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Abstract
The literature on the use of machine learning (ML) models for the estimation of 
real estate prices is increasing at a high rate. However, the black-box nature of the 
proposed models hinders their adoption by market players such as appraisers, asses-
sors, mortgage lenders, fund managers, real estate agents or investors. Explaining 
the outputs of those ML models can thus boost their adoption by these domain-field 
experts. However, very few studies in the literature focus on exploiting the transpar-
ency of eXplainable Artificial Intelligence (XAI) approaches in this context. This 
paper fills this research gap and presents an experiment on the French real estate 
market using ML models coupled with Shapley values to explain the models. The 
used dataset contains 1,505,033 transactions (in 7 years) from nine major French 
cities. All the processing steps for preparing, building, and explaining the ML mod-
els are presented in a transparent way. At a global level, beyond the predictive 
capacity of the models, the results show the similarities and the differences between 
these nine real estate submarkets in terms of the most important predictors of prop-
erty prices (e.g., living area, land area, location variables, number of dwellings in 
a condominium), trends over years, the differences between the markets of apart-
ments and houses, and the impact of sales before completion. At the local level, 
the results show how one can easily interpret and evaluate the contribution of each 
feature value for any single prediction, thereby providing essential support for the 
understanding and adoption by domain-field experts. The results are discussed with 
respect to the existing literature in the real estate field, and many future research 
avenues are proposed.
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Introduction

Automated Valuation Models (AVM)

A real estate automated valuation model (AVM) is a statistically based computer 
program that uses real estate information, such as property characteristics (e.g., age, 
number of rooms), comparable sales, or price trends, to calculate an estimate of a 
property value. It is commonly used for real estate appraisal, property valuation or 
land valuation (e.g., Bogin & Shui, 2020; Hurley & Sweeney, 2022). Real estate is 
considered by most countries to be the largest asset class and plays a major role in 
social and economic systems. Providing fast and accurate estimations of property 
value is very important at a local or global level in a country’s social and economic 
system. The financial system of a country is directly impacted by real estate price 
fluctuations, as they are frequently used as collateral by central banks for mortgage 
lending (Gibilaro & Mattarocci, 2018; Pavlov & Wachter, 2011). Recently, the Euro-
pean Banking Authority revised guidelines on loan origination and monitoring, giv-
ing banks and financial institutions a real opportunity to start relying increasingly on 
AVM-based solutions for real estate valuations (European Banking Authority, 2020). 
New technologies such as AVMs allow finance and real estate professionals to obtain 
the full picture of the potential of each property within minutes and save them a 
significant amount of time (Charlier, 2022). At the individual or local level, most 
households consider buying a house to be one of the largest financial transactions of 
their lives (Pedersen et al., 2013). Real estate agents and brokers typically use AVMs 
to obtain a general sense of home-sale trends in a specific locale and may use them 
as a starting point in determining the asking price on a new listing. For a homebuyer, 
AVMs can be used to obtain a sense of prevailing prices for homes of different sizes 
in neighborhoods that interest him or her. Even if a homeowner does not plan on sell-
ing anytime soon, an AVM can be used to get a general sense of a property’s value 
and whether it has appreciated since it was bought. Additionally, a good estimation 
of a property value is considered fundamental for an investor willing to diversify the 
portfolio because of the alternatives among housing securities and other possible 
investments (D’Amato et al., 2019).

Methods for AVM

Hedonic regressions such as linear or multiple linear regressions were initially the 
most popular methods used for real estate AVM. These methods assume that there 
is a linear relationship between the price of a house and its characteristics, such as 
structural characteristics (e.g., size), neighborhood characteristics (e.g., proximity 
to amenities such as schools or public transportation) and locational characteristics 
(e.g., geographic position). The price of the house is set as the dependent variable to 
estimate, and each characteristic is used as an independent variable for the regression 
model. The main advantage of these methods is related to the ability to interpret the 
coefficient of each independent variable in the regression equation to provide the 
relative importance of this variable for price estimation. This ease of interpretation 
of hedonic regression outputs gives more confidence and trust in these models and 
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thus has motivated their adoption by actors such as analysts, appraisers, assessors, 
mortgage lenders, fund managers and researchers. However, the quantity and the 
variety of variables necessary for housing price estimations are sufficiently complex 
to provide very accurate estimations with the linear relationship assumption behind 
hedonic regressions. This disadvantage has favored the emergence of nonlinear 
methods for AVM, such as data envelopment analysis or more sophisticated artificial 
intelligence (AI) techniques (e.g., fuzzy inference, fuzzy logic, genetic algorithms, 
machine learning). Machine learning (ML) techniques have become particularly pop-
ular in recent years, as they usually provide more accurate estimations than hedonic 
regressions. Methods such as artificial neural networks, support vector machines or 
ensemble tree-based algorithms (e.g., random forest, gradient boosting, adaptive 
boosting) commonly provide better real estate price estimations (Sing et al., 2022; 
Tchuente & Nyawa, 2022; Yoshida et al., 2022). Nevertheless, beyond their impor-
tant predictive capacity, these methods are still considered black-box methods due 
to their complexity and the difficulty of intrinsically explaining their outputs. This 
lack of explainability of the outputs of ML techniques leads to a lack of confidence 
in their usage by many actors in the AVM context. Providing explainable outputs of 
ML techniques for AVM would naturally increase their adoption, as they are usually 
more accurate than traditional hedonic regression methods.

Explainable Artificial Intelligence (XAI) Techniques

Beyond AVM, the black-box nature of ML methods in AI is a wider issue that slows 
down the adoption of these methods in many other applicative fields (Arrieta et al., 
2020; Bücker et al., 2022; Ferrettini et al., 2022; Tchuente et al., 2024). There are also 
an increasing number of legal constraints requiring the explicability of black box AI 
models. For example, in February 2019, the Polish government added an amendment 
to a banking law that gives a customer the right to receive an explanation in case of 
a negative credit decision. This is one of the direct consequences of implementing 
the General Data Protection Regulation (GDPR) in the European Union (EU). This 
means that a bank must be able to explain why a loan was not granted if the decision 
process was automatic using methods such as ML. In recent years, many research 
works have been interested in studying techniques for explaining the output of black 
box AI methods and ML methods in particular (Explainable Artificial Intelligence 
or XAI). Several directions are emerging in this context (Adadi & Berrada, 2018): 
model agnostic vs. model-specific techniques, local vs. global techniques, intrinsic 
vs. post hoc techniques, surrogate techniques, and visualization techniques. An XAI 
technique is model agnostic when it can explain the predictions of any ML method; 
otherwise, it is model specific (only explains the predictions of a specific method). 
An XAI technique is local when it explains a single prediction; it is also global when 
the entire model can be explained. An XAI technique is post hoc when the expla-
nation is provided only after the model is built; it is intrinsic when explanations 
are constructed during the model building. An XAI technique can be a surrogate 
model when it constructs an interpretable model (e.g., linear model) to approximate 
the predictions of the complex black box model so that we can provide conclusions 
about the black box model by interpreting its surrogate. An XAI technique is also a 
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visualization helping to explore the patterns inside the model (e.g., a neural unit in a 
deep neural network).

Research Question and Contributions

In general, XAI techniques are increasingly successfully used in many fields for 
explaining predictions of black-box ML methods (Chen et al., 2022a, b; Park & Yang, 
2022; Senoner et al., 2022; Wang et al., 2022). Despite the large and increasing litera-
ture on ML-based AVM (Binoy et al., 2021; Cajias & Wins, 2021; Valier, 2020; Wang 
& Li, 2019), very few studies, and only very recently, are focusing on explanations 
of those models (e.g., Iban, 2022; Mayer et al., 2022; Rico-Juan & de La Paz, 2021). 
However, providing explanations for ML-based AVMs could significantly boost their 
adoption compared to hedonic regression models, and much more interest should be 
focused on explainable AI or ML-based AVMs (Cajias, 2020). Thus, our research 
question is formulated as follows:

How can eXplainable artificial intelligence (XAI) improve the interpretations of 
machine learning (ML)-based automated valuation models (AVMs)?

