proxied by long- and short-term price factors is proposed and estimated. The valuation
results obtained with a sample of futures contracts on crude oil, heating oil, gasoline
and natural gas show that the proposed model with time-varying market prices of
risk depending on the model factors outperforms the standard two-factor model with
constant market prices of risk. This finding confirms the results obtained by Casassus
and Collin-Dufresne (2005) or Casassus et al. (2013) among others, in that allowing
for time-varying market prices of risk improves the estimation results.

However, the most important contribution of this paper is the application of the
model with time-varying market prices of risk to the valuation of an extensive sample
of exchange-traded commodity derivatives, and the analysis of the importance of
allowing for time-varying market prices of risk, compared to the constant case, from the
exchange-traded option valuation point of view. Specifically, the data base is comprised
of American options on WTI, heating oil, RBOB gasoline and Henry Hub natural
gas futures contracts, traded at NYMEX. The results indicate that by allowing for
time-varying (state-depending) market prices of risk option valuation, errors can be
reduced compared to those obtained with standard (constant market prices of risk)
models. Consequently, it is important to take into account the dependence of market
prices of risk on the economic conditions in valuing derivative contracts.

Appendix: Kalman filtering9

Let Zt = (ξtχtαtα
∗
t )

′ be the vector of all factors.10 The “risk-neutral” SDE of Zt can be
expressed as d Zt = (

b♦ + AZt
)

dt +�dW ♦
Zt , where dW ♦

Zt is a vector of independent
Brownian motions, and therefore Var(d Zt ) = R = ��T (�T is the transpose matrix
of �), with the restriction explained above: b♦ = (μt − λξ0 −λχ0 0 0 ) and:

9 Detailed accounts for Kalman filtering are given in Harvey (1989) and also in Bakshi and Wu (2010)
among others.
10 It is worth noting that αt and α∗

t are deterministic factors and therefore their volatility is zero. Moreover,
αt = α∗

t = 0 in the case of crude oil.
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A =

⎛
⎜⎜⎝

−λξ1 −λξ2 0 0
−λχ1 −κ − λχ2 0 0

0 0 0 ϕ

0 0 −ϕ 0

⎞
⎟⎟⎠

Under this notationXt = cZt , where c = (1 1 1 0 ).
It is easy to prove that the (unique) solution of that problem is (Oksendal 1992):

Zt = eAt
[

Z0 +
∫ t

0
e−Asb♦ds +

∫ t

0
e−As�dW ♦

Zs

]
(9)

It is clear that, under the risk-neutral measure, given Z0, Zt is Gaussian, with mean
and variance11

E∗ [Zt ] = eAt
[

Z0 +
∫ t

0
e−Asb♦ds

]
(10)

V ar∗ [Zt ] = eAt
[∫ t

0
e−As R(e−As)T ds

]
(eAt )T (11)

As Xt = cZt = ξt + χt + αt , then under the risk-neutral measure, Xt is also
Gaussian with mean and variance:

E∗ (Xt ) = cE∗ (Zt )

V ar∗ (Xt ) = cV ar∗(Zt )c
T

This provides a valuation scheme for all sorts of commodity contingent claims as
financial derivatives on commodity prices, real options, investment decisions and other
more. In particular, the price of a futures contract traded at time “t” with maturity at
time “t +T ” is: Ft,T = E∗ [

St+T ‖It
] = exp

{
E∗ [

Xt+T ‖It
] + 1

2 V ar∗ [
Xt+T ‖It

]}
,

where It is the information available at time “t”. It can be expressed as:

Ft,T = exp
[
ceAT Zt + g (T )

]
(12)

where g(T ) = ceAT
∫ t+T

t e−Asb♦ds + 1
2 ceAT

[∫ t+T
t e−As R(e−AT )T ds

]
(eAT )T cT ,

which is a deterministic function.
The Kalman filter technique is a recursive methodology that estimates the unob-

servable time series and the state variables or factors (Zt ) based on an observable time
series (Yt ), which depends on these state variables.

If the difference between the current period and the initial period is one period time,
Zt follows the discrete process:

Zt = ct + T Zt−1 + ψt t = 1, . . . , Nt (13)

11 E*[] and Var*[] are the mean and variance under the risk neutral measure.
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where ct = eAt
∫ t

t−1 e−Asbds ∈ �h, T = eA ∈ �hxhandψt ∈ �h is a vector of
serially uncorrelated Gaussian disturbances with zero mean and covariance matrix

Q = (eA)
[∫ t

t−1 e−As R(e−As)T ds
]
(eA)T . This equation will be called, following

standard conventions in the literature, the transition equation. It is worth noting that
expression (13) can be derived from expression (9) and thus ct , T and Q can be
computed from expression (9).

The measurement equation is just the expression of the log-futures prices (Yt ) in
terms of the factors (Zt ) by adding serially uncorrelated disturbances with zero mean
(ηt ) to take into account measurement errors derived from bid-ask spreads, price
limits, non-simultaneity of observations, errors in data, etc. To avoid dealing with a
great amount of parameters, the covariance matrix Ht will be assumed diagonal with
main diagonal entries equal to ση. This simple structure for the measurement errors is
imposed so that the serial correlation and cross correlation in the log-prices is attributed
to the variation of the unobservable state variables. The measurement equation (which
can be derived from expression (12))will be expressed as:

Yt = dt + Mt Zt + ηt t = 1, . . . , Nt (14)

where Yt , dt ∈ �n,Mt ∈ �nxh, Zt ∈ �h , h is the number of state variables, or factors,
in the model, and ηt ∈ �n is a vector of serially uncorrelated Gaussian disturbances
with zero mean and covariance matrix Ht .

Let Yt |t−1 be the conditional expectation of Yt and let �t be the covariance matrix
of Yt conditional on all information available at time t − 1. Then, after omitting
unessential constants, the log-likelihood function can be expressed as:

l = −
∑

t

ln |�t | −
∑

t

(Yt − Yt |t−1)
′�−1

t (Yt − Yt |t−1) (15)
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