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Abstract Polynomial splines are popular in the estimation of discount bond term
structures, but suffer from well-documented problems with spurious inflection points,
excessive convexity, and lack of locality in the effects of input price perturbations. In
this paper, we address these issues through the use of shape-preserving splines from
the class of generalized tension splines. Our primary focus is on the classical hyper-
bolic tension spline which we derive non-parametrically from a penalized least squares
criterion, but extensions to generalized tension splines—such as rational splines and
exponential splines—are also covered. Our methodology allows both for best-fitting
of noisy bonds and for the construction of an exact interpolatory term structure to a set
of liquid instruments. We work with a local tension B-spline basis and support both
fully non-parametric and user-imposed knot location strategies.

Keywords Discount curves · Hyperbolic tension splines · Bond pricing ·
Swap pricing · Perturbation locality · Optimality

1 Introduction

A key concept in pricing and risk-management of fixed income securities is the risk-
free term structure of interest rates, represented, for instance, as a curve of zero-cou-
pon bond prices (the so-called discount curve) for a continuum of maturities in some
interval. As only a finite set of fixed income securities trade, very few of which are
zero-coupon bonds, in practice a computational procedure is required to interpolate
between adjacent maturities of observable securities, and to extract zero-coupon bond
prices from more complicated securities such as coupon bonds, swaps, and Eurodollar
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futures. Imperfections in some markets will introduce considerable noise in observable
security prices, in which case the computational procedure must additionally be capa-
ble of smoothing and regularizing data.

One approach to the construction of a term structure of interest rates involves the
specification of a smooth functional form with parameters to be determined by non-
linear least-squares regression. Examples include Nelson and Siegel (1987); Diament
(1993), and Svensson (1994). While a functional form can offer significant insight
in theoretical work, the resulting fit to observed security prices is typically too loose
for mark-to-market purposes and may also, as in the case of the polynomial model in
Chambers et al. (1984), result in highly unstable term structure estimates. As a con-
sequence, financial institutions involved in actual trading of fixed income securities
rarely, if ever, rely on functional forms.

The most common method of estimating the term structure of interest rates is based
on polynomial splines. Application of linear splines on term yields1 is particularly
popular and, in the pure interpolation case, gives rise to an efficient iterative approach
known as bootstrapping, covered in many introductory textbooks (see e.g. Hull 2000).
An often-seen variation uses piecewise flat forward rates, corresponding to a linear
spline in the logarithm of zero-coupon bond prices; see e.g. the survey article by Hagan
and West (2004) for a discussion. Both methods are stable and fast, but ultimately pro-
duce forward rate term structures that are discontinuous. This curve shape is at odds
with economic reality and gives rise to technical problems in many dynamic models
of the term structure of interest rates.

To produce continuous term structures of forward rates, a number of approaches
based on cubic spline interpolation have been proposed in the literature, starting with
the cubic regression splines proposed in McCulloch (1975). While McCulloch (1975)
applied cubic splines directly to the zero-coupon bond price curve, Sheah (1984)
and many others have noted that this leads to instabilities in yields and forward
rates. Consequently, cubic splines are most often applied either on term yields, the
logarithm of zero-coupon bond prices, or a similar transformation; see Tanggaard
(1997); Hagan and West (2004), and McCulloch and Kochin (2000) for a discus-
sion. In the actual application of cubic splines, a variety of algorithms and spline
choices have been proposed in the literature, ranging from the C1 Hermite splines
(such as the Catmull-Rom spline, see Catmull and Rom 1974) to C2 splines with
boundary conditions on first, second, or third derivatives. Of particular relevance
to our work here is the non-parametric approach of Tanggaard (1997) which opti-
mizes a least-squares pricing norm penalized with a smoothness term to arrive at a
natural cubic spline with knot placement determined by the data. Hagan and West
(2004) surveys a number of other cubic spline algorithms, and also review approaches
based on quartic splines (see e.g. Adams (2001) or Adams and van Deventer (1994)).
Not surprisingly, quartic splines appear to offer no obvious advantages over cubic
splines.

Despite considerable popularity in financial institutions and in software pack-
ages, term structure estimation with cubic splines inherits a number of well-known

1 The concepts of term yields, forward rates, and similar quantities used to characterize the term structure
of interest rates are defined in Sect. 2.
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problems of cubic splines in general. For instance, cubic splines cannot be guaranteed
to preserve any convexity or monotonicity properties that may characterize the origi-
nal data, and occasionally introduce excess convexity and spurious inflection points,
giving rise to curves with a “wiggly” appearance. Apart from lack of realism, an overly
wiggly curve is likely to cause violation of economic constraints inherent in the data,
such as positivity of forwards and yields. C2 cubic splines2 also have an inherent lack
of locality, in the sense that a local perturbation of curve input data will cause “ringing”
and modify sections of the discount curve far away from the perturbed data point. As
common practice for risk management and hedging of a fixed income portfolio relies
heavily on such perturbation of curve inputs, lack of locality in the discount curve con-
struction methodology can lead to misleading hedge information where, say, the hedge
of a short-term security is reported to contain a significant position in a long-dated
security.

Systematic efforts to overcome the drawbacks of cubic spline interpolation in term
structure estimation are of considerable interest to the banking industry, but have so
far been fairly limited. Hagan and West (2004) discuss applications of the approach
in Hyman (1983) to preserve convexity of the input data. These authors also propose
an algorithm based on a quadratic spline for discrete forward rates; when combined
with a series of modifications, this approach can be guaranteed to produce a strictly
positive, but non-differentiable, forward curve.

The approach in this article is similar to that of Tanggaard (1997), but we modify
the smoothness penalty term to include a component that measures curve length. The
curve that optimizes this modified norm is proven to be a hyperbolic tension spline.
Introduced by Schweikert (1966), the hyperbolic tension spline can be considered the
result of adding a pulling force (tension) to each end point of a cubic spline; as the force
is increased, excess convexity and extraneous inflection points are gradually reduced
until the curve eventually approaches a linear spline. Basic algorithms for construc-
tion and parameter selection of purely interpolating hyperbolic tension splines can be
found in Cline (1974); Renka (1987), and Rentrop (1980), among others. For the pur-
pose of term structure estimation (where discount curve function values are initially
unknown) algorithms for interpolating splines are generally less natural than those
based on a formal expansion of tension splines in local basis functions. Such work
was undertaken in Koch and Lyche (1989, 1993), and was later generalized in Kvasov
(2000). We rely on a local base representation throughout.

While hyperbolic tension splines are appealing due to their characterization as the
optimal solution to a fairly natural regularization norm, a number of other families of
tension splines have been proposed in the literature. Common for all tension spline
is the existence of one or more control parameters that allow for a gradual (and uni-
formly convergent) transition from a cubic spline to a linear spline. It is this property
of tension splines that ultimately allows us to smoothly manipulate locality and shape
preservation, and thereby to overcome the problems of cubic spline interpolation.
Although our primary focus is on hyperbolic tension splines, we present elements of
GB-spline theory (Kvasov 2000) and describe one simple approach to generalize our

2 C1 cubic Hermite splines are local, with one point on the discount curve being linked only to a few
neighboring ones.
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work to generalized tension splines. A further extension of our basic approach allows
for externally specified spline knots, allowing for additional control of the resulting
curve.

Application of hyperbolic tension splines to term structure estimation was first
proposed in a note by Barzanti and Corradi (1998), where a classically formulated
hyperbolic tension spline was used in a least-squares fit to a given set of simple
zero-coupon bonds, with knot-placement based on a rule proposed by Sheah (1984).
Our approach is different in many respects, starting with our basic formulation of
the fitting problem, where we properly work with coupon-bearing instruments (zero-
coupon bonds are rarely traded and then only in short maturities) and operate in a
space of curves more general, and more suitable, than that of the discount function
itself. Our basic estimator is not of the least-squares type, but is the result of non-
parametric procedure allowing us to systematically balance price accuracy against
curve regularity properties. In this approach, knot placement is entirely data-driven,
although we, as discussed, also supply useful extensions of our algorithm that facil-
itates external knot placement. In the numerical implementation, our use of a local
basis improves computational efficiency and allows us to easily generalize the algo-
rithm to the broader class of generalized tension splines with a GB-spline basis.
In their brief numerical results, Barzanti and Corradi (1998) are primarily inter-
ested in the ability of tension splines to repair artifacts associated with the choice
of building a least-squares spline directly on the discount function; in contrast, our
formulation of the problem essentially circumvents this issue and we can focus our
numerical tests on matters of more importance to practitioners, such as the construc-
tion of interpolating Libor yield curves with desired locality and smoothness proper-
ties.

The rest of the paper is organized as follows. In Sect. 2, we briefly outline the basic
problem of discount curve estimation, and provide a discussion of issues involved in
the formulation of a suitable mathematical model. Section 3 provides some elementary
results for cubic splines and hyperbolic tension splines in an interpolatory setting. In
particular, we introduce the local B-spline basis for hyperbolic tension splines and
discuss methods to incorporate boundary conditions. In Sect. 4, we state the problem
of term structure estimation as the solution to a particular minimization criterion, the
solution of which is a hyperbolic tension spline. An efficient numerical procedure is
presented, along with certain results for properly establishing the trade-off between
curve regularity and precision of market data fit. Section 5 lists several extensions to
the basic algorithm in Sect. 4, and provides support for the use of user-specified spline
knots, non-uniform curve tension, and generalized (GB) tension splines. Selected
numerical results are shown in Sects. 6 and 7 contains our conclusion. Three appendi-
ces contain proofs, a discussion of forward curve overlays to produce “turn” effects,
and additional numerical results.
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2 Financial markets basics

2.1 The discount curve construction problem

Consider a riskless claim (a zero-coupon bond) paying $1 at time t; let the time 0
value of this claim be denoted P(t). Interpreted as a function of t , the continuous
mapping P : R+ → [0, 1] is known as the discount curve. In the absence of arbi-
trage, P(t) is never-increasing in t , starting at P(0) = 1. The discount curve is of
fundamental importance in the valuation and risk-management of financial securities,
yet is essentially never directly observable in the market. Instead, the discount curve
must be inferred out from securities the observable prices of which are functions of
the discount curve.

In practice, the securities selected for the purpose of discount curve construction
will nearly always be linear in a finite set of points on the discount curve. A prototyp-
ical example of such a security is an ordinary coupon bond, paying non-random cash
amounts c1, c2, . . . , cM at times 0 < t1 < t2 < · · · < tM . Let the time 0 price of this
bond be V ; by elementary arguments, we must have

V =
M∑

j=1

c j P(t j ). (1)

Extending our setup to N such cash-paying securities—the benchmark set—we write

Vi =
M∑

j=1

ci j P(t j ), i = 1, . . . , N , (2)

where ci j denotes the cash amount paid at time t j on the i th security. Note that the
time-line {t j }M

j=1 in practice would be obtained by merging together the cash-flow
schedules of each of the N securities; as a consequence, many of the ci j may be zero.