To answer this question, we conduct an experiment with a recent 7-year data-
set consisting of 1,505,033 real estate transactions in nine major French cities. The 
process for extracting and preparing the dataset is presented in a transparent way. 
Based on the use of the random forest ML method (Breiman, 2001) and Shapley 
values of the SHAP library (Lundberg & Lee, 2017), we present the outputs of local 
and global explanations for the nine cities. The results show that one can easily and 
locally explain every single estimation of a property value with a clear quantification 
of the contribution of each input feature. The goal is to show how market players 
(e.g., appraisers, real estate agents, real estate brokers, fund managers, investors) can 
rely on such an approach for adopting powerful predictions of ML-based AVM. At 
a global level, the aggregation of Shapley values for computing feature importance, 
allows us to assess the major differences in the real estate global market among the 
nine studied cities. For instance, comparisons are performed in terms of the most 
important features, the correlations between those features, the differences between 
house and apartment markets, and the differences between sales of old dwellings 
versus sales before completion. These results also emphasize the importance of the 
spatial dependency and spatial heterogeneity of submarket methods in AVM (Anse-
lin, 2013; Basu & Thibodeau, 1998; Bitter et al., 2007).

Thus, the contributions of this paper with respect to the literature can be expressed 
in four points: (i) we address the explainability issue of ML-based AVM, which is 
currently little studied in the literature; (ii) we experiment on the specific French real 
estate market which was never studied in this context; (iii) we train and explain the 
ML outputs of nine major cities to be able to explain the specificities and differences 
of multiple submarkets in the same country; and (iv) we present the overall analytic 
ML process with transparency by integrating simulatability (reproducible study), 
decomposability (explanations of models parameters), and algorithmic transparency 
(explanation of the learning algorithm) (Chakraborty et al., 2017; Murdoch et al., 
2019).
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The rest of this paper is structured as follows: Sect. “Automated Valuation Models 
(AVM)” presents some related works. Section “Methods for AVM” presents the data 
and the methods used in the experiment. Section “Explainable Artificial Intelligence 
(XAI) Techniques” presents the experimental settings. The results of the experiment 
are presented in Sect. “Research Question and Contributions”. Section “Related 
Works” presents the discussion, implications, limitations, and future research direc-
tions of this study. Finally, Sect. “Data and Methodology” provides the main conclu-
sions of this paper.

Related Works

In general, the literature on the usage of machine learning techniques for predicting 
real estate prices is very wide (Binoy et al., 2021; Valier, 2020; Wang & Li, 2019). 
Almost all the studies in this context use a specific dataset to evaluate the predictive 
capacity of multiple ML techniques or to compare the performances between ML 
techniques and hedonic regressions. The most performant methods mainly depend 
on each study context, even if methods such as random forest or artificial neural net-
works commonly provide the best results. However, very few, and only very recent, 
studies have specifically focused on the interpretability of ML techniques for AVM. 
Interpretability strategies used in these studies can be divided into four categories: 
explainability based on sensitivity analysis, explainability based on visualizations, a 
mix of black box models with interpretable models, and the use of post hoc global 
and local explainable methods.

First, some studies rely on sensitivity analysis to evaluate the importance of global 
features of ML techniques for AVM (Dimopoulos & Bakas, 2019; Iban, 2022). Sen-
sitivity analysis usually consists of examining the impact of each feature or group 
of features on the model’s predictions (Zhang, 2019). For instance, (Dimopoulos & 
Bakas, 2019) used a dataset containing 3,786 apartment transactions (with 9 inde-
pendent variables) in Nicosia district (Cyprus) to investigate the capabilities of ML-
based AVM to increase their transparency through a sensitivity analysis. Four models 
are compared in the study: 2 hedonic regressions (multilinear regression and higher 
order nonlinear regression) and 2 ML tree-based methods (random forest and gradi-
ent boosting). For each model, they applied a sensitivity analysis based on a modified 
version of the profile method (Gevrey et al., 2003). The results show similar patterns 
for all four methods used. However, certain differences were also depicted, which 
highlights the need for such analyses on the trained ML models. In another context in 
Turkey, (Iban, 2022) uses another sensitive analysis method that measures the impor-
tance of a feature by calculating the increase in the model’s prediction after permut-
ing the feature: PFI (Permutation Feature Importance) (Breiman, 2001). The results 
show that the PFI method is a faster and more robust option for feature selection in 
this context. Similar evaluations are proposed by (Lorenz et al., 2023), but with a 
specific focus on explaining residential rent predictions in Frankfurt (Germany).

Second, some studies rely on explainable visualization techniques that use meth-
ods such as partial dependence plots (PDPs) (Lee, 2022; Lorenz et al., 2023), individ-
ual conditional expectation (ICE) (Mayer et al., 2022), or accumulated local effects 

1 3



D. Tchuente

(ALE) plots (Chen et al., 2022a, b; Lorenz et al., 2023). PDP and ALE are global 
model-agnostic methods, while ICE is a local model-agnostic method. In general, 
PDP allows visualizing the marginal effect of one or two features on the predicted 
outcome of a machine learning model (Friedman, 2001), while ALE describes how 
features influence the prediction on average (Apley & Zhu, 2020). Compared to PDP, 
ALEs are commonly faster with less bias. As a local model, ICE plots one line per 
instance, showing how the prediction changes when a feature changes. In their study, 
(Lee, 2022) uses PDP to show how machine learning black box models can be inter-
preted in the specific context of property tax assessment. The author trains a neural 
network with data from two cities in South Korea (Seoul and Jeollanam) containing 
13 independent variables. This shows that two variables (site area and building area) 
of the 13 input variables produced noticeable patterns in the PDP analysis. The results 
allow a better understanding of the differences in the real estate market between both 
cities. In another context, (Chen et al., 2022a, b) use ALE to investigate whether 
user-generated images may be used for monitoring housing prices. They compare the 
differences between a hedonic model and two ML models (random forest and gradi-
ent boosting) using a large dataset of sold properties (226,332 properties) in London 
with 23 dependent features. Their findings show that random forest outperforms the 
other models in terms of predictive capacity, and the explicability provided by this 
model is similar to that of the hedonic model.

Third, studies relying on the mix of black box models with interpretable models 
usually combine ML methods with hedonic regressions. For instance, (Li et al., 2021) 
combine the extreme gradient boosting (XGBoost) ML model with a hedonic price 
model to analyze the comprehensive effects of influential factors on housing prices. 
Using data from 12,137 housing units in Shenzhen (China) containing 35 indepen-
dent features, XGBoost is first used to identify the most important features that 
impact housing prices. Next, only these important features are used in the hedonic 
model, which is easily interpretable. The results showed that combining the two mod-
els can lead to good performance and increase understanding of the spatial variations 
in housing prices. Similarly, (Mayer et al., 2022) present a successful combination of 
advanced ML techniques (deep learning and gradient boosting) and STAR (Smooth 
Transition Autoregressive) models to both provide excellent predictive capacity and 
supervised dimension reduction for explaining circumstances where their covariate 
effects can be described in a transparent way. Using data from Miami (13,932 hous-
ing units) and Switzerland (67,000 housing units) with more than 77 independent 
variables, they compare and explain the predictions of these combined models with 
traditional hedonic regression models. They also rely on ICE plots for locally visual-
izing the most important features.

