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Abstract
Employing a large dataset (at most, the order of n =  106), this study attempts enhance 
the literature on the comparison between regression and machine learning-based 
rent price prediction models by adding new empirical evidence and considering the 
spatial dependence of the observations. The regression-based approach incorporates 
the nearest neighbor Gaussian processes (NNGP) model, enabling the application 
of kriging to large datasets. In contrast, the machine learning-based approach uti-
lizes typical models: extreme gradient boosting (XGBoost), random forest (RF), and 
deep neural network (DNN). The out-of-sample prediction accuracy of these models 
was compared using Japanese apartment rent data, with a varying order of sample 
sizes (i.e., n =  104,  105,  106). The results showed that, as the sample size increased, 
XGBoost and RF outperformed NNGP with higher out-of-sample prediction accu-
racy. XGBoost achieved the highest prediction accuracy for all sample sizes and 
error measures in both logarithmic and real scales and for all price bands if the dis-
tribution of rents is similar in training and test data. A comparison of several meth-
ods to account for the spatial dependence in RF showed that simply adding spatial 
coordinates to the explanatory variables may be sufficient.

Keywords Apartment Rent Price Prediction · Large Data · Nearest Neighbor 
Gaussian Processes (NNGP) · Deep Neural Network (DNN) · Extreme Gradient 
Boosting (XGBoost) · Random Forest (RF)

Introduction

Online automatic real estate price estimation services, such as Zestimate1 (a service 
of the Zillow Group in the United States), are increasing in popularity. Seya and Shi-
roi (2022) reported that accurate price assessments and predictions are crucial for 
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real estate agents, as well as end users. Considering the perspective of the agency, 
reducing appraisal costs and improving transparency are advantageous. Meanwhile, 
the perspective of end users involves the improvement of information asymmetry 
between real estate agencies and end users to a certain extent. Massive property data 
and statistics- or machine learning-based real estate sales and rent price prediction 
methods are the means of support for agents and users.

Traditionally, regression approaches are employed to prices of real estate and 
rent, although automated assessment of real estate sales and rent prices using tech-
niques involving massive data and machine learning-based has garnered attention 
(Abidoye & Chan 2017; Čeh et al., 2018). Efron, (2020) reported regression-based 
approaches being typically used for prediction as well as attribution, that is, the indi-
vidual predictors being assigned significance (i.e., significance testing). However, 
combining weak learners in machine learning-based approaches (e.g., random forest 
(RF) or extreme gradient boosting (XGBoost)) is not effective in the case of attribu-
tion. Thus, regression-based approaches can offer advantages. However, considering 
pure prediction, simple functional forms, such as linear, logarithmic, and Box-Cox, 
commonly employed in regression-based approaches, may be inadequate for captur-
ing the nonlinearity of the data.2 Therefore, examining the extent of the difference in 
prediction accuracy from machine learning-based methods is crucial.

Constructing prediction models of real estate sales or rent prices results in certain 
challenges in accommodating factors such as neighborhood quality as explanatory 
variables (covariates) (Dubin, 1988). Hence, considering the spatial dependence 
inherent in the data is important (Pace & LeSage 2004; Hayunga & Pace, 2010). In 
geo-(spatial) statistics, regression-based kriging was established to incorporate spa-
tial dependence among error terms, typically applying a Gaussian process (GP) to 
the errors (Cressie & Wikle, 2011). Certain studies, such as James et  al., (2005), 
Bourassa et al., (2010), and Seya et al., (2011), reported that high predictive accu-
racy was offered by the kriging approach compared to multiple regression models 
(ordinary least squares (OLS)) in the property-related literature. Because the OLS 
model structure is straightforward, it enables parameter determination using rela-
tively small samples. However, with kriging, as the price information of neighboring 
properties is reflected in the predicted results through spatial dependence, it results 
in a situation different from that of OLS. That is, several prediction benefits of 
increasing the sample size exist (Seya & Shiroi, 2022). In contrast, in the case of the 
machine learning approach, research that attempts to introduce spatial dependency 
into the model remains in its early stages, although some interesting studies have 
recently been conducted (e.g., Saha et al., 2020; Iranzad et al., 2021).

This study aims to supplement the literature with the addition of new empirical 
evidence via comparison of regression- and machine learning-based rent price pre-
diction models used on a large heterogeneous dataset (at most, in the order of n = 
 106), and considering the spatial dependence among observations as an expansion 
of that reported by Seya and Shiroi (2022). The former approach required kriging. 