The valuation expression (2) can conveniently be expressed in matrix form. For
this, define the M-dimensional discount bond vector

P = (P(t1), . . . , P(tM ))� ,

and let V = (V1, . . . , VN )� be the vector of observable security prices. Also let
c = {ci j } be an N × M dimensional matrix containing all the cash-flows produced
by the chosen set of securities; as mentioned, c would typically be quite sparse. The
relation (2) can be written as

V = cP, (3)

an equation that serves as the fundamental starting point for the estimation of P.
As typically M �= N , it is unlikely that (3) allows for a unique solution for P:

if M > N (which is most often the case), an infinite set of solutions will typically
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exist and additional structure must be imposed on the problem to chose a single P;
if M < N , (3) will generally not have a solution, and we will need to look for a
solution for P that minimizes some measure of price error. In any case, we are nor-
mally not interested solely in finding the discrete set of discount factors P, but also to
construct a smooth continuous function for all t in some interval on the real line, to be
used for the pricing and risk-management of securities outside of the benchmark set
(see Sects. 2.3 and 2.4 below). This will involve imposing interpolation and, if we wish
to move outside the interval [t1, tM ], extrapolation rules, in addition to enforcing the
basic valuation constraint of (3).

2.2 Yield and forward formulation

The discount function P(t) is fundamentally an exponentially decaying function, due
to compounding interest. As such, it is common and appropriate to perform the curve
fitting exercise on a logarithmic transformation of P(t). One possible curve to consider
is the continuously compounded (term) yield y(t) defined by

e−y(t)t = P(t) ⇒ y(t) = −t−1 ln P(t). (4)

The mapping t �→ y(t) is known as the yield curve; it is related to the discount curve
by the simple transformation (4). Of related interest is also the instantaneous forward
curve f (t), given by

P(t) = e− ∫ t
0 f (u)du ⇒ f (t) = −d ln P(t)/dt. (5)

An alternative transformation considered in the literature (see e.g. McCulloch and
Kochin 2000) is defined as

z(t) = y(t)t = − ln P(t) (6)

(such that dz(t)/dt = f (t)). Alternatively, we could consider

w(t) = − (ε + t)

t
ln P(t) = y(t)(ε + t) = εy(t) + z(t), (7)

where ε > 0 is some constant weight.
There is little econometric evidence to suggest that any particular transformation of

the discount curve is fundamentally better than any other. From a curve construction
purpose, however, some forms may be more convenient to work with than others, and
may lead to more natural boundary conditions. For instance, z(t) and w(t) are often
chosen due the fact that imposing linearity for large t (consistent with the specification
of a standard natural spline boundary condition) will imply that both y(t) and f (t)
will approach a flat asymptote for large t . Such asymptotic behavior is theoretically
attractive (see e.g. Cox et al. 1985), and also avoids the uncontrolled extrapolatory
growth in yields and forward rates associated with, say, the popular method of using
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a natural cubic spline directly on the yield curve y(t) (see Hagan and West 2004).
On the other hand, y(t) is often of more direct interest to market participants, so to
the extent that extrapolatory behavior is either of secondary importance or can be
controlled (for instance through expression of explicit boundary conditions), in some
situations it may be most appropriate to work with y(t). We also note that y(t) is often
flatter as a function of time than are transformations such as (7) and (6), which may in
some circumstances simplify curve construction. In any case, going forward we keep
the discussion general enough to allow for a user-specified choice of discount curve
transformation.

2.3 Pricing of non-benchmark fixed income securities

Assume now that we have managed to construct a continuous discount curve or, more
likely, some invertible transformation of P(t). What may we then want to use such a
curve for? Fundamentally, the resulting curve can be applied to price any fixed future
cashflow; indeed, the time 0 value of a known cash-flow c paid at time T is just cP(T ),

where P(T ) can be read off the constructed discount curve. This, in turn, allows us
to price any fixed income security that pays streams of fixed cashflows, e.g. coupon-
bearing bonds. More generally, however, a random cash-flow X (T ) paid at time T
can be priced from the expression

V (0) = P(T )ET (X (T )) (8)

where ET (X (T )) is the expectation of X (T ) in the so-called T -forward martingale
measure (see Jamishidian 1991). While it is outside the scope of this paper to deal in
detail with arbitrage pricing relationships such as (8), we still want to make the point
that for many interest rate derivatives, the expectation ET (X (T )) is itself a function
of the time 0 discount curve. For instance, if X (T ) represents a Libor rate published
at time T − � (with � typically being 3 months), then

ET (X (T )) = �−1
(

P(T − �)

P(T )
− 1

)
≈ f (T ), (9)

where the approximation holds for small �. Important derivative contracts such as
fixed-floating swaps, caps, and swaptions all involve payments of floating Libor rates
or transformations thereof. The expression (9) alerts us to an important fact: securities
valuation outside the benchmark set may very well require use of the discount function
P(·) in ways other than a simple scale on fixed cash-flows. This, in turn, will impose
additional requirements on the curve, e.g. that forward rates f (T ) computed from the
model be smooth and well-behaved functions of T (as would certainly benefit (9)).

Along similar, but even more fundamental, lines is the observation that many mod-
ern models for fixed income derivatives valuation apply their stochastic dynamics to
the instantaneous forward curve; see e.g. Heath et al. (1992). In these frameworks the
curve t �→ f (t) constitutes the initial condition for a dynamic diffusion model that
moves all forward rates through calendar time in random, arbitrage-free fashion. If
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f (t) is not well-behaved as a function of t, it is easy to demonstrate that the dynamics of
the points on the forward curve themselves become non-smooth, with drift-terms that
may take very large absolute values. For instance, in the popular Gaussian model (see
Jamishidian (1991) or Hull and White (1990)), the relevant (risk-neutral) dynamics of
the short rate3 r(t) are

dr(t) = κ (θ(t) − r(t)) dt + σdW (t),

θ(t) = κ−1 d f (t)

dt
− f (t) + 1

2
κ−3σ 2

(
1 − e−2κt

)
, (10)

where κ, σ > 0 are model parameters, and W (t) is a scalar Brownian motion. Notice
that θ(t) depends on the t-derivative of the forward curve; hence, if the forward curve
f is not smooth in t, the drift term in this stochastic differential equation may become
unwieldy. To the extent that we believe that a very rapid change in interest rates may
be possible at a given date (e.g. around a rate policy meeting of the central bank) large
gradients in f may be economically justifiable, but otherwise it is generally more rea-
sonable to assume that the forward curve be smooth and well-behaved as a function
of t.

2.4 Risk computations and hedging

Beyond pricing of non-benchmark securities, an important application of discount
curve construction technology is the generation of sensitivity reports, to aid in risk
management of securities positions. To describe common practices, consider a port-
folio of securities with value V0, where V0 is a functional of the discount curve P(t).
The securities in the portfolio would typically not be in the benchmark set and could,
say, contain a variety of interest rate options. As the discount curve is a function of
the benchmark set values V = (V1, . . . , VN )�, we may write

V0 = V0 (V1, . . . , VN ; p) ,

where the vector p contains model parameters (e.g. option volatilities) and where the
function V0 (·) is determined both from the valuation model of the security in question,
and from the curve construction algorithm employed. For finite sized moves in V and
p, we have to first order

�V0 ≈
N∑

i=1

∂V0

∂Vi
�Vi +

∑

i

∂V0

∂pi
�pi . (11)

For the purpose of risk-managing first-order risk exposure to moves in the discount
curve, (11) suggests that the collection of derivatives ∂V0/∂Vi , i = 1, . . . , N form
a natural metric for portfolio risk. In particular, if all these derivatives are zero, our
portfolio would, to first order, be immunized against any possible move in the discount

3 That is, the interest rate at time t for deposits maturing at time t + ε, with ε ↓ 0.
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curve. On the other hand, if some or all of the derivatives were non-zero, we could
manage our risk by setting up a hedge portfolio of benchmark securities, with notional
−∂V0/∂Vi on the i th security. We emphasize that the resulting hedge would typically
not be model-consistent: most interest models assume that yield curve risk originating
from only a few stochastic yield curve factors that tend to move the curve smoothly,
in a predominantly parallel fashion. Theoretically, a bucket-by-bucket immunization
against all terms �Vi may then be considered an “overkill”—we typically hedge
against far too many risk factors (N )—but is nevertheless standard industry practice
and has proven to be very robust. Notice that bucket-hedging along these lines would,
for instance, correctly reject the notion that we could perfectly hedge a 20-year bond
with a 1-year bond, something that a one-factor interest rate model such as (10) would
happily accept.

The simplest approach to computation of the derivative ∂V0/∂Vi involves a man-
ual bump4 to Vi , followed by a reconstruction of the yield curve, and a subsequent
repricing of the portfolio V0. For it to work properly, it is important that the curve con-
struction algorithm is fast and produces clean, local perturbations of the yield curve
when benchmark prices are shifted. For instance, perturbing a short-dated bond price
should not cause noticeable movements in the long-term part of the discount curve,
lest we reach the erroneous conclusion (again) that we can hedge a 20-year bond
with a 1-month bond. The requirement of perturbation locality tends to conflict with
requirements of smoothness (Sect. 2.3), a trade-off we shall examine in some detail
later in this article.

2.5 Choice of benchmark securities

We round off our description of the discount curve construction problem with a few
words on the selection of the securities in the benchmark set. Mathematically, all that
is required of securities in the benchmark is that their prices are observable and can
be written as linear combinations of zero coupon bond prices. As we discussed, the
latter requirement is satisfied by coupon bonds, but many other non-callable securi-
ties qualify as well; for instance, it is not difficult to verify that the generic valuation
expression (1) also applies to such securities as forward rate agreements (FRAs) and
fixed-floating interest rate swaps. (For an introduction to these and other basic fixed-
income securities, see e.g. Hull 2000). However, rather than arbitrarily mix and match
different kinds of securities, in practice one would always aim to pick benchmark
securities that originate from the same market as the financial instruments that one
ultimately would like to apply the discount curve to. For instance, to construct a curve
for pricing Treasury bond securities, it is natural to choose a set of Treasury coupon
bonds and T-Bills as the benchmark set, with maturities spanning the period for which
we wish to construct a discount curve. Similarly, if we are interested in constructing
a discount curve applicable for bonds issued by a particular firm, we would naturally
use bonds and loans used by the firm in question. For capital markets purposes, the

4 In practice, rather than bumping the price Vi outright, one may instead bump the quoted yield of the i th
benchmark security (typically by 1 basis points). See also footnote 7.

123



236 L. Andersen

most important yield curve is no doubt the Libor curve, constructed out of market
quotes for Libor (London Interbank Offered Rate) deposits, fixed-floating interest rate
swaps, and Eurodollar futures.