Finally, some other studies rely on post hoc local or global explanations by par-
ticularly using the SHAP (Shapley Additive exPlanations) framework (Chen et al., 
2020; Iban, 2022; Rico-Juan & de La Paz, 2021). SHAP is a game theoretic approach 
used to explain the output of any machine learning model (Lundberg & Lee, 2017). 
SHAP is based on the game’s theoretically optimal Shapley values. The idea behind 
Shapley values is the assumption that each feature value of an instance is a “player” 
in a game where the payout is the prediction. Coming from coalitional game theory, 
the Shapley values method estimates for a single prediction of how to fairly distribute 
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the “payout” among the input features. Shapley value feature importance can also be 
aggregated on multiple instance predictions to provide global features important for 
the whole model. For instance, (Chen et al., 2020) rely on SHAP global importance of 
features for exploring the impact of environmental elements (e.g., green view index, 
sky view index, building view index) on housing prices. They first use multisource 
data on 2,547 real estate transactions in Shangai with more than 20 independent fea-
tures (location features, structure features, neighborhood features, urban environ-
mental features) for training a linear regression model and three ensemble learning 
models (XGBoost, Random Forest, Gradient Boosting). Next, SHAP global explana-
tions allow, for instance, to show that urban environmental characteristics account for 
16% of housing prices in Shangai. Using another dataset consisting of 392,412 real 
estate transactions (with 52 independent features) from Alicante (Spain), (Rico-Juan 
& de La Paz, 2021) present a comparative study of explanations provided on two 
hedonic models and a selection of ML models (Nearest Neighbors, Decision Tree, 
Random Forest, Adaboost, XGBoost, CatBoost, Neural Network). SHAP and PDP 
are mainly used to explain the results of ML models. Their results show that a combi-
nation of techniques (hedonic models and ML models with explanations) would add 
information on the unobservable nonlinear relationships between housing prices and 
housing characteristics. (Iban, 2022) rather use 1,002 transactions (with 43 physical 
and spatial independent features) in Turkey (Yenis ehir district) and compare the 
outputs of a multiple regression analysis and three tree-based ML models (gradient 
boosting, XGBoost, LightGBM). First, PFI (Permutation Feature Importance) is used 
to keep only the most important features. Next, SHAP is used to provide local expla-
nations. The results show the possibility of observing the value determinants that 
contribute to the price prediction of each real estate sample using tree-based models. 
Beyond these studies, which primarily rely on structured data, other approaches, such 
as the one by (Wan & Lindenthal, 2023), focus on identifying the most relevant areas 
in unstructured input data (images) for predicting real estate prices.

In summary, compared to the vast literature on ML-based AVMs, only very few 
and very recent studies have addressed the specific interpretability or explainabil-
ity issues of these models. The results obtained in this research field are commonly 
specific to the location (e.g., city, country) where the experiments are performed 
(Tchuente & Nyawa, 2022; Valier, 2020). However, the previously presented studies 
in this section mostly rely on data from only one city in each country. This cannot be 
enough to study the regional specificities of the real estate market of a whole country 
(Guliker et al., 2022; Gupta et al., 2022). For example, this will not be enough to 
be able to explain the similarities and differences of multiple real estate submarkets 
in the same country (Bourassa et al., 2003, 2007; Guliker et al., 2022; McCluskey 
& Borst, 2011; Tchuente & Nyawa, 2022). Moreover, these studies do not always 
present their analytic process in a transparent way with simulatability (reproducible 
studies), decomposability (intuitive explanations of model parameters), and algorith-
mic transparency (explanation of the learning algorithms) (Chakraborty et al., 2017). 
Thus, the contributions of this paper with respect to the literature can be expressed 
in four points: (i) we address the explainability issue of ML-based AVM, which is 
currently very little studied in the literature; (ii) we experiment on the specific French 
real estate market, which has never been studied in this context; (iii) we train and 

1 3



D. Tchuente

explain the ML outputs of nine major cities to explain the specificities and differences 
of multiple submarkets in the same country; and iv) we present the overall analytic 
ML process with transparency by integrating simulatability, decomposability, and 
algorithmic transparency.

Data and Methodology

Data

The dataset used in this study (“Demands of land values”) has been released with 
an open license by the French government since April 2019. The raw dataset con-
tains data about real estate transactions in French territories (metropolitan and French 
overseas departments), except two departments: Alsace-Moselle and Mayotte. These 
data are very reliable because they come directly from notarial acts and cadastral 
information. The dataset is updated every six months and contains all transactions 
for the past 5 years. The data were accessed two times: in the first semester of 2019 
and in the first semester of 2022. Thus, the studied dataset includes transactions over 
7 years (from 2015 to 2021). For the whole country, these transactions represent 
approximately 28 GB of data (stored in csv format). As indicated in the motivation of 
this study, we are focusing on the 10 largest cities in France (in terms of populations): 
Paris, Marseille, Lyon, Toulouse, Nice, Nantes, Montpellier, Strasbourg, Bordeaux 
and Lille (Fig. 1).

Due to political, economic, and geographic factors, the real estate markets are very 
different in each of these cities. As the city of Strasbourg is in the Alsace-Moselle 
department, transactions for this city are not provided in the dataset; therefore, our 
study focuses on the 9 other largest French cities, including a total of 1,505,033 trans-
actions (in the 7 years) for those cities.

For each transaction in the dataset, 43 variables are available. However, a signifi-
cant number of these variables refer to technical data about notarial acts and are not 
relevant for our study. The variables that could be related to real estate price estima-
tions are listed and described in the following Table 1.

Detailed descriptive statistics (minimum, maximum, average, median, standard 
deviation, number of missing values, number of unique values) for these variables 
in the raw dataset are provided for each city in Table 2. This allows, for instance, 
to quickly identify variables with potential outliers that should be well managed in 
the preparation and cleaning process (see “data preparation” section) before using 
machine learning techniques (e.g., low prices, high prices, missing values).

Figure 2 shows how the transactions are distributed per city (A), per year (B), per 
quarter (C) and per year and quarter (D). By far, Paris has the greatest number of 
transactions (455,774), and Lille has the fewest (80,707 transactions). The trend per 
year shows an overall increase until 2019 but a slight decrease in 2020 and 2021 (this 
may be a consequence of the COVID-19 pandemic in 2020 and 2021). In general, the 
most important part of transactions is made in the last quarter of each year.

Figure 3 shows the total number of transactions per city and per year. We can 
observe, for instance, that despite the COVID-19 pandemic, there was a significant 
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increase in the number of transactions in 2021 for some cities (e.g., Paris, Nice) but 
also a sharp decrease for other cities (e.g., Marseille, Toulouse, Montpellier).

Figure 4 shows the distribution of the number of transactions per discrete variable 
(type of sale, type of residence, city).

Figure 4A shows that most of the transactions concern old dwellings (sale) and 
new dwellings before their completion (sale before completion). The other types of 
sales are marginal (adjudication, exchange, land to build, expropriation). Figure 4C 
shows that the previous repartition is slightly similar for all the studied cities, except 
Paris, where the difference between the number of old dwellings and the number of 
new dwellings before completion is even more accentuated. Very few new dwell-
ings (sales before completion) are sold in Paris compared to other cities. As we are 
interested in real values of properties, we will only focus on old dwellings sales (sale) 
and new dwellings (before completion) in the predictive analysis. In Fig. 4B, we can 
observe that apartments and outbuildings are the most sold type of residence. Indus-
trial locations and houses are less represented, but they are not marginal. Figure 4D 
shows that this last repartition of type of residence is similar in almost all the studied 
cities, except Paris, where the difference between the number of apartments and the 
number of houses is even more accentuated. In Paris, the real estate market is highly 

Fig. 1 Top 10 largest cities in France (by population, source INSEE 2017)
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focused on apartments, and only very few houses are concerned, compared to other 
cities. Because we are only interested in residential real estate, we will only use the 
transactions for apartments and houses in the predictive analysis.

Figure 5 represents the box plots of prices per city (Fig. 5A) and per type of resi-
dence (apartments and houses) for each city. We can observe that Paris is by far the 
most expensive city, followed by Bordeaux, Lyon and Nice. The repartition per apart-
ment and house shows that houses are generally more expensive, except in the case 
of Lille. The gap between apartments and houses is also more accentuated in Paris 
and Nice.

Methodology

Our methodology is first based on ML method evaluations (Nyawa et al., 2023; 
Rampini & Cecconi, 2021; Sing et al., 2022; Steurer et al., 2021). ML relies on a few 
input and output variable assumptions to make predictions based on evidence in the 
presence of uncertainty. When the goal is to perform a prediction task, there are four 
key steps commonly followed when creating a predictive ML model: (i) choosing 
and preparing a training dataset, (ii) selecting an algorithm (or ML method) to apply 
to the training dataset, (iii) training the algorithm to build the model, and (iv) using 
and improving the model for predictive tasks.

