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Abstract We consider the valuation of collateralized derivative contracts such as
interest rate swaps or forward FX contracts. We allow for posting securities or cash
in different currencies. In the latter case, we focus on using overnight index rates on
the interbank market. Using time varying haircuts, we provide an intuitive way to
derive the basic discounting results, keeping in line with the most standard theoretical
and market views. In a number of cases associated with margining with major central
counterparties, pricing rules for collateralized trades remain linear, thus the use of
(multiple) discount curves. We also show how to deal with partial collateralization,
involving haircuts, asymmetric CSA, counterparty risk and funding costs. We therefore
intend to provide a unified view. Mathematical or legal details are not dealt with and
we privilege financial insights and easy to grasp concepts and tools.
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1 Introduction

The pricing of collateralized OTC contracts, such as swaps ruled by numerous CSA
involved in ISDA master agreements or cleared on LCH.Clearnet, ICE, CME, etc.
has become a subject of great importance. It concerns the pricing of new trades, of
novation trades and the backload of older trades to a clearinghouse.

The aim of this paper is to provide an intuitive approach to the main results, some of
them such as OIS discounting routinely used by market practitioners, an understanding
of the (strong) assumptions involved and, on the other hand, to emphasize the wide
range of applications. A number of results are connected to the recursive approach
introduced by Cvitanić and Karatzas (1993), Duffie and Huang (1996), Duffie et al.
(1996), Karoui et al. (1997), which allows a comprehensive treatment of different
lending and borrowing rates. The use of time varying haircuts and collateral sets
encompasses the standard features of collateralization schemes.

Among academic papers that deal with the valuation of collateralized derivative
contracts, Johannes and Sundaresan (2007) can be seen as pioneering while the papers
by Fujii et al. provide a deep investigation of many pricing issues. Bianchetti (2010),
Kenyon (2010), Bielecki et al. (2011), Brigo et al. (2011), Castagna (2013), Crépey
(2011, 2012a, b), Pallavicini et al. (2012), Kan and Pedersen (2011), Piterbarg (2010,
2012) also deal with various aspects of the valuation of collateralized trades within the
new financial architecture. This field of research is still in progress, a number of issues
such as the impact of funding costs, optimal posting of collateral, gap (or slippage)
risks and the impact of initial margin may not be matter of consensus.

The paper is organized as follows:
Section 2 presents the theoretical pricing framework, where we allow for different

lending and borrowing default-free rates. This can be of importance when consider-
ing partial collateralization schemes where trades need to be funded in the market.
Comparisons with outstanding methodologies within that context are recalled.

Section 3 provides a simplified framework regarding the expected rate of return
of posted collateral including bonds and foreign currencies. For simplicity, we have
restricted ourselves to the case where no haircut is applied to posted bonds, corre-
sponding to the case of major government issues.

Section 4 relates variation margins to collateral accounts, introduces settlement
prices for collateralized trades and provides a general additive formula, i.e. a corrective
term to uncollateralized prices.

Section 5 deals with various collateralization schemes in an integrated framework.
This is achieved through the notion of local haircuts applied at CSA level. This leads to
a recursive discounting pricing formula that applies both to collateralized and uncol-
lateralized prices. We recall the standard cases of OIS discounting, futures’ pricing,
costless collateral. The optimal choice of posted securities is investigated.
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Section 6 provides a general approach to multiple discount curves in the context
of swaps or of forward contracts. Suitable changes of measure are introduced lead-
ing to simple pricing formulas and generic convexity adjustments. Standard exam-
ples, involving easy to bootstrap collateralized discount factors, are investigated. It is
noticeable that, in the above setting, we remain in a linear pricing framework, thus the
existence of discount factors.

Section 7 broadens the view by considering imperfect collateralization schemes,
different lending and borrowing rates and CVA effects altogether. Though the CVA
approach used here is not identical to market practice, it can be thought of as a first-
order approximation. Above all, it provides an integrated and easy to grasp pricing
framework.

Section 8 deals with trade contributions in a non linear pricing framework. We
provide some results that connect the stochastic discount factor to marginal pricing
at book level and easy to compute trade contributions, some topics of great practical
importance.

2 Pricing default-free uncollateralized contracts with different lending and
borrowing rates

r(t) will denote the usual default-free short rate at time t as in the standard Heath–
Jarrow–Morton case. This is taken as a starting point to keep in line with the standard
mathematical finance framework and thus simplifying the exposition.

Overnight “rates” such as Eonia, Sonia or the effective Fed funds rates are related to
unsecured interbank loans. Piterbarg (2010, Eq. 1) or Morini and Prampolini (2010)
assimilate r(t) and overnight rates (denoted by rC (t) in Piterbarg), which can be
associated with the assumption that bank defaults can be foreseen over a 1 day time-
horizon. On the other hand, Afonso et al. (2011), Pallavicini et al. (2012) state that
there is a default component in overnight rates. Apart from periods of market stress,
this default component is likely to be small, though difficult to assess, given that r(t)
is not directly observable. As mentioned in Pallavicini et al. (2012), r(t) can be seen
as an instrumental variable that eventually vanishes in a number of cases.

Bergman (1995) introduces a (default-free) lending short rate r(t) and a borrowing
short rate R(t), with r(t) ≤ R(t). The difference R(t) − r(t)corresponds to the
(funding) liquidity premium γX in Castagna (2011) or to the (default-free) liquidity
basis in Morini and Prampolini (2010), i.e. the spread over the risk-free rate r(t) at
which a default-free entity would borrow in the market. This also corresponds to s F

t
in Castagna (2012), Castagna (2013) or l±, the liquidity bases in Pallavicini et al.
(2012). Bergman considers a savings account β and a borrowing account L , such that
β (t) = exp

∫ t
0 r(s)ds and L (t) = exp

∫ t
0 R(s)ds. To preclude arbitrage opportunities,

one cannot borrow and lend simultaneously. Such constraints on account holdings are
convex and are dealt with in Cvitanić and Karatzas (1993). Crépey (2012a) defines
two external investing and funding assets, the funding asset jumping downwards at
default time of the pricing entity. As stated in Fries (2010), the above approaches reflect
the benefit, at the entity level, of cancelling a fraction of outstanding debt at default
time. In Fries terminology, this corresponds to the third party (or mark-to-market)

123



264 J.-P. Laurent et al.

liquidation view. As a consequence, there is no own credit risk term when discounting
receivables (positive cash-flows) as in Burgard and Kjaer (2011). We refer to Hull and
White (2012) for further discussion on this controversial issue.

Within Bergman setting, extending results from Korn (1992), Cvitanić and Karatzas
(1993) consider a model with d—primary traded assets driven by a d—dimensional
Brownian motion and an invertible volatility matrix. Going along standard lines, they
construct through Girsanov theorem a Qβ—measure such that prices of primary (hedg-
ing) assets discounted by β(t) are Qβ—martingales. The existence of such a measure
is postulated in Johannes and Sundaresan (2007), Piterbarg (2010, Eq. 1), Fries (2010);
Fujii et al. (2010), Fujii and Takahashi (2011), Castagna (2013). We will thereafter
assume that the set of traded assets is large enough for Qβ to be uniquely defined, a
common feature in HJM models.