Beyond selection of a market, to generate a clean benchmark set, selection crite-
ria may be applied to avoid illiquid, noisy, or otherwise non-representative securities
affecting the discount curve. These criteria are typically market-specific, and may
be associated with tax issues or seasoning; for instance, in Treasury markets, newly
issued bonds (“on-the-run”) are often substantially more liquid than older Treasury
bonds, and a systematic price bias will often exist between new and old bonds. In
the selection of benchmark securities, one would normally select bonds with equal
liquidity characteristics. Rather than outright pruning of securities, it is also possible
to mark certain securities in the benchmark set as less important than others, through
the choice of weights in a fitting norm; we return to this in Sect. 4. On the flip-side,
if the universe of observable security prices is sparse, one could contemplate adding
fictitious securities to the benchmark set, constructed by interpolation rules applied
to known securities. This practice is apparently common, but should be approached
with some care, we think, as it may lead to odd curve behavior and suboptimal hedges.
Also, interpolation rules are more naturally applied to fundamental quantities such as
forward rates and term yields.

Finally, as we explained in Sect. 2.4 above, it is often the case that the securities in
the benchmark set will ultimately be used in a hedging exercise where positions in the
benchmark set is used to immunize a portfolio of non-benchmark securities against
interest rate risk. In this case, we should obviously use only benchmark securities
that we deem (a) liquid enough to allow for hedge trading; and (b) having near-zero
basis risk to the securities in portfolio we want to hedge. The latter point essentially
(re-) states the basic idea that we want the securities in the benchmark set to be “similar”
to the non-benchmark securities we are interested in, lest we want to expose ourselves
to the risk of the two markets diverging. For instance, hedging a swap portfolio with
Treasury bonds would expose the hedger to moves in the spread (the so-called swap
spread basis) between the Libor and Treasury discount curves.

3 Tension spline basics

Having now outlined basic issues in the discount curve construction problem, we tem-
porarily move away from the financial context in order to provide some required back-
ground material from the tension spline literature. To start our discussion, consider a
standard C2 cubic spline g(t) interpolating a set of data points (t j , g j ), j = 1, . . . , M .
Here, the t j are said to be knots. By necessity, a cubic spline interpolant is piecewise
linear in its second derivative, i.e.

g′′(t) = t j+1 − t

h j
g′′

j + t − t j

h j
g′′

j+1, t ∈ [t j , t j+1], (12)

where h j ≡ t j+1 − t j and where g′′
i ≡ g′′(ti ), with hyphens denoting differentiation

with respect to time. As is well-known, explicit equations for the interpolating cubic
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spline can classically be recovered in O(M) operations by integration of (12) and
subsequently requiring the curve to pass through given data points as well as hav-
ing continuous first derivatives across knots (see e.g. Press et al. (1992) for details
and computer code). To uniquely specify the cubic spline, derivative boundary con-
ditions must be expressed at t = t1 and t = tM . A classical boundary condition is
g′′

1 = g′′
M = 0, leading to the natural cubic spline.

While cubic splines have a number of useful features, they have, loosely speaking,
a built-in aversion to make tight turns (which will cause large values of g′′). As dis-
cussed earlier, this in turn will often produce extraneous inflection points and non-local
behavior, in the sense that perturbation of a single g j will affect the appearance of
the curve for t-values far from t j . Also, monotonicity and convexity properties of the
original data-set will typically not be preserved. An attractive remedy to these short-
comings of the cubic spline is to permit some tension in the spline, that is, to apply a
tensile force to the end-points of the spline. Formally, this can be accomplished (see
Schweikert 1966) by replacing Eq. 12 with

g′′(t) − σ 2g(t) = t j+1 − t

h j

(
g′′

j − σ 2g j

)

+ t − t j

h j

(
g′′

j+1 − σ 2g j+1

)
, t ∈ [t j , t j+1], (13)

where σ > 0 is a measure of the tension applied to the cubic spline.5 Notice that
we have replaced the assumption of a piecewise linear second derivative with the
assumption that the quantity g′′(t) − σ 2g(t) is linear on each sub-interval [t j , t j+1].

3.1 Basic properties

Before turning to an explicit representation of the hyperbolic tension spline, let us
consider a few important characteristics of this class of splines. First, we notice that
when the tension parameter σ 2 = 0, (13) and (12) are identical, i.e. the tension
spline degenerates into a regular cubic spline. On the other hand, when σ 2 � 1, (13)
asymptotically reduces to linear interpolation, as

lim
σ 2→∞

g(t) = t j+1 − t

h j
g j + t − t j

h j
g j+1, t ∈ [t j , t j+1]. (14)

For positive, finite value of σ , (13) evidently defines a curve that is a hybrid between
a cubic spline and a linear spline.

The convergence of the tension spline towards a piecewise linear curve as σ 2 → ∞
can be shown to be uniform, i.e. (14) holds uniformly in [t j , t j+1] for j = 1, . . . , M−1.
Similarly

5 Extension to non-uniform tension parameter is straightforward and involves replacing σ with σ j in (13),
with σ j then being a measure of the tension applied locally to the curve in the interval [t j , t j+1]. We return
to non-linear tension in Sect. 5.
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lim
σ 2→∞

g′(t) = g j+1 − g j

h j
and lim

σ 2→∞
g′′(t) = 0

uniformly in any closed subinterval of [t j , t j+1]. See Pruess (1976) for details and a
proof. The uniform convergence is important as it guarantees us that we can preserve
the monotonicity and convexity properties of the underlying discrete data set, sim-
ply by choosing a sufficiently high value of the tension factor. Due to this property,
hyperbolic tension splines are said to be shape-preserving. Generalizing, suppose we
introduce constraints on function values, first derivatives, or second derivatives. As
long as these constraints are satisfied by linear interpolation, there will exist some value
of the tension parameter σ 2 (possibly σ 2 = 0) which will make the tension spline
satisfy the constraints. This observation is key to algorithms for automatic selec-
tion of σ 2 from externally specified function constraints. See, for instance, Lynch
(1982) and Renka (1987) for details and efficient algorithms for automatic tension
selection.

3.2 B-spline basis

A classical derivation of the equations for hyperbolic tension splines parameterized by
function values in knots is given in Cline (1974) and closely mimics the construction
of cubic splines. As it turns out, on all intervals [t j , t j+1] hyperbolic tension splines
can be written as linear combinations of the functions 1, t , e−σ t , eσ t . We omit the
detailed results of Cline (1974) here, as they are best-suited for simple interpolation
problems where function values in all knots are (i) explicitly given and (ii) must be
matched perfectly. For yield curve construction purposes, neither is necessarily true:
we rarely, if ever, know discount function values in all knots and we may often be
content with an imperfect fit to observed prices. In this situation, it is often useful to
avoid parameterizing the spline directly through known function values, but instead
rely on a basis representation of the form

g(t) =
M+1∑

k=0

bk xk(t) (15)

where the xk(t), k = 0, . . . , M + 1 is a set of M + 2 basis functions, and the bk

are constant weights. We need to use M + 2 (and not M) basis functions to ensure
that specified boundary conditions at t1 and tM can be satisfied; in other words, the
dimension of the space of hyperbolic tension splines with M knots is M + 2.

In the choice of basis-functions, it is particularly convenient if the basis is local, in
the sense that the individual xk(t) functions are zero for most values of t . This is the
case for the exponential B-spline basis suggested by Koch and Lyche (1989, 1993).
Briefly, to construct this basis, we first extend our knot set with six new points t−2, t−1,
t0, tM+1, tM+2, tM+3 satisfying t−2 < t−1 < t0 < t1 and tM < tM+1 < tM+2 < tM+3
but otherwise arbitrary. We then define the exponential hat functions
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B j,2(t) =
⎧
⎨

⎩

� ′′
j (t), t j ≤ t < t j+1,

	′′
j+1(t), t j+1 ≤ t ≤ t j+2,

0, otherwise,

where

� j (t) = sinh
(
σ

(
t − t j

)) − σ(t − t j )

σ 2 sinh
(
σh j

) ,

	 j (t) = sinh
(
σ

(
t j+1 − t

)) − σ(t j+1 − t)

σ 2 sinh
(
σh j

) . (16)

Notice that the exponential hat function B j,2(t) is non-zero only for t ∈ [t j , t j+2],
where the j’s can take values −1, 0, . . . , M . For k = 3, 4, we recursively define
quadratic and6 cubic tension B-splines as

B j,k(t) = 
 j,k−1(t) − 
 j+1,k−1(t),

where


 j,k(t) =
⎧
⎨

⎩

0, t < t j ,

c−1
j,k

∫ t
t j

Bi,k(y) dy, t j ≤ t ≤ t j+k,

1, otherwise,

and

c j,k =
∫ t j+k

t j

B j,k(y) dy.

The cubic tension B-splines are particularly important to us here, as they can be shown
to form a basis for the hyperbolic tension spline introduced earlier. Specifically, in (15)
we can set xk(t) = Bk−2,4(t) such that

g(t) =
M+1∑

k=0

bk Bk−2,4(t). (17)

We list an explicit expression for the functions B j,4 in the next section; we emphasize
that B j,4(t) = 0 if t �∈ [t j , t j+4], and B j,4(t) > 0 if t ∈ [t j , t j+4]. In other words, the
cubic tension B-spline basis is local, and (note the upper and lower limits on the sum)

g(t) =
j+2∑

k= j−1

bk Bk−2,4(t), if t ∈ [t j , t j+1], (18)

6 In the limit σ ↓ 0, the tension B-splines become identical to the classical (polynomial) B-splines discussed
in, e.g., de Boor (1978).
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as for any value of t only four B-splines will be non-zero.

3.3 Explicit basis representation

The recursion for B-splines B j,4 above can be written explicitly (see Koch and Ly-
che 1989, 1993). To state the result, we need some notation (which we borrow from
Kvasov 2000):

z j = � j−1(t j ) − 	 j (t j ), z′
j = � ′

j−1(t j ) − 	′
j (t j ), y j = t j − z j/z′

j ,

b(1)
j = b j+2 − b j+1

y j+2 − y j+1
, b(2)

j = b(1)
j − b(1)

j−1

z′
j+1

.

Then, for t ∈ [t j , t j+1],

g(t) =
j+2∑

k= j−1

bk Bk−2,4(t) = b j + b(1)
j−1(t−y j ) + b(2)

j−1	 j (t) + b(2)
j � j (t)

= b j−1
	 j (t)/z′

j

y j−y j−1
+ b j

(
1− t−y j + 	 j (t)/z′

j

y j+1−y j
−	 j (t)/z′

j

y j−y j−1
+ � j (t)/z′

j+1

y j+1−y j

)

+ b j+1

(
t−y j + 	 j (t)/z′

j

y j+1−y j
−� j (t)/z′

j+1

y j+2−y j+1
−� j (t)/z′

j+1

y j+1−y j

)

+ b j+2
� j (t)/z′

j+1

y j+2−y j+1
. (19)

We have deliberately kept definitions written in terms of 	 j (t j ) and � j−1(t j ), as
this will allow us to later generalize results to non-hyperbolic tension splines.

Let us briefly note that to evaluate (19) for arbitrary values of σ , we need a robust
way to compute the hyperbolic functions sinh and cosh for large and small arguments.
A number of standard techniques exist for this, see e.g. Renka (1987) and Rentrop
(1980). For small σ, a suitably truncated Taylor-expansion around zero is sufficient.