The chosen ML method usually depends on the size and type of data, the insights 
to be obtained from the data, and how those insights will be used. The best algorithm 
is most often obtained by trial and error. Figure 6 presents the methodology adopted 
for our experiment using ML algorithms. This methodology consists of five steps. 
The first four steps (data preparation, data splitting, training of ML models, evalua-

Variable Values Comment
Date of 
mutation

The date of the transaction (day, 
month and year)

Date of sig-
nature by the 
notary

Nature of 
mutation

Sale, sale before completion, 
land to build, exchange, expro-
priation, adjudication

Land Value Price of the transaction This price 
includes taxes, 
but notarial fees 
are not included

Address Street number, repetition index, 
street type, postal code, city

Residence 
type

House, apartment, industrial 
location, outbuilding

Land Area Land area In square 
meters

Living Area Living space area In square 
meters

Number of 
rooms

Number of rooms in the living 
space area

Number of 
Lots

Number of lots in cases with 
joint properties

Table 1 List of variables used 
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tion of predictions of ML models) are common steps used for ML-based predictive 
analytics, but they strongly depend on each application context. The fifth step is spe-
cifically added to the context of this study to provide local and global explanations 
of real estate prices for each city. All these steps are successively described below.

Fig. 3 Transactions per city and year (from 2015 to 2021)

 

Fig. 2 Transactions per city, year and quarter (from 2015 to 2021)
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Data Preparation

Preparing data before training any ML model is a crucial step to ensure suitable 
results. Explaining data preparation steps for building ML models is essential for 
transparency with simulatability or reproducible studies (Chakraborty et al., 2017). In 
practice, it has generally been found that data preparation accounts for approximately 
80% of the total predictive modeling effort (Zhang et al., 2003) for many reasons. 
For instance, although real-world data are impure, high-performance mining systems 
require high-quality data, and accurate data yield high-quality patterns. Additionally, 
real-world data are usually incomplete (e.g., missing attribute values, missing certain 
attributes of interest, or only aggregate data are available), noisy (e.g., containing 
errors or outliers), and inconsistent (containing discrepancies in codes or names), and 
these types of data can disguise useful patterns. In our case, the steps for preparing 
the data are presented in Fig. 7. The successive steps are as follows: attribute selec-
tion, inconsistency removal, outlier removal, filling in missing values, geocoding 
from address, and one-hot encoding.

The attribute selection step consists of selecting only data from the 9 cities in all 
the raw datasets. As stated in the “Data” section, the raw dataset contains 43 vari-
ables for each transaction. In this step, we also select only the valuable variables (see 
Table 1) that are naturally related to the price of each transaction. Because we are only 
interested in residential real estate transactions, we also only keep the transactions 

Fig. 4 Transactions per sale type, residence type and city (from 2015 to 2021)
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Fig. 6 Methodology of the experiment

 

Fig. 5 Price distribution per city and residence type (from 2015 to 2021)
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with the sales and sales before completion sale types for apartments and residential 
houses. In the inconsistency removal step, we remove all transactions with missing 
or bad values for the following key attributes: postal code, price (since it is our target 
dependent variable), living area and number of rooms. In the outlier removal step, for 
each city, we remove transactions with price outliers (Fig. 5A) to keep only the most 
common real estate transactions that represent the majority of the population. The 
outlier price values are identified with a common box plot method, which consists of 
using the interquartile range, i.e., all values above the third quartile Q3 plus one-half 
the interquartile range. The step of filling in missing values consists of replacing the 
missing values of the land area variable with zero (essentially for apartments, mean-
ing that they naturally have a land area of 0 when the value is missing). Because the 
location is a highly important predictor of real estate prices (Tchuente & Nyawa, 
2022), the geocoding step adds the precise location (latitude and longitude) as new 
attributes for each transaction (Clapp, 2003; Ozhegov & Ozhegova, 2022). Elements 
of the address of each transaction (street number, repetition index, street type, postal 
code and city) are used to find the latitude and longitude of the dwelling using the 
French government geocoding API1 (Tchuente & Nyawa, 2022). Finally, for all other 
discrete attributes (sale type, residence type), we perform the one-hot encoding trans-
formation to convert them into continuous and Boolean dummy variables with 0 or 
1 for each of their values. For instance, we have two possible values (apartment or 
house) for the residence type, so this variable is replaced by two dummy variables, 
with each of them taking the value 0 or 1 for each transaction. Many machine learning 
algorithms require this transformation for the effective handling of discrete attributes.

Train Validation and Test Split of the Prepared Data

Once the data are prepared, the next methodology step consists of creating our train-
ing/validation and testing sets by dividing the original sample into two groups with 
proportions of 75% and 25% (training and testing sets, respectively). The training/
validation set is used in step 3 for training ML algorithms using their parameters 
(hyperparameters) for choosing the best hyperparameter combination that provides 
the best predictions using the training set. The test set is used to evaluate the best-
built model for each ML algorithm on entirely new data that were not used in the 
training step to prevent model overfitting on the training data.

1 https://geo.api.gouv.fr.

Fig. 7 Main steps of data preparation
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ML Algorithm Training

ML algorithm training is the process of tuning model variables and parameters to 
predict the appropriate results more accurately. Training an ML algorithm is usually 
iterative and uses various optimization methods depending on the chosen model. 
These optimization methods do not require human intervention, which is part of the 
power of ML. The machine learns from the provided data with little to no specific 
direction from the user. It is very difficult to know a priori which ML algorithm will 
provide the best predictions for a given dataset. The common practice consists of 
experimentally evaluating several potential suitable algorithms in each context and 
choosing the one that provides the best predictive capacity. In a previous paper with 
a similar dataset (Tchuente & Nyawa, 2022), we evaluated eight popular machine 
learning algorithms (artificial neural networks, random forest, gradient boosting, 
AdaBoost, support vector regression, k-nearest neighbors, linear regression), and the 
random forest provides the best predictive capacity. Thus, we only used random for-
est in this experiment. Random forest is an ensemble learning method that contains 
several decision trees on various subsets of the given dataset and takes the average 
to improve the predictive accuracy (Breiman, 2001). It has the advantage of being 
more accurate than single decision trees for complex problems, reducing overfitting 
problems, and being more tolerant of missing values. However, it is less interpre-
table than single decision trees and can require higher computational cost both when 
training and using the model. A random forest regressor is trained here using 5-fold 
cross-validation, which allows us to avoid overfitting by first training and testing 
each algorithm with a set of hyperparameters using only the training set. It consists 
of the following three phases: (i) partitioning the training data into several subsets (5 
subsets here), (ii) holding out a set at a time and training the model on the remaining 
set (4 sets here), and (iii) testing the model on the holdout set. The hyperparameters 
that provide the best predictions after this 5-fold cross-validation will be used for 
evaluation on the test set (step 4).

Comparative Evaluation of ML Algorithms

As stated in the previous section, the predictions of the best model on the test set 
are evaluated in this step. The most common metrics for evaluating ML models for 
regressions will be used here: Q1, MedAE, Q3, MAE, RMSE, MSLE, and R2.

 ● Q1 defines the first quartile of the prediction error distribution (error values larger 
than 25% of all prediction errors).

 ● MedAE represents the median error (error values larger than 50% of all predic-
tion errors).

 ● Q3 defines the third quartile of the prediction error distribution (error values larg-
er than 75% of all prediction errors).

 ● MAE measures the mean absolute error; for a set of n  error terms 
{ei, i = 1, . . . ,n} , the MAE is defined by the following:
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MAE =

∑
n
i=1 |ei|
n

 ● RMSE: quantifies the root mean square error; for a set of n  error terms 
{ei, i = 1, . . . ,n} , the RMSE is defined by the following:

 
RMSE =

√∑
n
i=1|ei|

2

n

 ● MSLE defines the mean squared logarithmic error; for a set of n  prices 
{yi, i = 1, . . . ,n}  and a set of n  predicted price values {ŷi, i = 1, . . . ,n} , 
the MSLE is defined by the following:

 
MSLE =

1

n

∑
n
i=1(log (yi + 1)− log (ŷi + 1))2

 ● R2: computed for the regression model; it represents the proportion of the vari-
ance of the dependent variable (output) that is explained by the independent vari-
ables (inputs).