One interesting outcome of the above approach is that a large class of contingent
claims, including call options, is replicable. The replication price of an uncollateralized
contract pU (t) is obtained as the unique solution of the following backward stochastic
differential equation (BSDE, see also Karoui et al. 1997):

E Qβ

t

[
dpU (t)

]
=
(

R(s)1{pU (s)>0} + r (s) 1{pU (s)≤0}
)

pU (t)dt (2.1)

where the BSDE generator g (p) = Rp+ + r p− is a key tool. In such a default-free
setting, given a terminal payoff X (T ), we get:

pU (t) = E Qβ

t

⎡

⎣X (T ) exp

⎛

⎝−
T∫

t

(
R (s) 1{pU (s)>0} + r (s) 1{pU (s)≤0}

)
ds

⎞

⎠

⎤

⎦

(2.2)

Such equations are well known in finance. They have been considered in a CVA
context by Duffie and Huang (1996) and Duffie et al. (1996) and more recently by
Crépey (2011), Fujii and Takahashi (2012) and Henry-Labordère (2012). We also refer
to Cesari et al. (2010), Burgard and Kjaer (2011) for closely related approaches.

Equation (2.2) actually provides the opposite of the replication price of −X (T ). A
dealer holding an amount X (T ) can cancel out his position by replicating −X (T ). As
a consequence, a pure asset cash-flow (X (T ) > 0) is discounted at the high rate R(t),
while a pure liability cash-flow (X (T ) < 0) is discounted at the low rate r(t). We
think that this convention is more meaningful and conservative on financial grounds
than considering the replication price of X (T ) [that would involve switching R(t) and
r(t)].

Equation (2.2) provides a standalone replication price. When considering a trade
within a portfolio, the condition

{
pU (s) > 0

}
should be replaced by a positivity con-

dition on the value of the portfolio. This is dealt with at this end of this paper when
addressing trade contributions.

Similarly, if the hedging instruments have some cash impacts, the positivity con-
dition needs to cope with the total cash balance. The simplest case would correspond
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to hedging with forward contracts of the same maturity as the derivative to be priced,
since no impact on the cash balance would occur.

One could think of borrowing on the cash market at the low rate r(t) and lend at
the high rate R(t). This would correspond to the case where a derivatives dealer is
a liquidity provider rather than a liquidity taker. As above, we have rather chosen a
conservative approach though it would need to be adapted to individual cases.

Equation (2.2) is consistent with Eq. (34) in Castagna (2013), when γ = 0 (no
collateralization scheme). The positivity condition in the quoted paper is put on the
cash account, which inverts signs when using the price of the derivative.

Piterbarg (2010) introduces a funding rate rF (t) which is meant to include a default
component. However, in his framework, counterparty default is ignored and in further
computations (see for example, Eq. 3), rF (t) acts as a default free borrowing and
lending rate in the cash market (with equality between these two rates) and is de facto
equal to r(t), while the rate rC (t) is further assimilated with the rate of cash collateral
(c(t) in our notations).

While the pricing framework can cope with different borrowing and lending rates, to
ease the exposition, we will keep tied to a unique default-free cash rate, i.e. r(t) = R(t),
until we consider asymmetric CSAs.

Piterbarg (2012) or Macey (2011) directly derive no arbitrage restrictions among
settlement prices of fully collateralized derivatives under different CSAs, from which
a risk-neutral measure is constructed. Thus, there is no a priori use of the theoretical
default-free short rate r(t). However, when it comes up to partially collateralized
derivatives, we need to introduce some rate for lending or borrowing cash, which acts
as default-free short rate. Eventually, as mentioned in Piterbarg (2010), we may end-up
with the same pricing measure for collateralized and uncollateralized contracts, which
actually appears to be Qβ .

3 Collateral assets

3.1 Cash in different currencies and securities posted as collateral

Quite often, cash is used as collateral. We will denote by c(.) the rate (with continuous
compounding) paid on the collateral account, typically EONIA or fed fund rate. We
will also consider the cases where c(.) = 0 and c(.) = r(.).

To cope with various netting agreements, we need to enlarge the cash collateral
setting. Let us denote by A(t), the price at time t of the posted asset, which may
be a bond or some currency. For simplicity, we will assume that A(.) is a positive
semimartingale admitting the decomposition:

d A(t)

A(t−)
= rA(t)dt + d MA(t) (3.1)

where MA is a Qβ - martingale. We assume that the price can actually be observed and
that the market for the security A is frictionless, i.e. no bid-ask spread and constant
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unit price. For simplicity, we will thereafter consider a single collateral asset though
the results readily extend to a portfolio of collateral assets.

As is the case in a standard bilateral CSA or when margining through a CCP, we will
assume that the collateral rate does not change when a party switches from collateral
giver to receiver.

3.2 Posting bonds

In the repo market, a large set of securities can be posted, quite often bonds. We show
that the short-term repo rate can be seen as the expected rate of return of the bond
under Qβ . This holds under assumptions detailed and discussed below. The core point
is that a short-term repo contract with no haircut can also be seen as an “instantaneous”
forward bond contract and the repo rate is then related to a default-free forward bond
price. This result is a key point in subsequent analysis related to optimal choice of
collateral and discounting results.

Let us consider a short-term repo contract, say between dates t and t + dt . As
above A(t) denotes the bond price at date t and no coupon is to be paid between
t and t + dt . Let us assume that no haircut is applicable.1 Thus, the repo con-
tract turns out to be a (short-term) forward contract, with no payment at incep-
tion and a payment equal to A (t + dt) − (

1 + repoA(t)dt
)

A(t). If the payment
is made for sure, i.e. none of the parties is in default at date t + dt , we have

E Qβ

t
[
A(t + dt) − (

1 + repoA(t)dt
)

A(t)
] = 0 and thus:

rA(t)dt = E
Qβ

t

[
d A(t)

A(t)

]

= repoA(t)dt (3.2)

The above result is related to Barden (2009) or Piterbarg (2010).
If defaults can occur but are predictable, then one can state whether or not the parties

will be in default at date t + dt . Clearly, there is no reason why a trade would occur
with one of parties going to default with certainty at t + dt and we will not further
investigate this unlikely case.

There are a number of cases where defaults can occur, yet
(
1 + repoA(t)dt

)
A(t)

can still be seen as a default-free forward price.
The first one corresponds to cancellation2 of the deal at default. We denote by

λ(t)dt , the probability of the deal to be cancelled3, due to default of one of the parties.
If occurrence of defaults and changes in collateral asset are independent, the pricing
equation becomes:

E Qβ

t
[(

A(t + dt) − (
1 + repoA(t)dt

)
A(t)

)× (1 − λ(t)dt)
] = 0 (3.3)

1 One could think of Treasury GC as a proxy.
2 In such a framework, the claim on default for a repo contract would differ from the claim associated with
other OTC trades, such as interest rate swaps. We may relate cancellation to fails-to-deliver without penalty.
3 Default times of the counterparties are then assumed to be totally inaccessible. λ(t) is here the intensity
of the first to default-time.
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Thus, we still have rA(t)dt = E
Qβ

t

[
d A(t)
A(t)

]
= repoA(t)dt . Let us consider the case

where the payment to the non defaulted party is of the form δ max
(

A(t + dt) − (1 +
repoA(t)dt

)
A(t), 0

)
and δ is a recovery rate. Provided that the two parties have the

same recovery rate and default probability, E
Qβ

t

[
d A(t)
A(t)

]
= repoA(t)dt still holds. This

symmetry between the parties would occur if “tier-one” or “prime” banks are to trade
together.

Eventually, if we assume that A is driven by a Brownian motion or that its jump
component is independent of the default counting processes of the two involved parties,

then E
Qβ

t

[
d A(t)
A(t)

]
= repoA(t)dt is still valid and CVA/DVA terms can be neglected

when computing the instantaneous forward price of a bond. This corresponds to a “no
gap risk” at default assumption.

In our simplified setting regarding counterparty and operational risks, the repo
rate repoA(t) is thus only related to security A, without consideration of the parties
identity.4

Let us remark that a short-term repo contract with no haircut can be seen as a
perfectly collateralized trade. We are considering buying a security deliverable at date
t +dt , the transaction being secured with cash and the cash collateral rate being equal
to repoA(t). In other words, the repo rate can also be seen as a cash collateral rate.
The term A(t + dt) − (

1 + repoA(t)dt
)

A(t)corresponds to the variation margin to
be paid on an open repo (see below regarding the computation of variation margins).