3.4 Boundary conditions

From (19), it follows that, for j = 1, . . . , M,

g j = b j + b(1)
j−1� j−1(t j ) − b(1)

j−2	 j (t j )

z′
j

, (20)
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g′
j = b(1)

j−1�
′
j−1(t j ) − b(1)

j−2	
′
j (t j )

z′
j

, (21)

g′′
j = b(2)

j−1, (22)

where we have used the fact that � j (t j ) = � ′
j (t j ) = 0 (see (16)). We can use this

result to enforce boundary conditions at t1 and tM , by setting the free basis weights b0
and bM+1 to specific combinations of neighboring b j . For instance, suppose we are
interested in a natural spline boundary condition g′′(t1) = 0. This requires

b(2)
0 =

b2−b1
y2−y1

− b1−b0
y1−y0

z′
1

= 0 ⇒ b0 = b1 − (b2 − b1)(y1 − y0)

y2 − y1
. (23)

Similarly, if we want g′′(tM ) = 0, we must set

bM+1 = bM + (bM − bM−1)(yM+1 − yM )

yM − yM−1
. (24)

3.5 An explicit integral

For later use, we are interested in the evaluation of the integral

t j+1∫

t j

(
g′′(t)2 + σ 2g′(t)2

)
dt

where g is a hyperbolic tension spline. We write this as

t j+1∫

t j

(
g′′(t) · g′′(t) + σ 2g′(t) · g′(t)

)
dt

and integrate by parts:

t j+1∫

t j

(
g′′(t)2 + σ 2g′(t)2

)
dt = [

g′′(t)g′(t)
]t j+1

t j

−
t j+1∫

t j

(
g(3)(t) − σ 2g′(t)

)
g′(t) dt

= g′′
j+1g′

j+1 − g′′
j g′

j − d j
(
g j+1 − g j

)
(25)

where
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d j ≡ g′′
j+1 − σ 2g j+1

h j
− g′′

j − σ 2g j

h j
.

We note that we have used that, by definition, hyperbolic tension splines have g(3)(t)−
σ 2g′(t) piecewise constant and equal to d j on each interval [t j , t j+1] (see Eq. 13). We
can express the d j ’s directly as functions of the B-spline coefficients b j−1, b j , b j+1
through (20)–(22). A few rearrangements show that the correct result is

g′′
j − σ 2g j = b j−1

( [1 − σ 2	 j (t j )]/z′
j

y j − y j−1

)
+ b j+1

( [1 − σ 2� j−1(t j )]/z′
j

y j+1 − y j

)

+ b j

(
1 − [1 − σ 2	 j (t j )]/z′

j

y j − y j−1
− [1 − σ 2� j−1(t j )]/z′

j

y j+1 − y j

)

such that

d j = α
j
j−1b j−1 + α

j
j b j + α

j
j+1b j+1 + α

j
j+2b j+2

for easily computed constants α
j
k , k = j − 1, j, j + 1, j + 2.

4 Non-parametric discount curve construction algorithm

Our basic discount curve construction algorithm is non-parametric and based on min-
imization of a penalized least-squares term, with the penalty term aiming to provide
the user with control over pricing precision, curve shape, and perturbation locality.
To state our algorithm, let ϕ be our representation of the yield curve (for instance, ϕ

could be w, as defined in Sect. 2.2), such that

P(t) = P (t, ϕ(t)) .

Let

ϕ = (ϕ(t1), . . . , ϕ(tM ))� ,

with ϕ being the curve we have used as a representation of the discount curve. Our
starting point for the construction of ϕ is (3), which we state in the form

V = cP(ϕ) (26)

to highlight the dependence of discount bonds on ϕ. For instance, if we set ϕ(t) = w(t)
(with w(t) defined in Sect. 2.2), then

P(ϕ) = (P (t1, ϕ(t1)) , . . . , P (tN , ϕ(tN )))�

=
(

e−ϕ(t1)t1/(ε+t1), . . . , e−ϕ(tN )tN /(ε+tN )
)�

.
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4.1 Norm formulation

For reasons discussed earlier, we may not be able to (or even want to) solve (26)
exactly for ϕ. Instead, we consider minimization of the norm

I (ϕ) = 1

N
(V − cP(ϕ))� W2 (V − cP(ϕ))

+ λ

(∫ tM

t1

[
ϕ′′(t)2 + σ 2ϕ′(t)2

]
dt

)
(27)

where W is a diagonal N × N matrix with elements Wi , and λ and σ are positive
constants. The norm consists of three separate terms:

• A least-squares term

1

N
(V − cP(ϕ))� W2 (V − cP(ϕ)) = 1

N

N∑

i=1

W 2
i

⎛

⎝Vi −
M∑

j=1

ci j P
(
t j , ϕ(t j )

)
⎞

⎠
2

where Wi is the i th diagonal element of W. This term is an outright precision-
of-fit norm and measures the degree to which the constructed discount curve can
replicate input security prices. The weights Wi can be used to assign different
importance to the various securities in the benchmark set, and/or to translate the
precision of the fit from raw dollar amounts into a more intuitive quantities, such
as security-specific quoted yields.7

• A weighted smoothness term λ
∫ tM

t1
ϕ′′(t)2 dt, penalizing high second-order gra-

dients of ϕ to avoid kinks and discontinuities.
• A weighted curve-length term λσ 2

∫ tM
t1

ϕ′(t)2 dt , penalizing oscillations, lack of
perturbation locality, and excess convexity/concavity.

Sections 2.3 and 2.4 provide additional economic justification for the terms
λ

∫
ϕ′′(t)2 dt and λσ 2

∫
ϕ′(t)2 dt , respectively. We note that for the case σ 2 = 0

the norm I (ϕ) coincides with the one chosen in Tanggaard (1997) and the norm-
minimizing curve will be a cubic spline. By additionally adding a curve-length term,
we aim to control oscillations and other undesired behavior of the cubic smoothing
spline.

4.2 Norm minimization

As our estimate of the term structure of interest rates, we use the curve ϕ̂ which min-
imizes I (ϕ) over the space A = C2[t1, tM ] of all twice differentiable functions
[t1, tM ] → R. That is,

7 Most fixed-income securities are quoted through some type of yield, e.g. Vi = gi (ri ) where ri is the
quoted yield and gi is a function that encapsulates the quoting convention. The quantity Di = −dgi /dri is
known as the duration of Vi . Setting Wi = 1/Di in the least-squares norm will turn price deviations into
yield deviations.
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ϕ̂ = arg min
ϕ∈A

I (ϕ). (28)

Examination of the circumstances under which the Gateaux variation of I (ϕ) equals
zero (the necessary condition for a minimum) reveals that ϕ̂ must be a natural8 hyper-
bolic tension spline with tension factor σ and knots at all t j , j = 1, . . . , M . See
Appendix A for details.

Going forward, we let ϕ̂(t) be a hyperbolic tension spline with natural boundary
conditions,9 such that

ϕ̂(t) =
M+1∑

k=0

b̂k xk(t), t ∈ [t1, tM ],

where xk(t) = Bk−2,4(t) are the B-spline functions defined earlier and the b̂k’s are
constant weights, with b̂0 and b̂M+1 satisfying the linear constraints (23)–(24). We
assume, as discussed earlier, that additional points t−2, t−1, t0, tM+1, tM+2, tM+3 have
been added to our coupon time line, such that x0(t) and xM+1(t) are well-defined. Let
b̂ = (b̂1, . . . , b̂M )�, and x(t) = (x1(t), . . . , xM (t))�, and express the constraints on
b̂0 and b̂M+1 as

b̂0 = a�
0 b̂, b̂M+1 = a�

M+1b̂,

where a0 and aM+1 are M-dimensional vectors (with only two non-zero elements). It
then follows that

ϕ̂(t) =
(

x(t)� + x0(t)a�
0 + xM+1(t)a�

M+1

)
b̂ ≡ y(t)�b̂,

where y is an M-dimensional natural spline basis vector. Also, with ϕ̂ = (ϕ̂(t1), . . . ,
ϕ̂(tM ))� let

ϕ̂ = Yb̂, (29)

where Y = {Y jk} is an M × M dimensional matrix with elements Y jk = yk(t j ). Note
that Y is tri-diagonal due to the locality of our B-spline basis. From the results of
Appendix A, we have

8 It follows from the result in Appendix A that if we prefer to explicitly specify boundary conditions of
the type ϕ′(t1) = a, ϕ′(t1) = b, the tension spline still minimizes (28), but now on the smaller space
A = {ϕ ∈ C2[t1, tM ] : ϕ′(t1) = a, ϕ′(tM ) = b}.
9 Extensions to other boundary conditions are straightforward, using the results of Sect. 3.4. In particular,
we note that prescribing explicit values for ϕ or its first or second derivative at t1 and tM will always result
in constraints on b̂0 and b̂M+1 of the form b̂0 = a�

0 b̂ + c0 and b̂M+1 = a�
M+1b̂ + cM+1, where c0 and

cM+1 are constants, and a0 and aM+1 are M-dimensional vectors with mostly zero elements.
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b̂ = arg min
b

1

N
(V − cP(Yb))� W2 (V − cP(Yb)) + λ

⎛

⎝
M∑

j=1

ϕ(t j )(d j − d j−1)

⎞

⎠ .

Here, d0 = dM = 0 and, for 1 ≤ j ≤ M − 1,

d j =
j+2∑

k= j−1

α
j
k bk

for constants α
j
k defined in Sect. 3.5. Again using the boundary conditions b0 = a�

0 b
and bM+1 = a�

M+1b, it follows that

M∑

j=1

ϕ(t j )(d j − d j−1) = b�Y�Ab

where A is a banded (5 diagonal bands) M × M matrix. Thereby

b̂ = arg min
b

1

N
(V − cP(Yb))� W2 (V − cP(Yb)) + λ

(
b�Y�Ab

)
. (30)

A necessary condition for the optimum can be found by differentiating with respect
to b and set the resulting expression equal to zero. By standard matrix calculus, this
yields10

2

N
Y�B(Yb̂)c�W2

(
V − cP(Yb̂)

)
− λ

(
Y�A + A�Y

)
b̂ = 0, (31)

where B(Yb) = B(ϕ) is an M×M diagonal matrix of derivatives, B j j=∂ P(t j , ϕ(t j ))/

∂ϕ(t j ). For instance, for the case ϕ(t) = w(t), we get

B j j = −e−ϕ(t j )t j /(ε+t j )
t j

ε + t j
, j = 1, . . . , M.