Post Hoc Local and Global Explainability Using Shapley Values

The evaluations of the previous step allow us to find the best price predictive model 
for each city. Even if this ML model has a good predictive capacity, it is commonly 
perceived as a black-box tool that slows down the real adoption by practitioners 
(Cajias, 2020; Cajias & Wins, 2021). Thus, this step allows us to overcome this 
black-box issue and provide explanations of single predictions (local explainability) 
or the global behavior of the model (global explainability). In recent years, several 
ML model explainability frameworks have been proposed (Adadi & Berrada, 2018; 
Arrieta et al., 2020). However, only a few of them, such as SHAP (using Shapley 
values), can provide both local and global explanations for any ML model (model 
agnostic). In the experiment in this paper, the selected random forest “black box” 
model for each city will be explained using SHAP. The process would be the same, 
even if another ML model was used for training data (e.g., a neural network). As 
almost all model agnostic explainable frameworks, SHAP is used after the model is 
built (post hoc method).

Shapley values were named in honor of Lloyd Shapley, who introduced the con-
cept in 1951 and went on to win the Nobel Memorial Prize in Economic Sciences 
in 2012. Simply put, Shapley values are a method for showing the relative impact 
of each feature (or variable) we’re measuring on the eventual output of the machine 
learning model by comparing the relative effect of the inputs against the average. The 
technical explanation for the concept of SHAP is the computation Shapley values 
from coalitional game theory (Lundberg & Lee, 2017). Game theory is a theoreti-
cal framework for social interactions with competing actors. It is the study of opti-
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mum decision-making by independent and competing agents in a strategic context. 
A “game” is any scenario in which there are many decision-makers, each of whom 
seeks to maximize his or her outcomes. The optimal choice will be influenced by the 
decisions of others. The game determines the participants’ identities, preferences, 
and possible tactics as well as how these strategies influence the result. In the same 
context, cooperative game theory (a branch of game theory) posits that coalitions of 
players are the main units of decision-making and may compel cooperative conduct. 
As a result, cooperative games may be seen as a competition between a coalition 
of players rather than between individual players. Therefore, the goal is to develop 
a “formula” for measuring each player’s contribution to the game; this formula is 
the Shapley value. The scenario is as follows: a coalition of players collaborates to 
achieve a specific total benefit as a result of their collaboration. Given that certain 
players may make more contributions to the coalition than others and that various 
players may have varying levels of leverage or efficiency, what ultimate distribution 
of profit among players should result in any given game? In other words, we want 
to know how essential each participant is to the total collaboration and what kind 
of reward he or she can anticipate as a result. One potential solution to this issue is 
provided by the Shapley coefficient values. Therefore, within the machine learning 
context, the feature values of a data instance serve as coalition members. Shapley 
values will then tell us how to divide the “payout” among the features in a fair man-
ner, which is the prediction. A player may be a single feature value, as in tabular data. 
A player may alternatively be defined as a set of feature values.

The Shapley value is defined as the marginal contribution of variable value to 
prediction across all conceivable “coalitions” or subsets of features. In other words, 
it is one approach to redistributing the overall profits among the players, given that 
they all cooperate. The amount that each “player” (or feature) receives after a game 
is defined as follows:

 
ϕ i (x) =

∑
S⊂ F{i}

|S|! (|F | − |S| − 1)!

|F |!
[
fS∪ {i}

(
xS∪ {i}

)
− fS (xS)

]

With:

 ● x : the observation input
 ● ϕ i (x): Shapley value for feature i for input x for game/Model f.
 ● F : the set of all features
 ● fS : the trained model on the subset of features S.
 ● fS∪ {i} : the trained model on the subset of features S and {i}.
 ● xS : the restricted input of x given the subset of features S.
 ● xS∪ {i} : the restricted input of x given the subset of features S and {i}.

Shapley values have a number of desirable characteristics. Such values satisfy the 
following four properties: efficiency, symmetry, dummy, and linearity (Table 3). 
These aspects may be considered a definition of fair weight when taken together.
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Results

Predictive Capacity of the ML Models per City

The Python scikit-learn library was used for training the random forest models. The 
cross-validation for each city was performed using four main hyperparameters:

 ● The number of trees in the forest (n_estimators) with four values: 500, 1,000, 
2,500, 3,000.

 ● The maximum depth of the tree (max_depth) with four values: 8, 16, 32, 64.
 ● The use of bootstrap sampling when building trees (bootstrap): True or False.

For all the cities, the best-performing models after cross-validations were obtained 
with 2,500 trees, a maximum depth of 32, and no bootstrap. The evaluation metrics of 
those models using the test set are presented in Table 4. Except for the R2 and MSLE 
metrics, all the other metrics represent values in euros. We can clearly observe that 
the predictive capacity of the model is quite different depending on the cities. The 
models are less accurate for cities such as Paris, Nice, Bordeaux, and Lyon (highest 
values of errors such as MedAE and lowest values of R2) and more accurate for cit-
ies such as Nantes, Lille, Toulouse, and Marseille (lowest values of errors such as 
MedAE and highest values of R2). However, beyond these predictive capacities, we 
also want to explain locally and globally these models using Shapley Values.

Local Explanations

The Python SHAP library was used to explain the previous machine-learning models 
for each city. As the computing Shapley values have exponential complexity based 
on the number of instances used for the computation, we randomly select a subset of 
1,000 instances for computing Shapley values for each city in the experiment. It took 
an average of 24 h to compute these values for a city with a computer having 8 CPUs 
(Intel Xeon with 3.6 GHz each) and 131 Go of RAM. To ensure that these instances 
were representative of all the transactions used for testing each model, we verified 
that the sample and the whole transactions have approximately the same price sum-
mary statistics for each city (average and standard deviation).

Local explanations allow us to understand why the model has predicted a specific 
value given an instance. It is important to note that all local explanations provided 
by SHAP are relative to a baseline value: the average of the target variable on all the 
instances used for computing the Shapley values. In our case, this is the average price 
of the 1,000 instances for each city used.

Figure 8 shows an example of a local SHAP explanation of a predicted price (with 
the random forest model) of a real estate in Marseille. The two plots (force plot and 
bar plot) in this figure are complementary and provide a detailed view of the explana-
tion. The force plot shows the baseline value (average real estate price of 184 900 € 
for Marseille in this case), the predicted value (263,125 € for the studied dwelling) 
and the marginal contribution of each feature (relative to the baseline) for reaching 
this prediction. Features that contribute to the increase in the estimated price are in 
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red, and features that contribute to the decrease in the estimated price are in blue. The 
length of each band is proportional to the contribution of each feature. The bar plot 
shows a better view of those contributions with the exact Shapley value of each fea-
ture, ranked in descending order. For this example, compared to the baseline, the four 
most important features that contribute to the predicted price are the precise location 
(longitude with the value 5.365 contribute to + 37,562 €), the living area (with the 
value of 72 m2 contribute to + 27,658€), the land area (with the value of 0 meaning 

Table 4 Predictive capacity evaluation metrics per city
City Q1 MedAE MAE Q3 RMSE MSLE R2
PARIS 25 031 59 203 106 390 124 831 179 718 0.20 0.70
MARSEILLE 9 808 23 614 37 640 49 315 57 290 0.12 0.76
LYON 12 368 29 891 50 671 62 814 82 019 0.11 0.71
TOULOUSE 6 456 17 144 30 776 38 614 50 576 0.07 0.78
NICE 12 681 29 258 45 509 59 290 68 120 0.11 0.68
NANTES 9 623 23 361 38 120 49 638 59 120 0.08 0.79
MONTPELLIER 7 522 18 119 29 263 37 318 45 734 0.09 0.74
BORDEAUX 14 359 35 234 58 182 75 695 90 154 0.10 0.79
LILLE 7 518 19 577 32 339 41 096 51 414 0.08 0.78

Fig. 8 Example of local explanation for a high-price estimation with a force plot and bar plot
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no land area, rather contribute to a decrease of -20,004 €), and the year of the sale 
(with the value 2020 contribute to + 19,824 €). Because Shapley Values follow the 
efficiency property, the sum of the baseline value with all the values of marginal 
contributions of each feature is equal to the predicted value. The symmetry prop-
erty can also be easily illustrated here: the two features representing the type of sale 
(sale before completion or sale) have approximately the same contribution (approxi-
mately + 3,000€ for each) because they contribute equally to all possible coalitions; a 
transaction here can be a sale or a sale before completion. The same remark applies 
to the type of residence features (house or apartment).