2 Certainly, it is possible to use more flexible semiparametric or nonparametric functional forms (Seya 
et al., 2011).
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However, OLS was also employed to set a general benchmark. Moreover, with 
increasing sample size (e.g., when n =  105), application of kriging directly becomes 
difficult, requiring O(n3) computational cost to invert the variance-covariance 
matrix. Therefore, we considered the nearest neighbor Gaussian processes (NNGP) 
model, allowing the application of kriging to massive data via sparse approxima-
tion (Datta et al., 2016; Finley et al., 2019; Zhang et al., 2019). Although exist sev-
eral methods exist to conduct spatial statistical modeling with big data (Yamagata 
& Seya, 2019; Banerjee, 2020), NNGP is reliable owing to it consistent competitive 
results in comparative studies (Heaton et al., 2019). Furthermore, for the latter, cer-
tain representative models, namely, RF, XGBoost, and deep neural network (DNN) 
were employed.

Several trials have compared and investigated the predictive accuracy of real 
estate sales and rent prices between regression- and machine learning-based 
approaches. However, certain limitations should be overcome, including (Abidoye 
& Chan, 2017) small sample sizes, (Anselin, 1988) disregard for spatial dependence, 
and (Banerjee et al., 2014) tailored and ad hoc hyperparameter settings. Hence, in 
this study, we (Abidoye & Chan, 2017) examined different and relatively large sam-
ple sizes (n =  104,  105, and  106), (Anselin, 1988) considered spatial dependence, and 
(Banerjee et al., 2014) finely calibrated the hyperparameters via cross-validation.

This study employed the LIFULL HOME’s dataset3 to evaluate monthly resi-
dential apartment rental prices in Japan4 for empirical evidence. This dataset was 
also used by Seya and Shiroi (2022) and comprises rental property cross-sectional 
data and image data up to September 2015. The rental property cross-sectional data 
include rent, lot size, location (i.e., municipality, zip code, nearest station, and time 
consumed to walk to the nearest station), year it was built, layout of the room, build-
ing structure, and equipment for 5.33 million properties throughout Japan. Mean-
while, the image data comprise 83 million pictures that outline the floor plans and 
details about the interiors for every property. This study employed only the former 
data.

Among the 5.33 million properties, 4,588,632 properties were retained after the 
missing data was excluded. Thereafter, n =  104,  105, and  106 properties were ran-
domly sampled from the cleaned data. Subsequently, the regression-based (OLS and 
NNGP) and machine learning-based approaches (RF, XGBoost, and DNN) were 
compared via a validation process while considering the difference in sample size 
and out-of-sample predictive accuracy of rent prices.

The remainder of this paper proceeds as follows. Section 2 presents a review of 
existing literature. Section 3 explains the models used in this comparison study. Fur-
ther, Section 4 details the results obtained from the comparative analysis using the 
LIFULL HOME dataset. Finally, the concluding remarks, along with the scope for 
future research, are presented in Section 5.

3 https:// doi. org/ 10. 32130/ idr.6.0
4 LIFULL Co., Ltd. provided this to the researchers free of charge through the National Institute of 
Informatics.

https://doi.org/10.32130/idr.6.0


4 T. Yoshida et al.

1 3

Literature Review

This section presents a review of the literature regarding the prediction of real estate sales 
and rent prices. Studies have postulated that spatial regression models exhibit a high pre-
dictive accuracy compared to the OLS model (e.g., James et al., 2005). Seya et al., (2011) 
examined the performance of various spatial prediction models that considered spatial 
dependence by employing a dataset comprising apartment rents of 23 wards in Tokyo for 
empirical comparison. They showed the benefit of considering spatial dependence in the 
error term (e.g., kriging, geoadditive model, and spatial error model) or regression coef-
ficients (e.g., geographically weighted regression (GWR) model). However, a limitation 
was the small size (i.e., 529 for parameter estimation and 150 for validation).