4.3 Numerical solution

Solution of (31) for b̂ must be done numerically, for instance by the usage of (quasi-)
Newton methods or similar. To briefly give a specific algorithm, consider for instance
a basic Gauss–Newton iterative scheme, in which the pth iteration estimate b̂(p) is
updated from the first-order Taylor approximation

P
(

Y b̂(p+1)
)

≈ P
(

Yb̂(p)
)

+ B
(

Yb̂(p)
)

Y
(

b̂(p+1) − b̂(p)
)

. (32)

10 Appendix A writes these matrix equations out in detail.
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Inserting (32) and the first-order approximation B
(

Yb̂(p+1)
)

≈ B
(

Yb̂(p)
)

into (31),

we get the simple updating scheme

2

N
Y�B

(
Yb̂(p)

)
c�W2

[
V − cP

(
Yb̂(p)

)
− cB

(
Yb̂(p)

)
Y

(
b̂(p+1) − b̂(p)

)]

− λ
((

Y�A + A�Y
)

b̂(p+1)
)

= 0

which can be rearranged to

[
G

(
Yb̂(p)

)�
G

(
Yb̂(p)

)
+ N

2
λH

]
b̂(p+1)

= G
(

Yb̂(p)
)� [

WV − WcP
(

Yb̂(p)
)

+ G
(

Yb̂(p)
)

b̂(p)
]

where H ≡ Y�A + A�Y and G
(

Yb̂(p)
)

≡ WcB
(

Yb̂(p)
)

Y. For our applications

we find that this scheme converges rapidly; see footnote 18 for some representative
computation times. Tanggaard (1997) also reports good results in application of the
Gauss–Newton algorithm to the simpler cubic spline problem.

In numerical implementation of the iteration above, we obviously should take care
to exploit the efficiencies arising from the fact that many of the matrices (Y, H, W,

B, H, ..) have a sparse band-structure. To ensure quick convergence, we should also
attempt to supply a good guess for b̂(0). When constructing a curve for the first time, it
is most convenient to let the user input a guess Pg for the discount bond array, which
can be inverted into a guess ϕg for the values of the tension spline in the knots. We
then face a standard interpolation problem governed by the simple tri-diagonal system
(29), allowing us to write

Yb̂(0) = ϕg (33)

which can be solved by LU decomposition for b̂(0) in O(M) operations. For small
perturbations on an existing curve—such as those that happen in a perturbation anal-
ysis or naturally through the passage of time—the basis vector for the unperturbed
curve serves as a natural guess for b̂(0).

4.4 Choice of λ

So far, we have assumed that the parameter λ has been specified exogenously by the
user. In practice, however, a good magnitude of λ may sometimes be hard to ascertain
by inspection, and a procedure to estimate λ directly from the data is often useful.
Such data-driven estimation of λ is a complex problem that remains a subject of active
research in the literature; we consequently limit ourselves to a rather cursory outline of
a few techniques below. Additional methods (including information criteria, such as
AIC) can be found in standard references for non-parametric regression, e.g. Eubank
(1988). As discussed in (Eubank 1988), Chapter 5, we should notice that automatic
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selection of λ—no matter how sophisticated the method—does not relieve the user
from visually inspecting results and fine-tuning settings as needed.

4.4.1 User-specified RMS norm

In many settings, users may be able to specify their tolerance for the least-squares
component of the norm (27), for instance by observation of bid-offer spreads on the
securities in question. In this case, it is natural to replace the optimization problem
(30) with the constrained optimization problem

b̂ = arg min
b

b�Y�Ab, (34)

1

N
(V − cP(Yb))� W2 (V − cP(Yb)) = γ 2, (35)

where γ is an exogenously specified constant. Notice in particular that if a perfect fit
to the benchmark set is required (which is standard in construction of a Libor curve,
as discussed in Hagan and West (2004)), we set γ = 0.

The Lagrangian for the above problem becomes

b̂ = arg min
b

b�Y�Ab + ρ

[
1

N
(V − cP(Yb))� W2 (V − cP(Yb)) − γ 2

]
(36)

where the Lagrange multiplier ρ must be determined such that the constraint (35) is
satisfied at the optimum of (36). Apart from a constant scale, (36) is identical to (30),
so we solve the constrained optimization problem (34)–(35) through the following
iteration over λ:

1. Given a guess for λ, find the optimum value of b̂, from solution of (30);

2. Compute Ils = 1
N

(
V − cP(Yb̂)

)�
W2

(
V − cP(Yb̂)

)
;

3. If Ils = γ 2, stop; otherwise update λ and go to step 1.

In general, the optimum precision norm Ils = Ils(λ) will be a declining function
in λ and, provided that a root exists11 to Ils(λ) = γ 2, the updating in Step 3 can be
done by any standard root search algorithm.

4.4.2 Morozov discrepancy principle

Suppose that we have reason to believe that benchmark prices (or, rather, weighted
prices Wi Vi ) are noisy, with the noise having standard deviation s. Then, according to
the Morozov Discrepancy Principle Morozov (1966), in the algorithm in Sect. 4.4.1,
we choose γ = s. To estimate s, we may rely on empirical market observations or,

11 For ill-posed benchmark sets, there may be instances where Ils (0) > γ 2 (see Appendix C for an exam-
ple). If the desired precision is unattainable, we can either increase γ 2 or perhaps prune the benchmark
security set.
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for a fully data-driven approach, on an in-sample estimator for s, such as the Rice
estimator in Rice (1984).

4.4.3 L-curve

The Morozov Discrepancy Principle originally was formulated to handle ill-posed
systems of linear equations. A popular technique with similar origins is that of the
L-curve (Hansen 1992). In a nutshell, the L-curve is simply a log-log parametric
plot of the least-squares term of the norm (27) against the regularity penalty term.
Specifically, set

Ils = 1

N

(
V − cP(ϕ̂)

)� W2 (
V − cP(ϕ̂)

)
,

Ireg =
∫ tM

t1

[
ϕ̂′′(t)2 + σ 2ϕ̂′(t)2

]
dt, (37)

where we emphasize that we use the optimal value ϕ̂ in evaluation of the two terms.
As ϕ̂ is function of λ, we may write Ils = Ils(λ) and Ireg = Ireg(λ); letting λ

vary allows us to plot log10 Ireg against log10 Ils .
For a noisy, ill-posed problem—which can arise, say, if two benchmark securities

have (near-)identical cash-flows but different prices—the curve ϕ̂ becomes increas-
ingly irregular as λ is lowered, causing a rapid increase in Ireg(λ); as a consequence,
the plot of log10 Ireg against log10 Ils will take a characteristic L-shape. According
to Hansen (1992), a good value for λ is the one at the “corner” of the L-curve, i.e. at
the point of maximum curvature.

For a well-posed problem, Ireg(λ) approaches a constant plateau as λ ↓ 0, and the
L-curve changes shape accordingly. While the L-curve method is traditionally applied
to ill-posed problems only, the L-curve plot is, in fact, generally useful to visualize
the trade-off between precision-of-fit and curve regularity; see Appendix C for a brief
numerical example.

4.4.4 Cross-validation

In basic leave-one-out cross-validation (CV), security i is removed from the benchmark
set and the discount curve estimation procedure is applied to the reduced benchmark
set. The resulting curve is then used to predict the value of the i th benchmark security,
resulting in an estimate V cv

i and a (weighted) prediction error of

ecv
i = (Vi − V cv

i )Wi .

Repeating this prediction exercise of all N securities in the benchmark set allows us
to compute a total CV prediction error criterion
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CV = CV (λ) =
√√√√N−1

N∑

i=1

(
ecv

i

)2
, (38)

where we have emphasized that CV is a function of λ. According to the CV approach,
the optimal value of λ is the one that minimizes the prediction error (38). The deter-
mination of λ can be done numerically, using a one-dimensional optimizer. As each
iteration of the optimization procedure will involve the construction of N separate
discount curves, the cross-validation approach will be computationally intensive.

4.4.5 GCV

Assume for a moment that our curve construction algorithm were to write

cP(ϕ̂) = Q(λ)V + Q0, (39)

where Q0 is an N -dimensional vector and Q is an N ×N smoother matrix that depends
on λ. In this case, the CV criterion becomes approximately equal to12

GCV (λ) = Ils(λ)N 2

tr (I − Q(λ))
, (40)

where tr is the usual trace operator and Ils(λ) is the mean-square-error defined in
(37). Determining λ to minimize the quantity GCV is known as generalized cross-
validation; see Craven and Wahba (1979) for details.

While GCV (λ) is much faster to compute than CV (λ), the justification for its
use hinges upon (39) being true. In reality, however, we have the more complicated
relation (from 31)

2

N
Y�B(ϕ̂)c�W2 (

V − cP(ϕ̂)
) = λHb̂, H = Y�A + A�Y, (41)

which is generally not of the correct form. To overcome this, we can follow the line-
arization approach in Tanggaard (1997) and assume that P(ϕ̂) is approximately linear
in ϕ̂

P ≈ q0 + Bϕ̂ = q0 + BYb̂,

which assumes that the matrix of derivatives B is constant. We then get, after a bit of
rearrangement of (41),

cP(ϕ̂) = cBY

[(
2

N
Y�Bc�W2cBY + λH

)−1 2

N
Y�Bc�W2

]
V + Q0

12 More precisely, GCV is a weighted version of CV.
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where Q0 is a constant offset vector, the exact value of which is irrelevant. In the GCV
criterion (40) we may then, as an approximation, use

Q(λ) ≈ cB(ϕ̂)Y

[(
2

N
Y�B(ϕ̂)c�W2cB(ϕ̂)Y + λH

)−1 2

N
Y�B(ϕ̂)c�W2

]
.

This expression is straightforward to compute after the optimum ϕ̂ has been determined
as described in Sect. 4.3.

4.5 Choice of σ

As we pointed out earlier, in Sect. 3.1, there is some literature on auto-selection of the
tension parameter, starting from, say, given constraints on convexity and/or extrema of
the tension spline. As functions such as z(t), y(t), w(t) (see Sect. 2.2) are subject to no
strong13 requirements on their convexity properties, it is, however, not an easy problem
to set up practical constraints that imply unique values for σ . While auto-selection of
tension may occasionally be of use for benchmark sets that are very close to violating
arbitrage constraints, most often the selection of σ must be based on an analysis of
the economics of the discount curve problem in some detail. Elements of this analysis
will include gauging the perceived “stiffness” of various parts of the discount curve
and taking a stance of the importance of perturbation locality versus smoothness of
the yield/forward curve. We illustrate the process through a detailed numerical exam-
ple in Sect. 6. For now, we notice that it may, in fact, be quite useful to use different
values of the tension parameter at different sections of the discount curve, as a means
to express views about local behavior of the discount curve. Fortunately, extending
out methodology to non-constant tension in the discount curve is straightforward; see
Sect. 5.1 below. Finally, let us note (again) that the tension parameter has a strong
impact on curve shape and perturbation behavior, so the fact that determination of the
tension parameter may require careful analysis should, obviously, not tempt one to
opt for a naive approach where one selects either σ = 0 or σ = ∞.

5 Extensions

Before turning to numerical results, we briefly cover a number of extensions to the
basic algorithm above.