As already mentioned, the repo rate is tied to the instantaneous forward price of a
bond. We emphasize that we directly consider a forward market and related forward
prices without refereeing to lending cash between t and t + dt . This is purposeless
since there are no cash-flows being exchanged at date t and no need for transferring
funds across time. As a consequence, the default-free forward price is primitive and
is not derived from a borrowing and lending cash market as in the standard cash and
carry approach.

3.3 Posting foreign currencies

In the case of cash-collateral paid in the base currency (say USD), the collateral account
typically earns the effective fed funds rate, thus rA ≡ c$ and the settlement price of
a collateralized trade is computed by discounting the terminal cash-flow (expressed

in USD) at the collateral rate under the usual risk-neutral probability, Qβ$
associated

with the USD savings account numeraire.
We may need to consider collateral accounts in different currencies. As an exam-

ple, we could consider a cash-collateral account in a foreign currency, for instance
Ae(t) = F Xe/$(t) × exp

∫ t
0 ce(s)ds, where F Xe/$(t) corresponds to the spot

exchange rate and ce(t) to the Eonia. As for bonds, we will have: d Ae(t)
Ae(t−)

=
rAe(t)dt +d MAe(t), MAe being a Qβ$

martingale, and we need to determine rAe(t).

4 If the bond A is special, the corresponding repo rate is lower.
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For this purpose, we can go along the same lines as for bonds. Let us introduce an
instantaneous forward FX contract that is assumed to be default-free and denote by

F Xe/$(t)
(

1 + ird$/e(t)dt
)

, the forward exchange rate, where ird$/e(t) is the interest

differential between USD and EUR. As for the repo contract, we have:

E Qβ$

t

[
F Xe/$(t + dt) − F Xe/$(t)

(
1 + ird$/e(t)dt

)]
= 0 (3.4)

Thus, E Qβ$

t

[
d F Xe/$(t)
F Xe/$(t)

]
= ird$/e(t)dt and rAe(t)dt = E Qβ$

t

[
d Ae(t)
Ae(t)

]
=

(
ce(t) + ird$/e(t)

)
dt leads to:

rAe(t) = ce(t) + ird$/e(t) (3.5)

The counterparty risk issues associated with the instantaneous forward FX contract
are the same as the ones already discussed in the repo case. In the simplest cases of
no gap risk, the CVA/DVA terms can be neglected, as if the instantaneous forward FX
contract was default-free. This instantaneous forward FX contract approach is being
used in Macey (2011) or Piterbarg (2012).

In the standard mathematical finance framework, we would have: ird$/e(t) =
r$(t) − re(t), where r$(t), re(t) are the instantaneous USD and EUR default-free
rates and we then get a result similar to Fujii et al. (2010), Eq. (3.13) or Castagna
(2012), Eq. (11). As for calibration issues, the interest rate differential ird$/e(t) can
be directly inferred from the FX market, while separate calibration of r$(t) and re(t)
can be problematic.

4 Variation margins, collateral accounts, settlement prices and the additive
formula

4.1 Variation margins paid on a collateral account

The computation of variation margins involves a collateral account. We will denote
by V (s) the amount at date s of the collateral account. The amount of the collateral
account is the market value of the securities being posted as collateral. If V (s) > 0,
the pricing entity receives collateral, if V (s) < 0, the pricing entity gives collateral.

At time s, t ≤ s ≤ T , the number of securities posted on the collateral account
is equal to V (s)

A(s) . The value of the posted collateral at s + ds is then equal to V (s)
A(s) ×

A (s + ds).5

As a consequence, the variation margin for the time interval between s and s + ds
is equal to:

dV M(s) = V (s + ds) − V (s)

A(s)
× A (s + ds) = dV (s) − V (s)

d A(s)

A(s)
(4.1)

5 V (s)
A(s) × A (s + ds) can be seen as the value of the collateral account, prior to the variation margin payment.
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Since dV (s) = V (s) × d A(s)
A(s) + dV M(s), the term V (s) × d A(s)

A(s) corresponds to
the self-financed part. The variation margin dV M(s)corresponds to the inflow in the
collateral account.

In the case of cash collateral with rate c (.), A(s+ds)
A(s) = 1 + c(s)ds and the variation

margin equals dV M(s) = dV (s) − V (s)c(s)ds (see Piterbarg 2012) and is basically
an extension of the future’s case where dV M(s) = dV (s).

4.2 Settlement prices and the additive formula

We will consider a collateralized trade with single maturity T . This readily extends to
multiple payment dates as in the case of interest rate swaps.

The contractual payoff at date T paid in the base currency, say USD, will be denoted
by X (T ). As stated before, we do not take into account immediately the possibility
of default. Apart from interest rate swaps, we could think of forward FX contracts,
securities lending and repo transactions as other examples involved in collateralized
transactions.

pS(t) will denote the settlement price at time t of a collateralized trade with maturity
T (in the same base currency) and our purpose is the computation of such a settlement
price. pS(t) will play a key role in margining, either for the computation of variation
margins or regarding the collateral account amount. The settlement price will converge
at time T to the contractual cash-flow X (T ), thus the same notation. For simplicity,
we implicitly assume that the contract is cash-settled.

Let us detail the various cash-flows at hand. The net cash-flow at inception date t is
equal to −pS(t)+ V (t), where pS(t) is the settlement or collateralized price and V (t)
is the value of the posted collateral. The net cash-flow at expiration of the contract is
X (T ) − V (T ). The pricing equation also takes into account the collateral cash-flows,
most notably the variation margins paid between t and T . Using the pricing framework
stated in Sect. 2, and assuming same borrowing and lending default-free rates leads
to:

pS(t) = pU (t) + E Qβ

t

⎡

⎣V (t) +
T∫

t

e
−

s∫

t
r(u)du

dV M(s) − V (T )e
−

T∫

t
r(s)ds

⎤

⎦ = 0

(4.2)

where pU (t) is the uncollateralized price, V (s), t ≤ s ≤ T is the value of the collateral
account at time s and dV M(s) is the variation margin. Let us remark that that V (.) is
not self-financed since there are some inflows or outflows, i.e. the variation margins.

It is interesting to consider the present value of the variation margins in isolation
and consider the difference between uncollateralized and collateralized prices.

Using the above results, the time t present value of cash-flows associated with
managing the collateral account can be written as:

E Qβ

t

⎡

⎣V (t) +
T∫

t

e
−

s∫

t
r(u)du

(

dV (s) − V (s)
d A(s)

A(s)

)

− V (T )e
−

T∫

t
r(u)du

⎤

⎦ (4.3)
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The present value of cash-flows associated with the management of the collateral
account is the additive correcting term to switch from an uncollateralized PV to a
collateralized PV. It is worth noting that this holds for all collateralization schemes as
only the value V (t) of the collateral account is involved and not the settlement price
pS (t). The present value of collateral cash-flows can eventually be written as:6

E Qβ

t

⎡

⎣
T∫

t

(r(s) − rA(s)) V (s)e
−

s∫

t
r(u)du

ds

⎤

⎦ (4.4)

In the case of cash-collateral, with collateral rate c(.), d A(s)
A(s) = c(s)ds and the latter

expression actually simplifies to E Qβ

t

[∫ T
t (r(s) − c(s)) V (s)e− ∫ s

t r(u)duds
]

(see Eq.

3 in Piterbarg 2010 or Eq. (26) in Castagna 2013). Unsurprisingly, the present value of
collateral cash-flows equals the present value of the margins (accrued interest point of
view) as is standard with any cash account. Obviously, in the case where the collateral
rate c (.) equals the risk free rate r (.), the present value of collateral cash-flows is equal
to zero since there is no net margin associated with the collateral amount (“costless
collateral”).