Figure 9 shows another example of a local SHAP explanation for Marseille city, 
but with an estimated price (85,260€) lower than the baseline value (still 184,900 €). 
This lower estimation compared to the baseline is mostly explained by a living area 
of 41 m2 (contribution of -41,084 €), followed by the land area (no land area, contri-
bution of -26,975 €), the precise location (latitude of 43.31, contribution of -12,919 
€), etc. Only the global location (postal code with the value 13,004 €) and the resi-
dence type of this dwelling have a small positive contribution to the estimated price.

Thus, beyond the predictive performance of complex or black-box ML models 
(Hjort et al., 2022; Sing et al., 2022; Steurer et al., 2021; Valier, 2020), the two exam-
ples of explanations presented using Shapley values demonstrate how the predicted 

Fig. 9 Example of local explanation for a low-price estimation with a force plot and bar plot
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value can be explained in a manner that is understandable to users, whether they are 
experts in the field or not (e.g., appraisers, assessors, taxpayers, real estate agents, 
investors, homebuyers, homeowners)(Charlier, 2022; D’Amato et al., 2019; Gibilaro 
& Mattarocci, 2018; Lee, 2022; Lorenz et al., 2023; Pedersen et al., 2013). Conse-
quently, these users have easy-to-understand elements that can help them gain more 
confidence in the predictions, or at least provide transparency about the generated 
prediction. Beyond enhancing confidence in the results, these elements could also 
help identify potential biases in the constructed model, thereby offering a means to 
improve the model itself in the future. Such explanations are constructed regardless 
of the complexity of the upstream ML model. In this case, a random forest model was 
used; however, the explanations would be presented in the same form, regardless of 
the underlying trained and adopted ML model (e.g., ANN, SVM, deep learning, etc.).

Global Explanations

Shapley values can be aggregated to provide global explanations of the ML model 
(Figs. 10 and 11). Figure 10 shows the global importance (mean of absolute Shapley 
values) of input variables for each city in descending order. This will allow us to ana-
lyze the main factors influencing the overall real estate market in each city, as well 
as to examine the similarities and differences between the cities. Although Fig. 10 
presents the overall importance of the variables, the values shown are absolute val-
ues. They do not allow for an analysis of the direction of the relationship (positive or 
negative influence) of each variable on property prices. Figure 11 provides this addi-
tional information. This figure represents a scatter plot for each variable, where each 
point represents a feature value. The x position of a point represents the SHAP value 
(positive or negative influence on the price). The color of a point displays the original 
value of a feature: blue indicates a low feature value, and red indicates a high feature 
value. Thus, Figs. 10 and 11 allow us to analyze both the overall importance of the 
variables and the direction of the relationships between these variables and the prices.

We can observe many differences in the real estate markets in those cities. For 
instance, the living area is the most important variable in the prediction for almost 
all cities, except Bordeaux and Lille, where the land area is most important. We can 
also observe that for all cities, low values of living area and land area generally 
imply a decrease in price (Fig. 11), as one would naturally expect. More generally, 
cities where living areas are more important may indicate a high presence of densely 
populated zones. However, cities where land areas are more important may indicate 
a greater potential for development, as the presence of large plots of land can offer 
more opportunities for expansion, subdivision, or redevelopment. From another per-
spective, in urban markets, land is often at a premium due to high density and limited 
availability, making land area a significant factor. In suburban or rural markets, liv-
ing area might take precedence due to the lower cost and higher availability of land. 
Moreover, some studies focus more specifically on the decomposition of property 
values into land values and building values (which among other factors depends on 
the living area of the buildings) (Pan et al., 2021).

Next, the location also plays a very important role in the price prediction for all 
cities at a low granularity level (latitude and longitude) or at a high granularity level 
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(postal code). This is not surprising insofar as location has always been considered 
one of the most determining factors of property values (Basu & Thibodeau, 1998; 
Tchuente & Nyawa, 2022). However, there are some clear differences depending on 
cities. For example, the precise location (latitude and longitude) is more important 
than the global postal code for most of the cities (e.g., Lyon, Marseille, Nice, Bor-
deaux, Lille), except Toulouse, where the global postal code is more important. This 
thus indicates a greater fragmentation into geographical sub-markets (Kauko et al., 
2002) for the city of Toulouse, where we can observe that some specific postal codes 
(with a high value) are less expensive than others.

The city of Toulouse (Fig. 10D) also stands out particularly for the strong influence 
of the number of lots (number of dwellings in a condominium) on real estate prices 
(second most important variable after the living area). More specifically, the fewer 
the number of lots in condominiums, the higher the prices tend to be (Fig. 11D). This 
trend is practically the same in other cities, except for Paris, where many condomini-
ums with higher number of lots tend to have higher prices (Fig. 11A). The difference 
in the influence of the number of lots on prices between Paris and other cities (e.g., 
Toulouse) can be explained in several ways. For instance, larger condominiums with 
more lots can benefit from economies of scale, which might lower the cost per unit 
for maintenance and amenities. This can make individual units more attractive to 
buyers due to lower overall costs. In addition, larger condominiums often offer more 
and better amenities (e.g., swimming pools, gyms, security services) due to a higher 
number of contributing units. This can enhance the overall value of the property. 
However, condominiums with fewer lots may offer more exclusivity and privacy, 
potentially attracting a different segment of buyers who are willing to pay a premium 
for these features.

The year of the transaction is very important for some specific cities (in the top 
three of important variables): Paris, Lyon, Bordeaux, and Nantes (Fig. 10). This dem-
onstrates that price fluctuation trends are more important for these cities. In Fig. 11, 
it can be clearly seen that the trend is upward for all these cities. This upward trend 
over the years is widespread, as it is also observed in all the other cities studied. In a 
global manner, while rising real estate prices can be beneficial for property owners 
and investors, they can have far-reaching negative consequences for affordability, 
social equity, financial stability, and broader economic health (Frayne et al., 2022).

The other variables such as the type of sales (apartment/house), the type of resi-
dence (sale/sale before completion), the quarter of the transaction, or the number 
of rooms are less important in the prediction (for all cities) compared to other vari-
ables. However, the relative importance of variables can sometimes be hidden due 
to correlations among input variables. This can pose interpretation challenges such 
as ambiguity (lack of clarity on which of the correlated features is actually driving 
the prediction) or redundancy (redundant information among the correlated features, 
making it difficult to distinguish their unique contributions) (Aas et al., 2021). Ide-
ally, highly correlated variables should be managed (e.g., combined or removed) dur-
ing the feature engineering stage before building ML models. However, since the 
assumption of independence between variables is rarely verified in real-world data, 
SHAP also allows for post-hoc analysis of potentially correlated variables to provide 
more clarity in the explanations. For instance, Fig. 12 shows a clustered version of 
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Fig. 10, where most correlated input variables are clustered using hierarchical cluster-
ing. Additional insights can thus be derived from this figure. We can see, for example, 
that the number of rooms is highly correlated in the predictions with the living area. 
This can logically explain why the variable representing the number of rooms is less 
significant in the previous results, as its importance is strongly encapsulated in the 
variable representing the living area. For some specific cities such as Bordeaux and 
Lille (where the land area is the most important feature), we can observe that the land 
area is highly correlated with the number of lots. It can therefore be concluded that 
real estate prices in these two cities are strongly influenced by large condominiums 
spread over large land areas. Finally, the variables representing latitude, longitude, 
or postal code are generally clustered together, thus demonstrating the strong impor-
tance of location as identified previously.

Regarding the two discrete variables (type of sale and type of residence), we can 
observe specific patterns. For instance, sales before completion are more expensive 
than traditional sales in all cities. This can be attributed to several factors (e.g., Li & 
Chau, 2019):

 ● Developer financing needs: developers often use pre-sales to secure financing for 
their projects or to transfer some of the market risks to buyers.