5.1 Non-uniform tension

So far, we have assumed that the tension parameter σ is constant. In practice, how-
ever, it is often useful to relax this assumption. For instance, as pointed out in Cline

13 A basic no-arbitrage constraint of any discount curve is that the forward curve f (t) is positive for all t .
This condition, however, typically fails to put any constraint on σ (i.e. no values of σ ∈ [0, ∞) will actually
violate arbitrage).
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(1974), tension splines with constant tension are affected by scaling, with the tension
spline equations changing in non-linear fashion when knot intervals are scaled up or
down. To remove this effect, we can use a local tension parameter σ j for each interval
[t j , t j+1] determined to satisfy σ j h j = q, where q is a global “effective” tension
parameter. Further, if we wish to apply any of the techniques to automatically select
tension parameters (see e.g. Renka 1987), we normally need the flexibility of con-
trolling curve shape locally. Finally, we may also simply be interested in expressing a
trading view on different parts of the yield curve, through user-manipulation of local
curve shape by means of changes in curve tension.

Consider thus the situation, where each curve section [t j , t j+1] is equipped with a
knot-specific tension parameter σ j , j = 1, . . . , M − 1. For t ∈ [t j , t j+1] the curve
ϕ(t) is then characterized by (compare to 13)

ϕ′′(t) − σ 2
j ϕ(t) = t j+1 − t

h j

(
ϕ′′(t j ) − σ 2

j ϕ(t j )
)

+ t − t j

h j

(
ϕ′′(t j+1) − σ 2

j ϕ(t j+1)
)

,

and required to be twice differentiable. Allowing σ to depend on the knot index is,
fortunately, straightforward in our B-spline setting: we simply need to modify the
functions 	 and � in (16) to

� j (t) = sinh
(
σ j

(
t − t j

)) − σ j (t − t j )

σ 2
j sinh

(
σ j h j

) ,

	 j (t) = sinh
(
σ j

(
t j+1 − t

)) − σ j (t j+1 − t)

σ 2
j sinh

(
σ j h j

) .

With this minor modification, all results in Sect. 3 hold as written.
As for the yield curve estimation procedure in Sect. 4, all results again hold as

written, provided that we change the optimization norm to reflect the non-constancy
of the tension-spline parameter. Specifically, we alter I (ϕ) in (27) to

I (ϕ) = 1

N
(V − cP(ϕ))� W2 (V − cP(ϕ))

+ λ

⎛

⎝
M−1∑

j=1

∫ t j+1

t j

[
ϕ′′(t)2 + σ 2

j ϕ
′(t)2

]
dt

⎞

⎠ . (42)

5.2 User-specified knots

Specification of the tension-spline as the solution to an optimization problem dictates
the placement of knots in all coupon payment dates, as discussed earlier. In many sit-
uations, knots will thereby be spaced quite closely together, making the curve appear
quite smooth, even for large values of the tension parameter. In practice, it may be
of interest to make the curve coarser, for instance to further improve locality under
perturbation (see Sect. 6). This can be accomplished by allowing the user to specify
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directly the positions of knots. To formalize this idea, consider setting ϕ(t) to a ten-
sion spline with a set of knots {τ j }Q

j=1, for simplicity assumed to satisfy τ1 = t1 and
τQ = tM . Given these knots, and the imposed constraint that ϕ(t) be a tension spline
on {τ j }Q

j=1, we now still proceed to minimize the norm (27); the resulting minimum

can obviously never improve the minimum obtained with knots in {t j }M
j=1. Following

steps similar to those in Sect. 4.2, we write for the optimal tension spline

ϕ̂(t) =
Q+1∑

k=0

b̂k xk(t), t ∈ [t1, tM ],

where the b̂k’s are weights on B-spline basis functions xk(t), k = 0, . . . , Q + 1 (and
where we have extended the knot grid {τ j }Q

j=1 with six additional points, as before).

We set b̂ = (b̂1, . . . , b̂Q)� and

ϕ̂ = (
ϕ̂(t1), . . . , ϕ̂(tM )

)� = Yb̂

where Y is now an M × Q matrix with elements Y jk = xk(t j ), with an adjustment for
boundary conditions at j = 1 and j = M (see Sect. 4.2). While Y will be sparse due
to the local nature of our basis, Y is generally no longer square or tri-diagonal. The
Q-dimensional vector b̂ can be found by solving

b̂ = arg min
b

1

N
(V − cP(Yb))� W2 (V − cP(Yb)) + λ

(
b�Z�Ab

)
(43)

where Z and A are banded Q × Q matrices with
(
ϕ̂(τ1), . . . , ϕ̂(τQ)

)� = Zb̂ and

b�Z�Ab =
Q∑

j=1

ϕ(τ j )(d j − d j−1), d j =
∫ τ j+1

τ j

[
ϕ′′(t)2 + σ 2

j ϕ
′(t)2

]
dt.

The solution of (43) problem can be done, as before, with the Gauss–Newton algo-
rithm applied to the system

2

N
Y�B(Y ˆb)c

�
W2

(
V − cP(Yb̂)

)
− λ

(
Z�A + A�Z

)
b̂ = 0.

λ can be found as in Sect. 4.4.1 or could be set to zero for a pure least-squares minimi-
zation solution. The latter would obviously require the chosen knots to be set sparsely
enough to allow for a unique least-squares solution.

5.3 Generalized tension B-splines

So far, our attention has focused primarily on hyperbolic tension splines which conve-
niently solve the fairly natural minimization problem (27). Hyperbolic tension splines
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are, however, just a particular member of a larger class of splines, all of which share
the property that tension parameters allows us to move smoothly from cubic splines
(when tension is zero) to linear splines (when tension is infinite). As discussed in
Kvasov (2000), all splines in this class can be characterized by a particular choice
of the generating functions 	 and � used in the B-spline representation in Sect. 3.3.
Below we list a few possible choices of such generalized tension B-splines (also known
as GB-splines).

Rational spline (linear denominator):

� j (t) = (t − t j )
3

h j
(
1 + σ j (t j+1 − t)

) (
6 + 6σ j h j + 2σ j h2

j

) ,

	 j (t) = (t j+1 − t)3

h j
(
1 + σ j (t − t j )

) (
6 + 6σ j h j + 2σ j h2

j

) .

Rational spline (quadratic denominator):

� j (t) = (t − t j )
3

h j
(
1 + σ j (t − t j )(t j+1 − t)/h j

) (
6 + 6σ j h j + 2σ j h2

j

) ,

	 j (t) = (t j+1 − t)3

h j
(
1 + σ j (t − t j )(t j+1 − t)/h j

) (
6 + 8σ j h j + 2σ j h2

j

) .

Exponential spline:

� j (t) = (t − t j )
3 exp

(−σ j (t j+1 − t)
)

h j

(
6 + 6σ j h j + σ j h2

j

) ,

	 j (t) = (t j+1 − t)3 exp
(−σ j (t − t j )

)

h j

(
6 + 6σ j h j + σ j h2

j

) .

We note that the rational splines involve no computationally expensive transcen-
dental functions, making them a popular alternative to hyperbolic tension splines. In
any case, substituting any of these splines for the hyperbolic tension spline in our
algorithms above is straightforward. Obviously, however, if we elect to directly solve
systems (30) (or (43) for λ > 0), it must be understood that the matrix terms rep-
resenting the non-RMS part of the optimization norm no longer can be interpreted
as exactly representing integrals of weighted sums of ϕ′′(t)2 and ϕ′(t)2. We could
obviously consider computing explicitly the representation of the norm I (ϕ) in (27)
for each choice of tension spline type, but the practical importance of this may be
relatively modest.
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6 Numerical examples

Broadly speaking, yield curve construction tends to take place in one of two settings:
either we (i) attempt to construct a curve from a disorderly and noisy set of securities
with maturity and cash-flow dates not aligned in any particular order or pattern; or (ii)
we have an orderly set of liquid benchmark securities, arranged in strictly increasing
order of maturity and making payments on a (nearly) homogenous time line. Case (i)
may arise when we, say, attempt to construct a corporate bond curve from whatever
still-alive debt securities a specific firm may have issued over time, many of which
will have different liquidity and tax characteristics. A similar situation often arises
in government-issued debt, unless the benchmark-set is pruned to only include liquid
(on-the-run) securities. Case (ii) typically arises in swap markets, where a very liquid
set of securities (deposits, futures, and interest rate swaps) with standardized and non-
overlapping maturities are quoted actively. While a relatively loose-fitting curve would
be most appropriate for the first case, the second case normally requires a very tight
fit to all benchmark securities, to reflect the high liquidity of the market prices.

While our curve construction algorithm is designed to deal with both case (i) and
(ii) above, in the numerical experiments in his paper we will stay mostly in the spirit
of case (ii) and we shall work with a small dataset designed to mimic the market
input used to construct a Libor discount curve. As mentioned earlier, and discussed
further in Golub and Tilman (2000), the Libor curve is considered the most important
benchmark curve in fixed income pricing, so it is natural for us to focus on this setting.
Moreover, the Libor curve is conveniently based on a relatively small set of securities,
so it is feasible for us to give an example that can be reproduced (and tested) easily
without the need to communicate large and noisy data-sets. We also note that hedging
and pricing of most fixed income derivatives is virtually always done with a Libor
curve, making an analysis of locality to benchmark security perturbation (which we
shall undertake shortly) particularly important for the Libor curve construction. In
any case, virtually all of the characteristics of our curve construction module can be
demonstrated in a Libor curve setting. While careful numerical tests of case (i) must
be relegated to a dedicated paper,14 Appendix C contains a few representative results,
primarily to illuminate the methods for auto-selection of λ listed in Sect. 4.4.

6.1 Benchmark data

While in practice a Libor curve is constructed out of short-term deposits, Eurodol-
lar futures, and interest rate swaps, for clarity of exposition we simplify somewhat
and only use swaps. In particular, all our benchmark securities are here assumed to
par-valued unit-notional fixed-for-floating swaps that pay coupons on a semi-annual
schedule. For our purposes, the swaps can be represented as coupon bonds with a time
0 value of V = 1. For a swap with annualized coupon θ and maturity T = 0.5 · k, the

14 For the zero tension case, Tanggaard (1997) shows many illuminating test results for case (i), employing
multiple methods for the choice of λ.
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Table 1 Benchmark data

Maturity 0.5 1 1.5 2 2.5 3 4 5 7 10 12 15 20 30

Par Coupon 2.75 3.10 3.30 3.43 3.53 3.30 3.78 3.95 4.25 4.50 4.65 4.78 4.88 4.85
(%)

Duration 0.49 0.98 1.45 1.92 2.37 2.83 3.68 4.50 6.00 7.98 9.12 10.62 12.68 15.72

cash flow c(ti ) at time ti = 0.5 · i , i > 0, is written as

c(ti ) =
⎧
⎨

⎩

0.5 · θ, 0 < i < k
1 + 0.5 · θ, i = k
0, i > k

(44)

Notice that the cash flow at ti = T (where i = k) includes redemption of the notional
(here $1).15

We use N = 14 swaps in our test, with maturities spanning six months to 30 years;
our coupon payment time line is thereby t j = j · 0.5, j = 1, . . . , M , where M =
60. Our time-line for spline construction purpose thus spans the interval [t1, tM ] =
[0.5, 30]. Table 1 lists maturities and par coupons (θ ) for our 14 benchmark securi-
ties. We have also included in the table the duration of each benchmark security; see
footnote 7 and any textbook on finance on how to compute bond durations.