Geostatistical models (kriging) and spatial econometric models are extensively 
used to consider spatial dependence among errors. Many studies have applied both 
methods to hedonic price modeling. However, for the purpose of spatial (i.e., out-
of-sample) prediction, the former, which requires no spatial weight matrix, is more 
natural and flexible (Tsutsumi & Seya, 2009). However, a comparison by Seya et al., 
(2011) revealed that the differences in the predictive accuracy between the kriging 
and spatial econometric models are negligible, compared to the differences between 
OLS and kriging. For kriging, application to massive data, on the order of a million, 
can be achieved by considering various approximations (Heaton et al., 2019).5

Various methods have been developed to model spatial dependence among regres-
sion coefficients in different fields, including geography, statistics, and machine learn-
ing (e.g., Brunsdon et al., 1998; Gelfand et al., 2003; Murakami et al., 2017; Dambon 
et al., 2021; Meyer & Pebesma, 2021). Because the housing market is often segmented, 
the local model (i.e., spatially varying coefficient (SVC) model) can be applied. Hence, 
SVC models have been employed for hedonic price modeling in several studies. However, 
their application to massive amounts of data remains in its nascent stages (Li & Fother-
ingham 2020; Murakami et al., 2020; Nishi et al., 2022). For instance, the scalable GWR 
model, proposed by Murakami et al., (2020), was applied to our dataset. However, the 
parameter estimation procedure (i.e., the bandwidth selection procedure) was not com-
pleted within 24 h when n =  105. Thus, application of the model to a dataset with a sample 
size of n =  106 and above is difficult.6

Several attempts have been made to achieve the results based on similar moti-
vation. Seya and Shiroi (2022) reviewed studies that employed neural network 
(NN) methods. Valier (2020) reported that 57 cases are available wherein machine 
learning-based models, including NN, were more accurate in predicting the values 
than the 13 cases wherein regression performed better. Zurada et al., (2011) sug-
gested that, although many recent studies have compared regression with artificial 
intelligence (AI)-based methods in the context of mass appraisal, useful compari-
son of the published results is a challenge because the models in many studies 
were built by considering relatively small samples. Therefore, for a more compre-
hensive comparative study, a dataset containing over 16,000 sales transactions was 
used. They found that non-traditional regression-based methods performed better 
5 See Yamagata and Seya (2019) for the application of spatial econometric models to big data.
6 In addition, for n =  104, the prediction accuracy was no better than that of NNGP (mean absolute error 
[MAE]: 0.1400).
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in all simulation scenarios, specifically with homogeneous datasets. However, AI-
based methods performed well with less homogeneous datasets under certain sim-
ulation scenarios. Seya and Shiroi (2022), upon which the present study was built, 
compared the performances of OLS, NNGP, and DNN. They found that, with an 
increase in sample size from n =  104 to  106, the DNN’s out-of-sample predictive 
accuracy approaches that of NNGP and is nearly equal in the order of n =  106. 
However, in terms of both higher- and lower-end predictive accuracy for which 
rent prices deviate from the median, DNN may have better results than NNGP. 
Seya and Shiroi (2022) have a clear limitation in that they only used the DNN 
method to represent the machine learning approach.

Several studies have employed tree-based techniques to realize the machine learn-
ing approach. Pace and Hayunga (2020) examined tree-based techniques, including 
classification and regression trees (CART) (Breiman et al., 1984), boosting (Schap-
ire, 1990), and bagging (Breiman, 1996). Further, they compared these techniques 
to the spatio-temporal linear model (Pace et al., 1998), considering over 80,000 real 
estate prices in the United States. Bagging was found to work well and could yield 
lower out-of-sample residuals than global spatiotemporal methods; however, its per-
formance was poorer than local spatiotemporal methods. Mayer et al., (2019) used 
a large dataset consisting of over 123,000 single-family houses sold in Switzerland 
between 2005 and 2017. They reported that the gradient boosting approach per-
formed far better than the other methods. It was followed by mixed effects regression, 
the NN method, and the RF approach in terms of performance. Based on the online 
housing platform, Ming et al., (2020) used 33,224 pieces of data reflecting Chengdu 
housing rentals in China. They empirically compared the predictive performance of 
RF, XGBoost, and light gradient boosting machine and found that XGBoost per-
formed the best. Ho et al., (2021) used three machine learning algorithms, namely, 
support vector machine, RF, and gradient boosting, to appraise property prices. They 
applied these methods to examine a data sample of approximately 40,000 housing 
transactions over a period of over 18  years in Hong Kong and then compared the 
results of these algorithms. They found that RF and gradient boosting outperformed 
the support vector machine in terms of predictive power.