Though the clearing house is assumed to be default-free (in our theoretical setting),
clearing members are lending to that clearing house at a different rate. From the point
of view of clearing members, r(s) − c(s) is the convenience yield associated with the
collateral account and (r(s) − c(s)) V (s)ds is simply the margin associated with the
management of the collateral account, between s and s + ds.

5 Recursive pricing formulas and collateralization schemes

5.1 Collateralization schemes

A collateralization scheme relates settlement prices pS (t) and the value of the collat-
eral account V (t). For instance, in the so-called perfect collateralization case, at any
point in time, the value of the collateral is equal to the settlement price: V (s) = pS(s),
for all s, t ≤ s ≤ T . For an asymmetric CSA, we would have V (s) = max

(
pS (s) , 0

)

or V (s) = min
(

pS (s) , 0
)
.

We provide a comprehensive treatment of collateralization schemes by introducing
some haircut ratios. When a security is being posted in a collateral agreement, some
haircut is usually applied. Given potential “runs on repos”, it makes sense to deal with
time varying haircuts. Let us denote by 1

αA(s) the haircut ratio at time s associated with
security A. At time s, t ≤ s ≤ T , the amount of collateral account is then equal to

6 Define ζ(s) = V (s)e− ∫ s
t r(u)du . dζ(s) = e− ∫ s

t r(u)dudV (s) − r(s)ζ(s)ds. Thus, the present value of

the collateral cash-flows equals: E Qβ

t

[
ζ(t) + ∫ T

t dζ(s) +
(

r(s)ds − d A(s)
A(s)

)
ζ(s)ds − ζ(T )

]
, which can

be simplified as: E Qβ

t

[∫ T
t

(
r(s)ds − d A(s)

A(s)

)
V (s)e− ∫ s

t r(u)du
]
, which leads to the stated expression.
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V (s) = αA(s)pS(s) and the number of posted securities is given by αA(s)pS(s)/A(s).
For an asymmetric CSA, αA(t) = 0, 1 depending on the sign of pS(t).

5.2 The basic discounting result

Let us focus on the changes in the variation margins with such collateralization features.
Using the ongoing notations, the variation margin dV M(t) = V (t+dt)− V (t)

A(t) A(t+dt)
becomes:

dV M(t) = d
(
αA(t)pS(t)

)
− αA(t)pS(t)d A(t)/A(t) (5.1)

Let us consider a trade initiated at time t and unsettled at t + dt . The net cash-flow at
time t is given by: V (t) − pS(t) = (αA(t) − 1) pS(t). The net cash-flow at t + dt is
provided by:

pS(t + dt) − V (t + dt) + dV M(t) = (1 − αA(t)) pS(t + dt)

+αA(t)
(

dpS(t) − pS(t)d A(t)/A(t)
)

In the simplified setting where no defaults occurs at t + dt , the previous cash-flow is
paid for sure. The net expected (under Qβ ) present value is equal to zero; This can be
written as:

E Qβ

t

[
(αA(t) − 1) pS(t) + (1 − r(t)dt)

×
(

(1 − αA(t)) pS(t + dt) + αA(t)

(

dpS(t) − pS(t)
d A(t)

A(t)

))]

= 0

(5.2)

This leads to the pricing equation (not accounting for CVA/DVA effects, i.e. default-
free counterparties entering a collateralized trade):

E Qβ

t

[
dpS(t)

]
= ((1 − αA(t)) r(t) + αA(t)rA(t)) pS (t) dt (5.3)

An intuitive way to look at this drift restriction is to consider that αA (t) pS (t) is
invested in the collateral account with expected rate of return rA (t). The remaining
part (1 − αA (t)) pS (t) corresponds to a cash-flow invested in the cash market at
expected rate of return r (t). Equation (5.3) corresponds to Eq. (6) of Piterbarg (2010)
(remembering that his funding rate rF is actually a default-free short rate for cash
lending or borrowing). When there is a unique borrowing and lending short rate r (t),
our result is also consistent with Castagna (2013), Eq. (29).

In the case where X (T )is a function of an underlying asset S(T ), further results
can be stated. If we assume that the underlying asset is repoable (with no haircut), the
drift under Qβ of this asset is equal to the repo rate (minus the continuous dividend
rate). This is consistent with Eq. (49) in Castagna (2013) or Eq. (4) in Piterbarg (2010).
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When the asset is not repoable, we need to use the short rate r(t) instead of the repo
rate as in Eq. (29) in Castagna (2013). This is of course more problematic from a
calibration point of view, since we cannot get rid of unobserved r(t).

Equation (5.3) can be restated through the simple discounting formula:

pS(t) = E Qβ

t

⎡

⎣X (T ) exp

⎛

⎝−
T∫

t

((1 − αA(s)) r(s) + αA(s)rA(s)) ds

⎞

⎠

⎤

⎦ (5.4)

The most common market feature consists in using haircut ratios below 1 (overcol-
lateralization) and is associated with αA(t) > 1. 0 ≤ αA(t) < 1 corresponds to
under-collateralization, i.e. the amount of collateral is only a fraction of the value of
the settlement price (or PV) of the trade. If αA(t) = 0, no collateral is being posted
and provided that the counterparties are default-free, we are led back to the standard
discounting at the default-free rate r(.).

5.3 The basic discounting result with perfect collateralization

With perfect collateralization, the variation margins paid throughout the life of the
trade perfectly match the potential loss in case of default of one of the parties. This
corresponds to the case where αA(t) = 1. Thus:

pS(t) = E Qβ

t

⎡

⎣X (T ) exp

⎛

⎝−
T∫

t

rA(s)ds

⎞

⎠

⎤

⎦ (5.5)

Under perfect collateralization, the settlement price is obtained by discounting the
terminal payoff at the risk-neutral expected rate of return of the collateral. This con-
trasts with using the default-free rate for uncollateralized trades. The pricing measure
remains the usual one, associated with the default free savings account.

Pricing equation (5.5) also extends already known results for futures contracts (see
Duffie 1989). Actually, the pricing of futures contracts corresponds to cash collateral
and collateral rate set to zero: c(.) ≡ 0. The settlement price is then a Qβ - martingale.

Let us remark that when rA = r and A(t) = β(t) = exp
(∫ t

0 r(s)ds
)

, there

is no difference with the ordinary pricing equation for default-free uncollateralized
trades: In both cases, discounting is done at the short-term default-free rate pS(t) =
E Qβ

t

[
X (T ) exp

(
− ∫ T

t r(s)ds
)]

. This corresponds to “costless collateral” according

to Johannes and Sundaresan (2007) terminology. Thus, when the collateral rate equals
the short-rate, uncollateralized prices are equal to (perfectly) collateralized prices.

A simple case corresponds to the use of USD cash collateral. We then have: d A(t)
A(t) =

dC$(t)
C$(t)

= c$(t)dt , where c$(t) is the effective fed funds rate and the USD settlement

price is provided by pS(t) = E Qβ

t

[
X (T ) exp

(
− ∫ T

t c$(s)ds
)]

, i.e. the so-called

“OIS discounting” (see for example Eq. (3.5) in Fujii et al. 2010).
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On technical grounds, let us remark that the general discounting formula with
partial collateralization (Eq. (5.4)) is actually embedded in the simplest case of perfect
collateralization: We can write the margin associated with managing the collateral
account [see Eq. (4.4)] as (r(s) − rA(s)) V (s) = (

r(s) − r∗
A(s)

)
pS(s) with r∗

A(s) =
(1 − αA(s)) r(s) + αA(s)rA(s). The PV of variation margins can be computed under
the assumption of perfect collateralization and a modified expected rate of return on
the collateral r∗

A(s). Equation (5.5) then turns out to be identical to Eq. (5.4).