While somewhat idealized, our data-set emulates a number of stylistic properties of
real-life data: (a) short- and medium-term securities trade in maturities spaced closer
than is the case for long-dated securities; (b) there is a sudden drop in par coupons
in the first part of the curve (in our example, from t = 2.5 to t = 3);16 (c) the term
structure of par coupons is for the most part upward-sloping; and (d) the term structure
of par coupons is for the most part concave.

6.2 Basic results

For spline construction purposes, let us start by using a non-parametric approach
with knots in all 60 payment dates t j , j = 1, . . . , 60. We assume, for now, that our
spline ϕ(t) is hyperbolic and represents the term yield y(t) (see Sect. 2.2). We use the
method in Sect. 4.4.1 to determine the weight λ; our precision norm is weighted by the
inverse of the individual bond durations as in footnote 7, and constrained to produce a
(weighted) RMS value of 0.1 basis points (= 1/100,000). Figures 1 and 2 below show
the resulting term structures for the term yield y(t) and the instantaneous forward rate

15 For the reader familiar with swap mechanics, we notice that the upfront value V = 1 represents the
value of a floating leg with back-end exchange of notional, whereas the coupon stream in (44) represents
the fixed leg of a swap.
16 While a thorough explanation of this effect is beyond the scope of this paper, we note that this dis-
continuity reflects the fact that the short end of the swap curve in practice would be constructed from
(convexity-adjusted) Eurodollar futures, whereas the medium- and long-term parts of the curve would be
constructed from swaps. The two markets normally trade with a certain basis relative to each other, causing
a jump in the yield curve as we move from one type of instrument to the next.
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Fig. 1 Yield curve. Notes: The figure shows the yield curve y(t) as computed from a fully non-parametric
approach where weighted RMS error is constrained to 0.1 basis points. The discount map is ϕ(t) = y(t).
The tension parameter σ is uniform and equal to the values indicated in the figure
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Fig. 2 Forward curve. Notes: The figure shows the instantaneous forward curve f (t) consistent with the
yield curve in Fig. 1

curve f (t), for various choices of a constant tension parameter σ . We do not graph
the discount function P(t), which always take the basic shape of an exponentially
decaying function with no particularly interesting features.

As we would expect, increasing the tension parameter moves us from a smooth
yield curve to a piecewise linear one. Similarly, the forward curve (which involves
differentiating the yield curve, see Sect. 2) moves from a smooth—but rather wiggly—
forward curve toward a “saw-tooth” curve with discontinuities at each swap maturity.
Around t = 3, the yield curve displays a sharp drop as expected, generating high whip-
sawing gradients in the forward curve; the higher the tension parameter, the faster the
effect of the yield curve drop disappears from the forward curve. For sufficiently high
values of the tension parameter, the yield curve is concave everywhere, except around
t = 3. For small values of the tension parameter, on the other hand, the yield curve has
multiple inflection points along the entire curve, and displays what may be excessive
concavity for maturities beyond 20 years.

Which value of the tension parameter gives the “best” curve is obviously situa-
tion-dependent, but the intermediate value of σ = 3 does a decent job at producing
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Fig. 3 Forward curve. Notes: The figure shows the instantaneous forward curve f (t), generated from the
same algorithm as in Fig. 2. The “variable tension” graph is produced by using tension parameters of σ = 10
for 3 ≤ t < 4, σ = 2 for t ≥ 20, and σ = 0 everywhere else

a relatively smooth forward curve with limited yield concavity for t > 20. Still, it
would probably be preferable to dampen the forward rate overshoot at t = 3 further.
To do so, we could consider using non-uniform tension parameters in the spline. In
particular, should our primary concern be to dampen the forward rate overshoot at
t = 3 and the yield concavity above t = 20, it may be reasonable to use a high value
of the tension parameter in these regions, and a low one elsewhere. Figure 3 illustrates
the forward curve shape that can be produced this way; notice how the curve behaves
like a simply bootstrapped curve in the region around t = 3 and t > 20, yet smoothly
pastes onto cubic spline behavior in other regions.

The technique of using high tension values in certain parts of the curve may also be
useful around dates where the forward curve is expected to jump (sometimes known
as a “turn”), e.g. at dates coinciding with central bank policy meetings. If one has a
concrete view of the magnitude of the forward curve jump, then one can also use a
forward curve overlay to enforce the desired shape. The idea is straightforward and
is included in Appendix B for completeness. Use of forward curve overlays has no
impact on perturbation locality.

6.3 User-specified knots

So far we have relied on a non-parametric approach that dictates spline knots at all
coupon payments dates. For the construction of Libor curves where the benchmark
securities normally have orderly spaced maturities, it is obvious to experiment with
the effect of placing knots only at maturities of the benchmark securities.17 While this
will necessarily result in curves that are sub-optimal in the sense defined in Sect. 4.2,

17 Needless to say, location of knots for noisier and less orderly datasets is more challenging, and relying
on a fully non-parametric approach is often the most straightforward approach. See Tanggaard (1997) for
an empirical comparison of non-parametric cubic splines and regression splines with “rule of thumb” knot
placement, in the context of Danish government bonds.
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Fig. 4 Forward curve. Notes: The figure shows the instantaneous forward curve f (t) as computed from a
fully non-parametric approach where weighted RMS error is constrained to 0.1 basis points. The discount
map is ϕ(t) = t y(t). The tension parameter σ is uniform and equal to the values indicated in the figure
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Fig. 5 Forward curve. Notes: The figure shows the instantaneous forward curve f (t) as computed with
knots set to benchmark security maturities, and where weighted RMS error is constrained to 0.1 basis points.
The discount map is ϕ(t) = t y(t). The tension parameter σ is uniform and equal to the values indicated in
the figure

this suboptimality may be outweighed by computational benefits18 (the dimension of
the basis vector is reduced from 60 to 14) and possibly more intuitive manipulation
of the curve.

As it turns out, when ϕ(t) = y(t) placing knots as described above results in
yield and forward curves that are essentially indistinguishable from those computed
in Sect. 6.2. This, however, is not the case for arbitrary specifications of ϕ. To demon-
strate, we now set ϕ(t) = t y(t) and repeat the curve construction examples of Fig. 2,
with and without user-specified knots. The results are in Figs. 4 and 5.

18 For a user-specified λ, the fully non-parametric curve construction algorithm here takes less than
2/100 second on a single-processor 1.6 GHz Pentium PC. This time includes input-output transfer and
construction of a first basis vector guess through (33), starting from a guess that the yield curve is flat.
For the case of user-located knots, the computation time is roughly cut in half. If we iterate for λ (as in
Sect. 4.4.1), the computation time depends on how good our initial guess for λ is, but in our example the
total computation time (including the fixed data transfer overhead) typically roughly doubles.
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Fig. 6 Forward curve. Notes: The figure shows instantaneous forward curve f (t), as computed from an
algorithm similar to that used in Fig. 2, but with the weighted RMS norms constrained to the values indicated
in the figure. The tension parameter was set to σ = 0.5 in all graphs

At low levels of the tension parameters, using a reduced set of knots makes little dif-
ference relative to the full non-parametric approach. For high tension parameters both
approaches produce forward curves that are close to piecewise flat on their respective
knot sets, but the appearances of the curves are quite different, with the non-para-
metric approach producing a forward curve that roughly takes the form of a “reverse
saw-tooth” (compare to Fig. 2). We note that the curves for ϕ = t y itself, rather than
for f (t), turn out to be quite similar for the two cases (graphs are omitted for brevity),
with the non-parametric curve ϕ being about 1% shorter than the curve produced; the
choice of ϕ in our algorithms can apparently have considerable impact on the resulting
yield and forward curves, and must be treated as an important design parameter. This
is consistent with earlier discussion in Sect. 2.2.

6.4 Precision of fit

We revert back to the specification ϕ(t) = y(t) and the fully non-parametric setting
of Sect. 6.2, and now wish to briefly demonstrate the effects of changing the weight λ

between curve regularity and precision of fit. Figure 6 shows the effect of increasing
the RMS fit precision from 0.1 basis points to 8 basis points. As one would expect,
areas of rapid change in the yield curve get increasingly smoothed out as the required
RMS fit precision is decreased. We point out that if we were only interested in a
localized smoothing of the forward curve in the region around t = 3, this could be
accomplished by lowering the RMS weights (Wi ) for the specific benchmark securities
maturing around t = 3. The resulting curve shape is easily imagined, and we omit it
for brevity.

6.5 Input perturbation

Let us now examine how a perturbation in market data for a single benchmark secu-
rity will affect the forward curve. As discussed earlier, this exercise is important in
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Fig. 7 Changes in forward curve. Notes: The figure shows the change in the instantaneous forward curve
f (t) associated with moving the 5-year par rate from 3.95% to 4.05%. The curve construction algorithm
is similar to that used in Fig. 2. The tension parameter σ is uniform and equal to the values indicated in the
figure

risk-management and hedging of interest rate sensitive securities. For our tests we
arbitrarily pick the 5-year swap and bump its par coupon by 10 basis points, from
3.95% to 4.05%. As we can see in Fig. 7, using too low a value for the tension param-
eter results in strongly non-local perturbation effects, with the change in the 5-year
par rate causing ripples in the forward curve that extend all the way up to the 30-year
maturity bucket. For hedging purposes this is, as described earlier, quite inconvenient.
As tension is increased, however, the perturbation effects become increasing local,
and in the high-tension limit affect only the forward rate bucket t ∈ [4, 7].

The ability to control perturbation locality through tension parameters is quite
important in applications, and does away with one of the primary drawbacks of cubic
splines. As before, by using non-uniform tension parameters, we can control such
locality in a security-specific way, allowing us great flexibility to adapt to our specific
application requirements curve smoothness, precision of fit, and perturbation locality.

7 Conclusion

This article has introduced a new methodology to construct yield curves from quoted
security prices. Working in a general setup capable of accommodating most real bond
and swap markets, our construction methodology uses generalized tension splines
to address a number of key issues, including control of convexity and “locality”, as
well as providing explicit trade-off between curve regularity properties and (weighted)
errors in the fit to benchmark bonds. We have demonstrated that the hyperbolic ten-
sion spline yield curve, in particular, can be constructed non-parametrically from a
natural penalized least-squares problem. Our specific algorithms are based on local
GB splines applied to appropriate transformations of the discount curve, allowing for
numerical efficiency and great flexibility in the choice of tension-parameters and/or
tension spline type.