 ● Buyer expectations: buyers may anticipate an increase in property value by the 
time the project is completed or may purchase for speculative reasons.

 ● Customization opportunities: buyers often have the chance to customize design 
features or choose the best units in a development.

 ● Market dynamics: scarcity of available units and extensive marketing campaigns 
can drive up prices.

 ● Incentives: developers or governments may offer incentives to attract buyers.
 ● Economic conditions: regulations that require a certain percentage of units to be 

sold before completion, or low interest rates.

For the type of residence, apartments are significantly more expensive than houses in 
some cities, e.g., Lille, Toulouse, and Bordeaux. This could be explained by the fact 
that these three cities are among those in France that attract the youngest people (e.g., 
students or young professionals), who generally prefer to live in apartments. Thus, 
this preference can create greater pressure on the apartment market (e.g., Tyvimaa & 
Kamruzzaman, 2019). For the other cities, the differences between apartments and 
houses markets are less pronounced.

To assess the robustness of the obtained results, we also calculated the relative 
importance of variables by city using the classical PFI (Permutation Feature Impor-
tance) method integrated with Random Forest (Breiman, 2001) (see Fig. 13). It can 
be observed that the order of importance of the variables and the specificities by city 
are almost the same compared to the Shapley values presented in Fig. 10. In the same 
vein, we also assessed the overall influence of each variable by city using the classi-
cal PDP (Partial Dependence Plots) method (Friedman, 2001). PDPs provide a com-
plementary means of analyzing the relationship between each independent variable 
and the dependent variable through a trend curve. We also observed that the trends 
and directions of the relationships are the same as those seen with the Shapley values 
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Fig. 14 Example of Partial Dependence Plot (for the model of the city of Toulouse)

 

Fig. 13 Relative importance of variables per city using the Random Forest’s features importance meth-
od (Breiman, 2001)
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(Fig. 11), such as for the city of Toulouse (see Fig. 14). This therefore reinforces 
the results obtained here, although it should be noted that the Shapley values have 
the advantage of providing more precise and interpretable information (expressed in 
the units of the dependent variable) on the actual contributions of each independent 
variable.

Discussion

Contributions and Experimental Discussion

Our experiment allows us to evaluate local and global explanations of an automated 
valuation model based on a random forest ML model using Shapley values. The 
whole analytic process is presented in a transparent way by considering simulatabil-
ity, decomposability, and algorithmic transparency (Chakraborty et al., 2017; Mur-
doch et al., 2019). The used dataset contains 7-year historical real estate transactions 
(1,505,033 transactions) from nine major French cities. Thus, we were able to com-
pare the real estate markets for these nine cities using the models’ predictive capaci-
ties and an explainable artificial intelligence framework. For instance, the predictive 
capacities of models built in our experiment for each city show that they are less 
accurate for high-cost French cities (e.g., Paris, Nice, Bordeaux, Lyon) compared to 
medium-cost French cities (e.g., Nantes, Lille, Toulouse, and Marseille) (Tchuente & 
Nyawa, 2022). This result can be viewed as a difference in the spatial dependence and 
spatial heterogeneity between these medium-cost cities and high-cost cities (Anselin, 
2013; Basu & Thibodeau, 1998; Bitter et al., 2007).

It is now well recognized that ML methods usually outperform other AVMs for the 
prediction or evaluation of property prices (Valier, 2020; Mayer et al., 2018; Pérez-
Rave et al., 2019). However, the “black-box” nature of these models considerably 
hinders their use by professionals such as appraisers, assessors, mortgage lenders, 
fund managers, and even researchers. Explainable AI frameworks are designed to 
demystify the use and outputs of AI techniques (principally ML models) and can 
thus be highly valuable for the adoption of ML-based AVMs (Cajias, 2020; Cajias 
& Wins, 2021). However, very few studies have proposed and demonstrated the rel-
evance of XAI for ML-based AVM models (e.g., Iban, 2022; Mayer et al., 2022; 
Rico-Juan & de La Paz, 2021). The main contribution of this paper is to fill this 
research gap using an experimental approach with both local and global explanations. 
We provide a particular use of XAI as a means to compare the behavior of multiple 
real estate submarkets in the same country (nine major cities in France).

Among current XAI frameworks, the use of Shapley values particularly allows 
both local and global explanations on any ML model with potentially several levels 
of granularity on input variables. We show in the experiment how one can provide an 
explanation of a single prediction, to understand why the model predicts the low or 
high price of a dwelling, and what are the exact contributions of each feature for that 
prediction. This approach can, for instance, provide more confidence for an appraiser 
or assessor who wants to clearly understand the estimated value of a property with 
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any built ML model (Charlier, 2022; D’Amato et al., 2019; Gibilaro & Mattarocci, 
2018; Lee, 2022; Lorenz et al., 2023; Pedersen et al., 2013).

Aggregating Shapley values allows us to also provide global explanations for each 
city by visualizing the most and least important features along with their global con-
tributions. The findings can be summarized in the following points:

 ● The most important variable is the living area, which is the most important vari-
able for almost all cities, except Bordeaux and Lille, where land area is the most 
important. The living area is usually highly correlated with the number of rooms, 
while the land area is usually highly correlated with the number of lots (number 
of dwellings in a condominium).

 ● Variables that are important only in the case of specific cities; for instance, Tou-
louse is the only city where the number of lots is among the most important 
variables and the global postal code is more important in the predictions than 
precise locations (latitude and longitude). More globally, for cities such as Tou-
louse, Lyon, Montpellier, Nantes, and Lille, we can observe that prices are more 
influenced by some specific postal codes. This denotes a strong geographical seg-
mentation of the real estate market of those cities.

 ● The perceptible price trends for some cities: for instance, the year of the transac-
tion is among the most important variables for Paris, Lyon, Toulouse, and Nantes. 
This highlights a particular dynamic of the real estate market in those cities.

 ● The differences between apartments and houses: Apartments are significantly 
more expensive than houses in some cities: Lille, Toulouse, and Bordeaux.

 ● The differences between sales of old dwellings and sales before completion: the 
two most important variables (living area and land area) have a higher influence 
on old sales compared to sales before completion for all cities, even if there is a 
nuance in the case of Paris.

Most existing AVM studies focus on modeling real estate prices for an individual 
city; however, such models are often not interesting for mortgage lenders with assets 
spread out across a country (Guliker et al., 2022). In this case, for instance, using both 
local and global explanations of ML-based AVM would be of interest. Most exist-
ing AVM studies that seek to compare the differences in real estate markets among 
many geographic areas usually focus only on the differences in terms of the predic-
tive capacity of ML models (e.g., Guliker et al., 2022; Rampini & Cecconi, 2021; 
Tchuente & Nyawa, 2021) or rely on hedonic models (e.g., Cordera et al., 2019; Sis-
man & Aydinoglu, 2022). Global explanations such as those provided in this study 
can be more relevant in this context, as they are first built from ML models (usually 
more accurate than hedonic models) with the advantage of providing explanations 
such as what could be inferred from hedonic models.

However, in the same way that there are metrics for measuring the accuracy of 
predictive capacities of ML models (e.g., MAE, RMSE, R2), it also seems funda-
mental to consider the evaluation of the quality of explanations provided by XAI 
frameworks like SHAP. Although this question remains relatively unexplored in the 
literature, some proposals are beginning to emerge in this regard, focusing on quan-

1 3



Real Estate Automated Valuation Model with Explainable Artificial…

titative or qualitative evaluations of local and global explanations (Tchuente et al., 
2024).