Models

This section introduces regression- and machine learning-based approaches to the 
spatial prediction employed in this study.

Regression‑Based Approaches

NNGP

The nearest neighbor Gaussian processes (NNGP) is a computationally tractable 
Gaussian processes-based spatial model. Consider D as the spatial domain and s the 
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coordinate position (X, Y). The spatial regression model, also referred to as the spatial 
process model, can be expressed as (Banerjee et al., 2014; Yamagata & Seya, 2019)

where y(s) is the spatial process for real estate rental prices, which is decomposed 
to m(s),w(s), and �(s). Further, �2 represents a variance parameter termed as a nug-
get representing the micro-scale variation and measurement error (Cressie, 1993). 
Typically, it is assumed that m(s) = x(s)

�

� , where x is an explanatory variable vector 
at points, and � is the corresponding regression coefficient vector. Further, w(s) is 
assumed to follow the GP:  w(s) ∼ GP(0,C(�)), with the mean being zero and the 
covariance function being C(�) (where � is a parameter vector that typically includes 
the parameter � [where 1∕� is called the range]; it controls the range of the influence 
of spatial dependence, and the parameter �2 represents the variance of the spatial 
process and referred to as the partial sill). Finally, �(s) is an uncorrelated pure error 
term.

For (training) sample obtained at points s1, …, sn, with y(si) and x(si) denot-
ing the dependent variable and explanatory variables observed at location si, we 
obtain w =

(
w
(
s1
)
,w

(
s2
)
,… ,w

(
sn
))�

 from the multivariate Gaussian distribution: 
w ~ N(0,C(�) ). Here, 0 is an n × 1 vector of zeros, and the element of the n × n matrix 
C(�) is expressed as C(�)(i = 1,… , n;j = 1,… , n) . Further, y ~ N (X �,Λ

(
�2, �

)
 ) can 

be expressed as the spatial process model, where Λ
(
�2, �

)
= C(�) + �2I, where I is 

an n × n identity matrix.
The prediction of the response y

(
s0
)
 at a particular point s0 is called kriging.7 

For the kriging predictor, the inverse of the n × n variance–covariance matrix Λ is 
required. Thus, a cost of O(n3) is accrued for the computation, which on the order 
of n =  105 with a standard personal computer environment poses a challenge. Hence, 
various approaches are available for approximating the spatial process w(s) (e.g., 
Heaton et al., 2019; Banerjee, 2020). This study employs the NNGP model (Datta 
et  al., 2016), which was originally proposed by Vecchia (1988). The joint density 
of the spatial process w (the full GP) is expressed as the product of conditional den-
sities, that is, p(w) = p(w(s1))

∏n

i=2
p(w(si)�w

�
s1
�
,… ,w

�
si−1

�
).8 Thereafter, Datta 

et al., (2016) assumed the following approximation for this joint density:

where N(si) is a neighbor set of si and serving as the k-nearest neighbors of si in 
NNGP. Thus, the complete GP is approximated by the NNGP and can be expressed 
as a joint density using the nearest neighbors. Further, Datta et al., (2016) demon-
strated that the approximation of Eq. (2) leads to an approximation of the precision 
matrix C−1 to C̃−1 , as expressed as follows:

(1)y(s) = m(s) + w(s) + �(s), �(s) ∼ N
(
0, �2

)
,

(2)p̃(w) = p
(
w
(
s1
))∏n

i=2
p
(
w
(
N
(
si
)))

,

(3)C̃−1 =
(
I − Ã

)
�D−1(I − Ã),

7 Or ms0 + ws0. (See Cressie, 1993.).
8 Although the results depend on the ordering of the samples, Datta et al. (2016) showed that NNGP is 
insensitive to ordering. We performed ordering based on the x-coordinate locations.
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where Ã is a sparse and strictly lower triangular matrix, with its diagonal elements 
represented by zeros, with non-zero entries at most k-entries in each row. Further, 
D = diag(dii) is a diagonal matrix whose elements are conditional variances based on 
the full GP model. Further, as Ã can be provided as a k × k (k < < n) matrix, and C̃−1 
is sparse, significant reduction in the computational load can be achieved. The spa-
tial process model provided through NNGP can be expressed as follows:

where Λ̃
(
�2, �

)
= C̃(�) + �2I.