The numerical results of this article demonstrate the usage and scope of our method-
ology by constructing a Libor benchmark curve, likely the most important
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application of yield curve building routines. Another, slightly different, application of
our methodology would be in constructing best-fit curves on sets of noisy corporate
or Treasury bonds, to aid in empirical analysis of these markets. While Appendix C
contain some indicative results, we leave a detailed examination of this application to
future research. Another use of our algorithm is in the construction of term structures
of survival probabilities and hazard rates, as needed in the pricing of credit default
swaps and other default-risky securities. It can be shown (see, e.g., Andersen 2003)
that the mathematical formulation of hazard rate curve construction is identical to
that used in Sect. 2.1, allowing for direct application of our methodology. Other topics
of future research in the area of term structure estimation include the application of
routines to automatically select tension parameters from user-specified curve criteria,
as well as a comparative analysis of various tension splines (e.g. hyperbolic versus
rational). Consideration of optimization norms different from that used in this paper
could also be undertaken.

Finally, let us note that applications of tension spline technology to problems in
finance are not limited to yield curve construction. Indeed, the problem of constructing
parameter surfaces or curves from discrete market observations is an extremely perva-
sive one in virtually all branches of finance. Examples from contingent claims pricing
applications would include maturity interpolation of option pricing model parame-
ters; construction of smooth volatility surfaces (and cubes) from noisy observations of
put and call option prices; construction of implied correlation curves from observed
synthetic CDO prices; and maturity interpolation of short-dated quadratic variation
in FX options markets; just to name a few. Many of these applications require some
element of shape-preservation in the resulting curves and surfaces–monotonicity and
non-negative convexity of call prices in strike,19 monotonicity of quadratic variation
in maturity, monotonicity of expected portfolio credit losses in maturity, monotonic-
ity and non-positive convexity of synthetic equity CDO tranche prices in detachment
point, and so forth—which makes application of standard cubic splines fraught with
danger. On the other hand, tension splines with their ability to eliminate wiggles and
preserve shape are much more suitable for curve construction in these situations.
Indeed, as we mentioned earlier, there are well-established techniques and algorithms
to ensure shape preservation for all the types of tension splines we discussed in this
article. Kvasov (2000), Chapter 8, contains references and a sample algorithm with
automatic tension parameter selection; his algorithm preserves monotonicity and con-
vexity of input data and can accept tolerances (a bid-offer, say) on the fitting precision.
Kvasov (2000) also discusses techniques to build splines of more than one variable–
so-called tensor product splines—as needed to construct surfaces and cubes, rather
than curves.

While we do not want to overstate the case for tension splines—their effective-
ness in outright probability density estimation, for instance, is largely unknown and

19 From Breeden and Litzenberger (1978) it is known the risk-neutral density of an asset is proportional
to the second derivative of call prices with respect to strike, hence the need for non-negative convexity.
Note that the density implied by a tension spline fitted directly to call option prices (rather than to some
transformation or, say, to derivatives of the call options with respect to strike) would depend on the type of
tension spline used, but would range from a completely discrete distribution (infinite tension) to a piecewise
linear function (zero tension).
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most likely outperformed by special-purpose kernel methods (but see Monteiro et al.
2007)—it is safe to say that elements of the theory outlined in this paper could find a
number of relevant applications elsewhere in finance. Needless to say, these are left
for future work.

Acknowledgements Helpful comments from Tom Lyche, Robert Renka and, especially, Carsten Tang-
gaard are gratefully acknowledged.

A Appendix: norm minimization

We are interested in establishing

ϕ̂ = arg min
ϕ∈A

1

N
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W 2
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⎛
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(A-1)

where λ and σ 2 are parameters.
For any µ ∈ R and for any υ ∈ C2[t1, tM ], define

F(ϕ, µ, υ) = 1
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)2
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For a minimizer ϕ̂ of (A-1), we must have, for any υ, F(ϕ̂, µ, υ) ≥ F(ϕ̂, 0, υ). By
standard variational calculus,

∂ F(ϕ̂, µ, υ)

∂µ

∣∣∣∣
µ=0

= 0 (A-2)

is the condition for a local optimum. One may recognize the left-hand side as the
Gateaux variation in direction υ.

Given our definition of F , (A-2) can be written as
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where

P ′ (t j , ϕ̂(t j )
) ≡ ∂ P

(
t j , ϕ̂(t j ) + x

)

∂x

∣∣∣∣∣
x=0

.

That is,

1
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W 2
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=
∫ tM

t1

(
ϕ̂′′(t)υ ′′(t) + σ 2ϕ̂′(t)υ ′(t)

)
dt, (A-3)

for any function υ ∈ C2[t1, tM ]. We notice that the left-hand side of (A-3) only
depends on υ in the knots t j , so the right-hand side must be of this form as well.
This naturally leads us to guess that ϕ̂(t) is a hyperbolic tension spline, as in this case
ϕ̂′′(t) − σ 2ϕ̂(t) is linear on each interval [t j , t j+1]. Specifically, with constants d j ,
j = 1, . . . , M − 1, defined as

d j = ϕ̂(3)(t) − σ 2ϕ̂′(t), t ∈ (t j , t j+1),

integration by parts (as in Sect. 3.5) shows that

∫ tM

t1

(
ϕ̂′′(t)υ ′′(t) + σ 2ϕ̂′(t)υ ′(t)

)
dt = ϕ̂′′(tM )υ ′(tM ) − ϕ̂′′(t1)υ ′(t1)

+
M∑

j=1

υ(t j )(d j − d j−1) (A-4)

with the convention d0 = dM = 0. If the tension spline has natural boundary condi-
tions, the terms ϕ̂′′(tM )υ ′(tM ) and ϕ̂′′(t1)υ ′(t1) vanish, and we can write our first-order
condition (A-3) as

1

Nλ

N∑

i=1

ci j P ′ (t j , ϕ̂(t j )
)

W 2
i

(
Vi −

M∑

k=1

cik P
(
tk, ϕ̂(tk)

)
)

= d j − d j−1, (A-5)

to hold for all j = 1, . . . , M. We note that the same expression will hold if instead of
enforcing natural boundary conditions, we prescribe first-order derivative conditions
ϕ′(t1) = a, ϕ′(tM ) = b and optimize in the set A = {ϕ ∈ C2[t1, tM ] : ϕ′(t1) = a,

ϕ′(tM ) = b}. For ϕ + µυ to stay inside A , we necessarily must have υ ′(t1) =
υ ′(tM ) = 0, which again ensures that the terms ϕ̂′′(tM )υ ′(tM ) and ϕ̂′′(t1)υ ′(t1) vanish
in (A-4).

Equation (A-5) constitutes a necessary condition only and, in principle, it should be
tested whether convexity properties are such that we indeed have found a minimum.
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This can easily be done for linear functions, but can be quite onerous to do for general
specifications of P (tk, ϕ(tk)).

B Appendix: forward curve overlays

Many of the curve construction algorithms so far have been designed around the
implicit idea that the forward curve should ideally be smooth. While this is generally
a sound principle, exceptions do exist. For instance, it may be reasonable to expect
instantaneous forward rates to jump on or around meetings of monetary authorities,
such as the Federal Reserve in the US. In additional, other “special” situations may
exist that might warrant introduction of discontinuities into the forward curve. A well-
known example is the turn-of-year effect where short-dated loan premiums spike for
loans between the last business day of the year and the first business day of the next
year.

One possible way of incorporating forward rate jumps of known magnitude into
the discount curve machinery is to exogenously specify an overlay curve ε f (t). The
forward curve f (t) is then written as

f (t) = ε f (t) + f ∗(t), (A-6)

where ε f (t) is user-specified—and most likely contains discontinuities around special
events dates—and f ∗(t) is unknown. The discount curve algorithm is then subse-
quently applied to the construction of f ∗(t). That is, rather than solving cP = V (see
Eq. 3), we instead write

P(t) = e− ∫ T
0 ε f (t)dt e− ∫ T

0 f ∗(t)dt ≡ Pε(t)P∗(t) (A-7)

and solve

cεP∗ = V, (A-8)

where P∗ = (P∗(t1), . . . , P∗(tM ))� and cε is a modified N × M coupon matrix, with
elements

(cε)i j = ci j Pε(t j ). (A-9)

Construction of cε can be done as a pre-processing step, after which any of the
algorithms discussed earlier in this paper can be applied to attack (A-8). Once the
curve P∗(t) (or, equivalently, some transformation such as the yield curve y∗(t) =
−t−1 ln P∗(t)) has been constructed, any subsequent use of the curve for cash-flow
discounting requires, according to (A-7), a multiplicative adjustment of time t discount
factors by the quantity Pε(t).
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C Appendix: noisy or Ill-posed benchmark data

To, very briefly, exemplify the use of our curve construction algorithm on noisy and/or
ill-posed benchmark sets, we construct a little representative experiment. Specifically,
we start out with a smooth discount curve, generated by a suitably parametrized ver-
sion of the function in (Nelson and Siegel 1987); see the “Pre-Noise Data” graph
in Fig. 9 below for the curve used. We then pick 10 $1-notional coupon bonds with
maturities 1,2, . . . ,10 years with coupons set such that all bonds price at par (i.e. $1).
We double the set of securities to generate 20 bonds—two identical 1-year bonds, two
identical 2-year bonds, and so forth. Finally, we create our benchmark set by adding
to all 20 coupons random zero-mean Gaussian noise with a standard deviation of 25
basis points (0.25%); the prices of all bonds are kept at $1.

It should be clear that the resulting benchmark set is both noisy and severely ill-
posed; in particular, notice that all securities in the set have a “twin” that has the same
payment schedule and price, yet pays a different coupon. In noisy illiquid markets,
bond prices may exhibit similar characteristics (albeit rarely as blatantly as our exam-
ple, of course). Figure 8 below shows the L-curve (see Sect. 4.4.3) for our benchmark
set; for comparison we have also shown the L-curve for the (well-posed) benchmark
set used in the Libor curve example in Sect. 6. Notice the fundamental difference in
the shape of the two curves: for the ill-posed set, when λ is lowered beyond a certain
threshold, the smoothness penalty term increases dramatically in magnitude, as the
yield curve starts getting increasingly irregular.

Applying our curve construction algorithm to the yield curve y(t), Fig. 9 below
show the curves that arise when the penalty multiplier λ in the norm (27) is auto-
selected according to several of the methods in Sect. 4.4. The L-curve method here
undersmoothes the data, whereas the Morozov discrepancy principle oversmoothes.
The GCV method also seems to undersmoothe the data somewhat, but overall appears
to do the best job for our specific example. We remark that Tanggaard (1997) finds that
the GCV criterion has a tendency to work better when the discount curve algorithm is
applied to the function w(t) in Sect. 2.2, rather than y(t).
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Fig. 8 L-curves. Notes: The figure shows the L-curves for our noisy bond data (left panel) and for the
swap data in Table 1 (right panel). On the graph axes, “MSE” represents the mean-square-error Ils in the
regularity norm (27), and “Regularity” represents the penalty term Ireg . The tension parameter σ was set
as indicated in the graphs
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Fig. 9 Yield curves. Notes: Yield curves constructed with various method of auto-selecting the regularity
weight λ. For the Morozov approach we use the Rice (1984) estimator to find the noise standard deviation;
the estimator returned a standard deviation of 27.9 basis points. On the left panel, the tension parameter is
σ = 1; on the right panel, the tension parameter is σ = 15
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