5.4 Optimal choice of posted securities

We assume that a set of eligible securities and cash currencies {1, . . . , I } can be posted
in the collateral account. To ease the exposition, let us assume that pS (t) < 0. The
pricing entity is thus collateral giver. We assume that the collateral giver chooses the
posted collateral and that the collateral pool can be wholly substituted at any time. We
follow the same line of reasoning as in Sect. (5.1) with minor adaptation. The collateral
giver chooses the collateral asset such that the expected (under Qβ ) net present value
is maximized. For such a choice, the expected net present value is equal to zero.
If collateral i is posted, following Eqs. (5.2) and (5.3), the expected NPV is equal

to E Qβ

t
[
dpS(t)

]− ((1 − αAi (t)
)

r(t) + αAi (t)rAi (t)
)

pS (t) dt . The posted collateral
thus maximizes

(
1 − αAi (t)

)
r(t) + αAi (t)rAi (t) and the pricing equation becomes:

E Qβ

t

[
dpS(t)

pS(t)

]

= maxi∈{1,...,I }
((

1 − αAi (t)
)

r(t) + αAi (t)rAi (t)
)

dt (5.6)

As a consequence the previous discounting result is extended to:

pS(t)=E Qβ

t

⎡

⎣X (T ) exp

⎛

⎝−
T∫

t

(
maxi∈{1,...,I }

(
1 − αAi (s)

)
r(s) + αAi (s)rAi (s)

)
ds

⎞

⎠

⎤

⎦

(5.7)

The optionality in the collateral choice magnifies the discount rate to maxi∈{1,...,I }
(
1−

αAi (s)
)
r(s) + αAi (s)rAi (s) but the pricing rule relating terminal cash-flow X (T ) to

settlement price pS(t) remains linear (provided that default-free lending and borrow-
ing rates are equal). Equation (5.7) corresponds to and extends Eq. (21) in Fujii and
Takahashi (2011) (see also Fujii et al. 2010).

A CSA (or another collateral agreement as in a tri-party repo) provides the set
of assets that can be posted. The settlement price is specific to the CSA and there
are thus many potential settlement prices depending upon the collateral pools. Thus
novation trades or the backload of ISDA CSA trades to LCH.Clearnet, which may
involve changes in the collateral pool, are rather intricate.

6 Multiple curves

An important application of the above techniques is the pricing of interest rate swaps
or forward FX contracts under the perfect collateralization scheme. In a market where

123



274 J.-P. Laurent et al.

lending and borrowing rates are equal, pricing rules are linear, leading to the use
of specific discount factors. Suitable changes of measures are introduced and con-
nected to such collateralized discount factors. In the case of cash collateral pay-
ing overnight rate index (i.e. EONIA or fed fund rate), settlement prices of col-
lateralized trades are obtained by discounting with the overnight rate. Convexity
adjustments are derived when dealing with swaps associated with different collateral
rates.

It is worth mentioning that a number of papers, including Kijima et al. (2009), Hen-
rard (2009), Mercurio (2009, 2010a, b), Bianchetti (2010) have considered a decou-
pling between discount factors and forward rates, with important applications to the
pricing of Libor derivatives or cross-currency swaps. Though our main concern is the
pricing of collateralized swaps, we hopefully end-up with similar results.

6.1 Changes of measure and further notations

We will define a set of measures, equivalent to Qβ , denoted as Q A
T associated with

the collateral account by their density:

d Q A
T

d Qβ
=

exp
(
− ∫ T

0 rA(s)
)

E Qβ
[
exp

(
− ∫ T

0 rA(s)
)] (6.1)

Q A
T is named “collateralized forward measure” by Fujii et al. (2010).7 The density

process of Q A
T (with respect to Qβ ) is defined as usual by: ξ A

T (t) = E Qβ

t

[
d Q A

T
d Qβ

]

. Let

us further denote:

BA (t, T ) = E Qβ

t

⎡

⎣exp

⎛

⎝−
T∫

t

rA(s)ds

⎞

⎠

⎤

⎦ (6.2)

BA (t, T ) is the date t - settlement price of a cash-flow of 1 paid at date T collater-
alized with A. It can then be considered as a A-collateralized discount bond price.

For instance, BC$ (t, T ) = E Qβ

t

[
exp

(
− ∫ T

t c$(s)ds
)]

corresponds to the settlement

price of a zero-coupon collateralized with cash remunerated at fed funds rate.
We can write the density process as:

ξ A
T (t) =

exp

(

−
t∫

0
rA(s)ds

)

× BA (t, T )

BA (0, T )
(6.3)

7 Let us remark that the density of Q A
T with respect to Qβ only involves the (expected) rate of return of the

collateral. Thus, we depart from the change of numeraire and notational setup used for instance by Geman
et al. (1995) or Schroder (1999).
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The usual forward measure Qβ
T is defined as:

d Qβ
T

d Qβ
=

exp

(

−
T∫

0
r(s)

)

B (0, T )
(6.4)

under the standard notation: B (t, T ) = E
Qβ

T
t

[
exp

(
− ∫ T

t r(s)ds
)]

. The measure with

density exp
(
− ∫ T

0 r∗
A(s)

)
/E Qβ

[
exp

(
− ∫ T

0 r∗
A(s)

)]
and r∗

A(s) = (1 − αA(s)) r(s)+
αA(s)rA(s) encompasses the collateralized forward measure and the usual forward
measure: The former corresponding to a perfect collateralization scheme, the latter to
a non collateralized framework. While we could actually account for partial collat-
eralization, let us for simplicity go back to the perfect collateralization scheme. The
change of measure technique leads to writing the settlement price pS

A(t) as:

pS
A(t) = BA (t, T ) × E

Q A
T

t [X (T )] (6.5)

Since we have considered different collaterals, it is interesting to switch from one to
another. Let us denote by A, B two kinds of collateral assets and rA, rB the corre-
sponding Qβ - expected rates of return. We then have:

d Q B
T

d Q A
T

=
exp

(

−
T∫

0
(rB − rA) (s)

)

E Q A
T

[

exp

(

−
T∫

0
(rB − rA) (s)

)] (6.6)

We denote by ξ
B,A
T (t) = E

Q A
T

t
[
d Q B

T /d Q A
T

]
the density process of Q B

T (with respect

to Q A
T ). It can be shown that ξ

B,A
T (t) = ξ B

T (t)/ξ A
T (t).

6.2 Generic convexity adjustments

We can think of comparing two derivatives assets, with same terminal payoff, perfect
collateralization, but different collaterals. A typical example would involve a Eurodol-
lar future (collateral rate equal to zero) and a FRA collateralized at effective Fed funds
rate.

For a given payoff X (T ) collateralized with A, its T - forward settlement

price pA,T (t) is equal to pA,T (t) = E
Q A

T
t [X (T )]. Indeed,0 = BA (t, T ) ×

E
Q A

T
t
[
X (T ) − pA,T (t)

]
. Thus we are to compare E

Q A
T

t [X (T )]and E
Q B

T
t [X (T )]. This

involves a covariance term between the payoff and the spread between (expected) rates
of return on the two collaterals:
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E
Q B

T
t [X (T )] = E

Q A
T

t [X A (T )]

+ BA (t, T )/BB (t, T )Cov
Q A

T
t

⎛

⎝exp

⎛

⎝−
T∫

t

(rB − rA) (s)ds

⎞

⎠ , X (T )

⎞

⎠

(6.7)

We refer to the “Appendix” for proofs, computations and further details in a Brownian
filtration setting. Let us remark that one can extend the approach to partially collat-
eralized deals, thus providing an integrated framework as already mentioned in the
previous subsection (see Piterbarg 2010).