For local explanations, some alternative and equally popular XAI techniques such 
as LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro et al., 2016), 
which rely on white-box models constructed around the instance to be explained, 
propose explanation evaluation metrics such as the “local fidelity”. The “local fidel-
ity” assesses the trustworthiness of the explanations. It quantifies how well the 
simplified model approximates the behavior of the original model for the specific 
instance being explained. This helps users understand the reliability and accuracy 
of the interpretability provided by LIME. However, a technique like SHAP, which 
relies on Shapley values of features, does not inherently provide such local evalu-
ation metrics. In general, it is not possible to directly compare local explanations 
between SHAP and LIME, for instance, since SHAP provides explanations based 
on an average prediction value, while LIME offers explanations in absolute terms. 
Although some recent approaches attempt to standardize the local explanations pro-
vided by various techniques (Amparore et al., 2021), they are not yet mature and are 
very specific to linear explanation models. Nowadays, the most common method 
for evaluating local explanations remains qualitative, through validation by domain 
experts who understand very well the subject and the features used in the models. 
Some few studies have already been proposed in this direction for explainable AVMs 
(Bauer et al., 2023; Holstein et al., 2023; Wan & Lindenthal, 2023).

For global explanations, quantitative evaluation commonly involves robustness 
tests, using alternative methods to verify that important variables (and their order) 
remain consistent regardless of the method used (e.g., global stability or global fidel-
ity)(Agarwal et al., 2022). In our case, for example, we observed that the most impor-
tant variables of the models for all cities remained stable when comparing the results 
from the PFI and PDP methods. From a qualitative evaluation perspective, it would 
involve obtaining explicit feedback from key stakeholders involved in the studied 
markets.

Research Implications

The literature on AVM using ML techniques is growing at a fast rate (Valier, 2020; 
Wang & Li, 2019). However, the adoption of ML-based AVMs by practitioners is 
hampered by the black-box nature of the most performant ML models. XAI methods 
can bring much clarity in this context while ensuring greater predictive capabilities. 
However, the associated literature for AVM is still very recent and scarce. Building 
an AVM is a highly experimental exercise that is specific to the application context 
(geographic location) through spatial dependence and spatial heterogeneity (Anselin, 
2013). The most performant models and their characteristics also depend on each 
application context. In the same way, many studies need to be performed to explain 
those models for each application context.

For instance, a previous study (Tchuente & Nyawa, 2022) for the French real 
estate market was performed to compare the predictive capacity of several machine 
learning models. This paper particularly complements this approach by focusing on 
the interpretability of such models at the local and global levels for each city. The 
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impacts of all variables on the model prediction can now be easily accessed. The 
approach used in this paper can also be compared to recent applications of XAI in 
AVM that rely on SHAP or even other XAI techniques such as sensitivity analysis 
(Dimopoulos & Bakas, 2019; Iban, 2022), visualizations with PDP or ALE (Chen 
et al., 2022a, b; Lee, 2022; Mayer et al., 2022), or combinations of ML models and 
hedonic regressions (Li et al., 2021; Mayer et al., 2022). In general, the particularity 
of this paper with respect to this literature can be expressed in two major points: (ii) 
we experiment on the specific French real estate market, which has never been stud-
ied in this context, and (ii) we train and explain the ML outputs of nine major cities to 
be able to clarify the specificities and differences of multiple submarkets, in line with 
submarket approaches in the AVM literature (Bourassa et al., 2003, 2007; Guliker et 
al., 2022; McCluskey & Borst, 2011).

Practical Implications

Real estate price fluctuations have direct impacts on the financial system due to 
banks’ central role as mortgage lenders and the frequent use of real estate as collateral 
(Koetter & Poghosyan, 2010). Using AI for automating real estate price estimations 
and XAI for explaining the estimations could improve the activities of real estate 
appraisers in this context (European Banking Authority, 2020). Without explanations, 
AI’s decisions can be easily contested, or end users may want to check if the decision 
is fair. For instance, end users have a legal “right to explanations” under the EU’s 
GDPR and the Equal Credit Opportunity Act in the US. The approach in this paper 
can also be relevant to property tax assessment (Lee, 2022). Tax assessment must be 
performed in an accurate and transparent manner to estimate the value of properties 
to calculate their property tax. The estimation must be accurate to avoid significant 
inequality in the taxpayers’ burden. However, it must also be explainable and trans-
parent because most countries grant taxpayers the right to appeal the estimated price, 
and the tax administration is responsible for explaining estimations to taxpayers.

In general, the approach and the results of these studies can be of interest for all 
actors related to real estate markets (Cajias, 2020). For instance, real estate inves-
tors, markets analysts, fund managers, or real estate agencies could directly benefit 
from the global explanations provided for a better understanding of similarities and 
differences of the real estate markets in studied cities. They can also rely on local 
explanations to better understand the estimated price of a specific dwelling. This last 
advantage is also valid for a buyer, or a seller wishing to estimate and understand the 
price of a property he wishes to buy or sell, respectively.

Limitations and Future Research Directions

This study has some limitations that can be improved upon in future research. First, as 
with many other XAI frameworks, SHAP makes transparent the correlations picked 
up by predictive ML models. However, making correlations transparent does not 
make them causal (Chou et al., 2022). For instance, we found that the living area is 
the most important variable for price prediction for most cities, while land area is the 
most important variable for a few other cities. A correlation is highlighted here and 
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provides good insight. However, explaining the causality of this correlation will need 
more domain expertise (Renigier-Biłozor et al., 2022) or will need further appropri-
ate studies with other characteristics, such as sociocultural characteristics (Ibrahim 
et al., 2016).

Second, the results of this study are limited to the specific French context. How-
ever, beyond the cases studied in France, the aim of this paper is to transparently 
present the entire methodology and process for providing explanations for ML-based 
AVMs. The process presented here is therefore generic and can be replicated in vari-
ous other cities and countries to provide context-specific results. In addition, explana-
tions for ML predictions of other types of real estate, such as commercial real estate, 
should also be considered (e.g., Deppner et al., 2023; Francke & van de Minne, 2024).

Third, even if the predictive capacity of the built model and the provided explana-
tions using Shapley values are valuable, the dataset used can be enriched to improve 
the precision of the model and analyze the impact of many other structural dwelling 
characteristics (e.g., presence of elevator, swimming pool) and their conditions (e.g., 
Oust et al., 2023), or environmental characteristics. For instance, the dataset can be 
linked to other publicly available datasets or social media data to include additional 
features such as neighborhood characteristics (e.g., accessibility to bus stations, sub-
way stations, schools, hospitals), location characteristics (e.g., distance to the center 
of the city, distance to city employment center), and urban environmental character-
istics (e.g., green view index, sky view index) (Chen et al., 2020; Li et al., 2021).

Fourth, rather than focusing on a single XAI framework, the dataset can be used 
to perform an experimental benchmark and compare the relevance of explanations 
provided by many other XAI approaches, such as surrogate techniques (Amparore et 
al., 2021; Ribeiro et al., 2016), visualization techniques (Chen et al., 2022a, b; Lee, 
2022), or the mix of ML techniques with explainable hedonic techniques (Li et al., 
2021; Mayer et al., 2022).

Fifth, it could also be relevant to study and explain the volatility issues of ML-
based AVMs compared to hedonic models (Mayer et al., 2018).

Finally, beyond real estate AVM issues, some other interesting predictive analytic 
issues in real estate, such as the prediction of best locations for investments (Kumar 
et al., 2019), could be studied in light of XAI approaches.

Conclusion

In this paper, we proposed an approach with an experiment for explaining local and 
global predictions of a black-box ML-based AVM using Shapley values. Existing 
studies focusing on explaining ML models for AVM are still very sparse in the litera-
ture, whereas they are essential for the real adoption and use of ML models by real 
estate markets players (e.g., appraisers, real estate agents, real estate brokers, fund 
managers, investors). Our experiment relies on a real-life dataset containing 7-year 
historical real estate transactions for nine major French cities. We transparently pres-
ent the different steps for extracting and preparing raw data before training, validat-
ing, and testing an ML random forest regressor. We show how one can easily explain 
and understand a single estimation of a property price using the built ML model and 
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computed Shapley values. The global explanations with aggregated Shapley values 
allow the comparison of similarities and differences in the nine studied real estate 
markets (submarkets). The approach and the results are discussed with respect to the 
existing related studies in the literature and lead to several future research avenues 
that are highlighted.

Data availability The dataset used in this study is publicly available at https://www.data.gouv.fr/fr/datase
ts/5c4ae55a634f4117716d5656/.
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