6.3 Linear pricing rules and (perfectly collateralized) discount factors

Let us first remind that within a perfect collateralization framework as defined above,
there is no gap risk when unwinding a trade, thus no independent amount or initial
margin based on non linear measures of risk and thus no resulting portfolio effect.

In a number of cases, the expected rate of return of the posted collateral, rA(.) is not
independent of X (T ). This may lead to a number of quanto effects. However, this does
not change the point that in a perfect collateralization framework and provided that the
collateral rate does not depend on the sign of the PV, the pricing rule remains linear.
If one considers the pricing of a collateralized terminal cash-flow X1(T ) + X2(T ),
then the cash-flows associated with the variation margins will be the sum of those
associated with X1(T ) and X2(T ) considered independently. As a consequence, after
discounting these variation-margin cash-flows at the default-free short rate under Qβ ,
we will have that the settlement price at time t of the collateralized terminal payoff
X1(T ) + X2(T ), is simply pS

1 (t) + pS
2 (t). Similarly, the settlement price at time t of

the collateralized terminal payoff α × X (T ), where α is a real number, is α × pS(t).
If we consider square integrable payoffs, from Riesz representation theorem, we

can write pS(0) = E Qβ
[ξ × X (T )] for some square-integrable random variable ξ .

Taking X (T ) = 1, we get BA(0, T ) = E Qβ
[ξ ]. Then, we can define a new probability

measure Q A
T from its density: d Q A

T /d Qβ = ξ/E Qβ
[ξ ]. As a consequence, the pricing

rule pS(0) = BA (0, T ) E Q A
T [X (T )], where BA(0, T ) is the collateralized discount

factor, is not surprising but a direct consequence of the linear structure of cash-flows
in perfect collateral schemes.

6.4 OIS contracts with cash collateral

We will first focus on the simplest payoff, a stylized (with continuous compounding)
overnight indexed swap, where:

X (T ) = exp (y (T − t0)) − exp

⎛

⎝
T∫

t0

c$(s)ds

⎞

⎠ (6.8)
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where t0 is the trade date, T the maturity date of the trade. y is the (continuously
compounded) fixed rate of the collateralized overnight indexed swap, while c$(t) is
the cash collateral rate, say the effective Fed funds rate.

The settlement price pS(t), t0 ≤ t ≤ T , is provided by:

pS(t) = E Qβ$

t

⎡

⎣X (T ) exp

⎛

⎝−
T∫

t

c$(s)ds

⎞

⎠

⎤

⎦ (6.9)

It is worth noting that the compounding and discounting rates are equal leading to sim-

plifications. Under our standing notations, BC$(t, T ) = E Qβ

t

[
exp

(
− ∫ T

t c$(s)ds
)]

.

Thus,

pS(t) = exp (y (T − t0)) BC$(t, T ) − exp

⎛

⎝
t∫

t0

c$(s)ds

⎞

⎠ (6.10)

It can be seen that BC$(t, T ) acts as a discount factor.
Let us consider a par trade at inception, i.e. t = t0 and settlement price equal to 0.

Then, the par rate, at date t , of such a collateralized OIS contract with maturity date
T, y$ (t, T ), is derived from:

exp
(
−y$(t, T ) × (T − t)

)
= BC$ (t, T ) (6.11)

Let us remark that the discount factors BC$ (t, t + δ) are directly related to market
observables, i.e. par rates of collateralized OIS. As a consequence, we can readily
write settlement prices of collateralized OIS contracts in a model free setting (up to
interpolation schemes).

6.5 Libor swaps

Let us denote by L (T, T + δ) the Libor (or Euribor rate) at time T for maturity δ.
The case of a Libor FRA contract is such that h(T + δ) = δ × (F R A − L(T, T + δ))

where δ is the coverage factor and F R A is the contractual FRA rate. We then have:

pS
A (t) = δBA (t, T + δ) ×

(

F R A − E
Q A

T +δ
t [L (T, T + δ)]

)

(6.12)

The par rate L A (t, T, T + δ) is the FRA rate such that the settlement price at date t
equals zero. L A (t, T, T + δ) is a forward collateralized (with A) Libor rate. We have:

L A (t, T, T + δ) = E
Q A

T +δ
t [L (T, T + δ)] (6.13)

The forward Libor curve depends upon the collateral choice. For instance, one might
think of using LCH.Clearnet type contracts, where cash-collateral is posted in the same
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currency as the one of the interest rate swap contract and earns the corresponding refer-

ence overnight rate. We would then have LC$ (t, T, T + δ) = E
QC$

T +δ
t [L (T, T + δ)].

Such OIS discounting corresponds to Kijima et al. (2009) or Mercurio (2009). If we
were to think of Eurodollar futures, the (collateralized) forward Libor rate would be
different, since the latter case, the collateral rate equals zero and not the reference
overnight rate.

We can then write the settlement price of a collateralized FRA contract as:

pS
A (t) = δBA (t, T + δ) × (F R A − L A (t, T, T + δ)) (6.14)

which involves market observables or quantities that can be derived from market
observables. From this and the linearity property of settlement prices, we can compute
the present value of Libor swaps collateralized at overnight rates of the LCH.Clearnet
type.

6.6 Collateralized forward FX contracts

The contractual payoff is such that: X (T ) = F Xe/$(T ) − K where, for simplicity,8

we state that:

F Xe/$(T ) = F Xe/$(t) exp

⎛

⎝
T∫

t

ird$/e(s)ds

⎞

⎠

× exp

(

−
(
σe
)2

2
(T − t) + σe

(
We(T ) − We(t)

)
)

(6.15)

Let us assume that the collateral is posted in cash USD and earns the effective

fed funds rate c$. Then, applying the pricing equation: pS(t) = E Qβ$

t

[
X (T ) exp

(
− ∫ T

t c$(s)ds
)]

, we obtain:

pS(t) = F Xe/$(t)E Qβ$

t

⎡

⎣exp

⎛

⎝−
T∫

t

(
c$(s) − ird$/e(s)

)
ds

⎞

⎠

⎤

⎦

− K × E Qβ$

t

⎡

⎣exp

⎛

⎝−
T∫

t

c$(s)ds

⎞

⎠

⎤

⎦ (6.16)

Let us remark that the discount factors E Qβ$

t

[
exp

(
− ∫ T

t c$(s)ds
)]

= BC$ (t, T )

can be obtained from the quotes on the USD interest swaps collateralized at effective

8 This illustrative example, where We is a Brownian term independent of other involved quantities and
the volatility is assumed to be constant can readily be extended.
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fed funds rate. Thus, from the quotes of the collateralized forward FX contracts, we

can derive more discount factors. More precisely, let us denote by F Xe/$
$ (t, T ),

the collateralized (in cash USD) forward price of one euro. It is such that: 0 =
F Xe/$(t)E Qβ$

t

[
exp

(
− ∫ T

t

(
c$(s) − ird$/e(s)

)
ds
)]

− F Xe/$
$ (t, T ) BC$ (t, T ).

Thus, we can compute the discount factor E Qβ$

t

[
exp

(
− ∫ T

t

(
c$(s) − ird$/e(s)

)
ds
)]

from quoted forward FX contracts. As for a non par collateralized contract, with con-
tractual payoff X (T ) = F Xe/$(T ) − K , the settlement price at time t is simply

provided by BC$ (t, T ) ×
(

F Xe/$
$ (t, T ) − K

)
.

We can then compute settlement prices of cross-currency swaps as a simple exten-
sion of forward FX contracts.

7 Asymmetric CSA, CSA with thresholds

7.1 No default risk

In a typical asymmetric CSA framework, no collateral is to be posted if the set-
tlement price is above zero while the value of posted collateral equals the set-
tlement price is negative if it is negative. Thus, V (t) = min

(
0, pS (t)

) =(
0 × 1{pS(t)>0} + 1 × 1{pS(t)≤0}

)
pS(t). This corresponds to a haircut being set to

αA(t) = 0 if pS(t) > 0 and αA(t) = 1, if pS(t) ≤ 0. Thus, going into the same lines
as in Sects. 2 and 5, the applicable discount rate is R(t)1{pS(t)>0} + rA(t)1{pS(t)≤0}
where R is the default-free borrowing rate. We obtain the pricing formula for default-
free counterparties and asymmetric CSA as a special case of pricing with haircuts:

pS(t) = E Qβ

t

⎡

⎣X (T ) exp

⎛

⎝−
T∫

t

(
R(s)1{pS(s)>0} + rA(s)1{pS(s)≤0}

)
ds

⎞

⎠

⎤

⎦

(7.1)

7.2 CVA and asymmetric CSA

In an asymmetric CSA, only one party is protected against the default of the other,
thanks to posted collateral. One could either consider that the party that is not posting
collateral is default-free and the pricing formula stated in previous sub-section is
valid. However, in most cases, one would need to take into account the price impact
of counterparty risk.

As outlined by Brigo and Morini (2010), setting-up the closeout payment in case of
default is an intricate issue. The easiest way to go is to compute so called “risk-free”9

9 “Risk-free” means that an uncollateralized swap curve or overnight rates in the interbank market are to
be used in the discounting process. While this can be understood from an historical perspective, when the
default component in effective fed funds rates or EONIA was neglected or when swaps contracts were
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present values, either by discounting at overnight rates, as in the computation of the
settlement price of a perfectly collateralized trade, collateralized at overnight rate or
by using an uncollateralized swap curve. The previous approach is questionable in our
asymmetric CSA case. Using a recovery based upon settlement price in the spirit of
Duffie and Huang (1996) is simpler and provides useful guidance: we can derive a
settlement price coping both with CVA and collateral valuation adjustments.

First, let us recall that we only deal with the default risk of one party due to one
one-side counterparty risk protection. Thus, depending on the party’s point of view,
the settlement price is free of CVA or DVA. We can take the point of view of a dealer,
typically an investment bank, involved in trades with a sovereign counterparty and thus
exposed to that sovereign default. We do not detail the resolution process of sovereign
default on derivatives contracts and assume that sovereign default intensity process,
λ and recovery rate δ are given. We chose here a fractional recovery of market value
approach, as in Duffie and Huang (1996), a route which is not privileged by market
practitioners, but which is meaningful in our context. Then, the loss in case of default,
which occurs between t and t + dt with conditional probability λ (t) dt is simply
equal to (1 − δ) pS(t)1{pS(t)>0}. By considering, as before, the expected change in
the settlement price, prior to default, we readily get:

E Qβ

t

[
dpS (t)

]
=
(
(R + λ (1 − δ)) (s)1{pS(s)>0} + rA (s) 1{pS(s)≤0}

)
pS(t)dt

(7.2)

As above, we focused on the generator of the BSDE, which now takes the form
g (p) = (R + λ (1 − δ)) p+ + rA p− and therefore remains piecewise linear. The
pre-default portfolio value is simply written as:

pS (t)

= E Qβ

t

⎡

⎣X (T ) exp

⎛

⎝−
T∫

t

(
(R + λ (1 − δ)) (s) 1{pS(s)>0} + rA (s) 1{pS(s)≤0}

)
ds

⎞

⎠

⎤

⎦

(7.3)

where the term λ (1 − δ) accounts for the counterparty risk adjustment.

8 Trade contributions in a non-linear setting

It is interesting to go back to the BSDE stated in Eq. (7.3). The terminal value is X (T )

corresponding to contractual payoff and the generator g (p) = (R + λ(1 − δ)) p+ +
rA p−, with p+ = max (p, 0) and p− = min (p, 0). We recall that in a Brownian fil-
tration setting, such BSDE is a standard mathematical finance tool (Karoui et al. 1997)
and admits a unique solution. pS (t) is also known as the conditional g−expectation

Footnote 9 continued
deemed default-free and CVA/DVA effects could be neglected, the market terminology is misleading.
“Recovery of swap”, similarly to “recovery of Treasury” would be more explicit.
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of X (T ) (see Peng 2004). Let us remark that the collateralization scheme is embed-
ded in the shape of the generator of the BSDE. Moreover, properties of the generator
translate to the price functional (Peng 2006). For instance, in an asymmetric CSA,
the generator is positively homogeneous. Thus, the price functional is also positively
homogenous: for a positive real number λ, the price at time t of λX (T ) is equal to
λpS (t). If R+λ (1 − δ) ≥ rA, the generator is concave and thus the functional associ-
ating the contractual payoff (terminal value) X (T ) to current settlement price pS (t) is
also concave.10 Non linearity is associated with portfolio effects: under the assumption
that R+λ (1 − δ) ≥ rA, the present value of a portfolio of two trades X1 (T )+ X2 (T )

is greater than the sum of the present values of the two trades considered in isolation.
In such a non-linear context, one needs to consider pricing at portfolio level and

the settlement price has to be understood as the present value of a portfolio of trades
against a given counterparty (possibly a CCP) and under a specific CSA.

Two issues need to be addressed, marginal pricing and trade contributions. As will
be shown these two issues are closely connected and are quite intuitive on a financial
point of view.

Regarding marginal pricing, we consider the present value impact of a small trade
with payoff εZ , ε ∈ R being a scaling factor. Thus the portfolio payoff translates
from X (T ) to X (T ) + εZ . Let us denote by

(
pS + εZ

)
(t) the settlement price after

inception of the new trade. The generator g (p) = (R + λ(1 − δ)) p+ + rA p− is
differentiable with respect to p, except for p = 0, which actually deserves a specific
treatment.11 Thanks to Proposition 2.4 of Karoui et al. (1997), ε → (

pS + εZ
)
(t) is

differentiable with derivative at ε = 0 is given by:

E Qβ

t

⎡

⎣Z × exp

⎛

⎝−
T∫

t

(
(R + λ(1 − δ)) (s) 1{pS(s)>0} + rA (s) 1{pS(s)>0}

)
ds

⎞

⎠

⎤

⎦

(8.1)

The previous term is known as the directional derivative of the price functional around
the current portfolio in the direction of the new trade Z . Marginal pricing is based on
the first order expansion:
(

pS + εZ
)

(t) = pS (t)

+ εE Qβ

t

⎡

⎣Z × exp

⎛

⎝−
T∫

t

(
(R + λ(1−δ)) (s) 1{pS(s)>0} + rA (s) 1{pS(s)>0}

)
ds

⎞

⎠

⎤

⎦

+ o (ε) .

10 Actually, if R + λ(1 − δ) ≥ rA , the generator is super-additive and the price functional, associated
with an asymmetric CSA, too. Conversely, if R + λ(1 − δ) ≤ rA , the generator is sub-additive and the
price functional is sub-additive and thus convex, thanks to positive homogeneity. Concavity or convexity
are useful properties, since when the price functional is not differentiable with respect to terminal payoff,
we can still consider a non-empty subdifferential and deal with left and right Gâteaux derivatives, which
stills allows for simple one-sided first order expansions.
11 When p = 0, the first-order expansion is readily derived and leads to different left and right derivatives.
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The deflator (or stochastic discount factor) exp
(− ∫ T

t

((
R + λ(1 − δ)

)
(s) 1{pS(s)>0}

+ rA (s) 1{pS(s)>0}
)
ds
)

is the functional derivative (or Fréchet derivative) of the price
with respect to terminal payoff. The important point is that the first order term is linear
in Z , thus leading to standard pricing methods.

We have already noticed that, in the case of an asymmetric CSA, the settlement
price is positively homogenous with respect to terminal payoff. Thus, (functional)
Euler’s equation holds and can be written as:

pS(t) = E Qβ

t

⎡

⎣X (T ) exp

⎛

⎝−
T∫

t

(
(R + λ(1 − δ)) (s)1{pS(s)>0} + rA(s)1{pS(s)≤0}

)
ds

⎞

⎠

⎤

⎦

(8.2)

where exp
(
− ∫ T

t

(
(R + λ(1 − δ)) (s) 1{pS(s)>0} + rA (s) 1{pS(s)≤0}

)
ds
)

is the deriv-

ative of the price. By connecting the already stated pricing formula to Euler’s equa-
tion, we can use standard risk allocation techniques to compute the trade contribu-
tions. Let the portfolio payoff X (T ) be the sum of J individual trades X (T ) =
X1 (T ) + · · · + X J (T ). Then according to Euler’s allocation rule, the trade contribu-
tion of X j (T ) to portfolio present value pS (t) is provided by:

E Qβ

t

⎡

⎣X j (T ) exp

⎛

⎝−
T∫

t

(
(R + λ(1 − δ)) (s)1{pS(s)>0} + rA(s)1{pS(s)≤0}

)
ds

⎞

⎠

⎤

⎦

(8.3)

This is not to be confused with the standalone present value:

E Qβ

t

⎡

⎣X j (T ) exp

⎛

⎝−
T∫

t

(

(R + λ(1 − δ)) (s)1{
pS

j (s)>0
} + rA(s)1{

pS
j (s)≤0

}

)

ds

⎞

⎠

⎤

⎦

(8.4)

Euler’s allocation rule is totally additive, i.e. the sum of trade contributions is equal
to the portfolio present value. Unlike the standalone present values, the trade contri-
butions involve a standard (linear) expectation.

It can be seen that the trade contributions and marginal prices are computed
quite similarly. Let us once again emphasize that the collateralization scheme is
embedded in the shape of the generator and thus in the stochastic discount factor

exp

(

−
T∫

t

(
(R + λ(1 − δ)) (s)1{pS(s)>0} + rA(s)1{pS(s)≤0}

)
ds

)

.

In the perfect collateralization case, we introduced the suitable collateralized for-
ward measures. This can readily be extended to locally proportional haircuts and
therefore to asymmetric CSA. We can introduce a CSA and portfolio specific change
of measure:
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d Q X,C S A
T

d Qβ
=

exp

(

−
T∫

0

(
(R + λ(1 − δ)) (s)1{pS(s)>0

} + rA(s)1{pS(s)≤0
}
)

ds

)

E Qβ

[

exp

(

−
T∫

0

(
(R + λ(1 − δ)) (s)1{pS(s)>0

} + rA(s)1{pS(s)≤0
}
)

ds

)]

(8.5)

Let us further denote by BX,C S A (t, T ) = E Qβ

t
[

exp
( − ∫ T

t

(
(R + λ(1 − δ)) (s)

1{pS(s)>0} + rA(s)1{pS(s)≤0}
)
ds
)]

, the collateralized discount bond price. Then,
the trade contribution or the marginal price of X j (T ) can simply be written as

BX,C S A (t, T ) E
Q X,C S A

T
t

[
X j (T )

]
. Let us eventually remark that the changes of mea-

sure and the pricing formulas mimic and extends those stated in Sect. 6 for the perfect
collateralization scheme.

9 Conclusion

In this paper, we kept as closely as possible to mainstream mathematical finance. It has
been shown that well known concepts and tools can be used with minor adaptation to
the collateralized pricing issues: On one hand, we used Cvitanić and Karatzas (1993)
framework to cope with different default-free borrowing and lending rates. On the
other hand, we used varying haircuts to provide a generic discounting approach that
applies to a wide range of contracts, with perfect or partial collateralization. Within
that framework, we provided suitable changes of measure to compute prices or trade
contributions.

Though we dealt comprehensively with various kinds of collateral and collater-
alization schemes, we left aside the pricing impacts of initial margins. This is an
important topic but the rules governing the computations of initial margins are not yet
stabilized. We did not investigate the numerical issues associated with solving BSDE
in the asymmetric CSA case and the connections with the standard approaches to the
computations of CVA. This is left for future research.

10 Appendix: Convexity adjustments

E
Q B

T
t [X (T )] = E

Q A
T

t

[
d Q B

T
d Q A

T
X (T )

]

/E
Q A

T
t

[
d Q B

T
d Q A

T

]

. Thus,

E
Q B

T
t [X (T )] = E

Q A
T

t

⎡

⎢
⎢
⎢
⎢
⎣

exp

(

−
T∫

t
(rB − rA) (s)ds

)

E
Q A

T
t

[

exp

(

−
T∫

t
(rB − rA) (s)ds

)] X (T )

⎤

⎥
⎥
⎥
⎥
⎦

It can easily be shown that: E
Q A

T
t

[

exp

(

−
T∫

t
(rB − rA) (s)ds

)]

= BB (t,T )
BA(t,T )

. Thus,
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E
Q B

T
t [X (T )] = E

Q A
T

t [X A (T )]

+ BA (t, T )

BB (t, T )
Cov

Q A
T

t

⎛

⎝exp

⎛

⎝−
T∫

t

(rB − rA) (s)ds

⎞

⎠ , X (T )

⎞

⎠

which involves a covariance term between the payoff X (T ) and the stochastic spread
terms rB − rA.

Let us consider the special case associated with a Brownian filtration. Since

ξ A
T is a positive Qβ - martingale, we have:

dξ A
T (t)

ξ A
T (t)

= σA (t, T ) dW β
A (t), ξ A

T (t) =
ε
(∫ t

0 σA (s, T ) dW β
A (s)

)
where W β

A is a Qβ - Brownian motion. Since ξ
B,A
T (t) =

ξ B
T (t)

ξ A
T (t)

is a Q A
T - martingale and using Girsanov theorem, we have:

ξ
B,A
T (t) = ε

⎛

⎝
t∫

0

σB (s, T ) dW A,T
B (s) − σA (s, T ) dW A,T

A (s)

⎞

⎠ ,

where W A,T
B , W A,T

A are Q A
T - Brownian motions.

E
Q B

T
t [X (T )] = E

Q A
T

t

[
ξ

B,A
T (T )

ξ
B,A
T (t)

X (T )

]

= E
Q A

T
t

⎡

⎣ε

⎛

⎝
T∫

t

σB (s, T ) dW A,T
B (s)−σA (s, T) dW A,T

A (s)

⎞

⎠ X (T )

⎤

⎦.

σA (t, T ) is related to collateralized discount bond prices since from BA (t, T ) =
BA (0, T ) ξ A

T (t) exp

(
t∫

0
rA(s)ds

)

, we get d BA(t,T )
BA(t,T )

= rA(t)dt + σA (t, T ) dW β
A (t).

Let us assume that X (T ) > 0, thus pA,T (t) > 0. dpA,T (t)
pA,T (t) = σX (t, T ) dW X,T

A (t),

where W X,T
A is a Q A

T - martingale and X (T )= E
Q A

T
t [X (T )] ε

(
T∫

t
σX (s, T ) dW X,T

A (s)

)

.

This leads to the following relation between forward prices under collaterals A, B:

E
Q B

T
t [X (T )] = E

Q A
T

t [X (T )] E
Q A

T
t

⎡

⎣ε

⎛

⎝
T∫

t

σX (s, T ) dW X,T
A (s)

⎞

⎠

ε

⎛

⎝
T∫

t

σB (s, T ) dW A,T
B (s) − σA (s, T ) dW A,T

A (s)

⎞

⎠

⎤

⎦
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