The Bayesian Markov chain Monte Carlo (MCMC) (Datta et  al., 2016), Ham-
iltonian Monte Carlo (Wang et  al., 2018), and maximum likelihood methods 
(Saha & Datta, 2018) can be employed to estimate the parameters of the NNGP 
model. This study employed the MCMC. and as the NNGP parameters are � and 
� = (�2, �2,�)� = (�2, �)� , a prior distribution must be set for each parameter and 
subsequently multiplied by the likelihood function to obtain the conditional poste-
rior distributions (the full Bayesian NNGP). However, because this study employs 
massive data to a maximum order of n =  106, implementing the full Bayesian NNGP 
within a practical computational time is a challenge. Therefore, this study employs 
the conjugate NNGP, which was proposed by Finley et al., (2019). Assume P̃(�) is 
the approximate nearest neighbor of a spatial correlation matrix corresponding to 
an approximate nearest neighbor of C̃(�) . Then, the conjugate NNGP can then be 
expressed as

where M̃ = P̃(�) + �I and � = �2∕�2 . The reason for employing the conjugate 
NNGP because, assuming that � and � are known, the conjugate normal-inverse 
Gamma posterior distribution for � and �2 can be used. Further, it enables obtain-
ing the predictive distribution for y

(
s0
)
 as a t-distribution. Thus, performing MCMC 

sampling is simple. Section 4 explains the setting of the values of � and �.  

Machine Learning‑Based Approaches

RF

The random forest (RF) is a bagging-type ensemble of decision trees that trains 
several trees in parallel. RF was proposed by Breiman (2001) by combining CART 
(Classification And Regression Trees) and bagging. In the RF algorithm, decision 
trees constructed from bootstrap samples are combined to conduct a prediction, 
where each decision tree is trained independently. The training procedure can be 
described as follows: (1) Bootstrap samples are drawn as a randomized subset from 
the training data, and (2) a decision tree is constructed for every sample, using a ran-
domized subset of predictor variables. This variable selection step helps balance low 

(4)y ∼ N
(
X�, Λ̃

(
�2, �

))
,

(5)y ∼ N
(
X�, �2M̃

)
,
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tree correlation with reasonable predictive strength. (3) Aggregation (i.e., averaging) 
was performed for each predicted result. Note that there are certain hyperparameters 
in RF that need to be calibrated, which will be explained in Subsection 4.3.

XGBoost

The extreme gradient boosting (XGBoost) is an efficient and scalable approach 
based on GB developed by Friedman et al., (2000) and Friedman (2001). To gener-
ate the final prediction results, GB uses decision trees as weak learners in a sequen-
tial learning process, in the form of an ensemble of weak predictions such as deci-
sion trees. It has three main components: (1) a loss function to be optimized, (2) a 
weak learner to predict, and (3) an additive model to add weak learners to optimize 
the loss function. Chen and Guestrin (2016) improved the algorithm by adding a 
regularization term to reduce overtraining (overfitting) and called it XGBoost. This 
improved algorithm significantly reduces processing time; however, compared to 
RF, XGBoost has more hyperparameters that need to be calibrated. Again, this is 
explained in Subsection 4.3.

DNN

The deep neural network (DNN) is a mathematical model with a network structure 
wherein layered units are connected to neighboring layers. Each element that com-
prises a network is referred to as a unit or node. The first layer is the input layer, 
while the last is the output layer. The remaining layers referred to as hidden layers. 
Further, the indices for layers are expressed as l = 1, …, L, with the first layer being 
the input layer and the Lth the output layer. In a DNN, the previous layer transmits 
the results of the non-linear transformations on the received inputs to the next layer, 
which enables the outputs at the output layer to be derived as an estimation result. 
Thus, an observation was conducted in each layer, via linear transformations using a 
weight matrix Wl+1 [ ml × m(l+1) ] and non-linear transformations using an activation 
function f(.). The transformation from the lth layer output zl [ ml × 1 ] to the (l + 1)th 
layer output zl+1 [ m(l+1) × 1 ] can be performed using the following equations:

where bl+1 is the ml × 1 bias vector and f
(
ul+1

)
 is the activation function vector. The 

final output is denoted by ( zL ≡ ŷ) . When determining Wl+1 and bl+1 for a regression 
(where y  is continuous), the mean squared error (MSE) of the actual value y and the 
predictive value ŷ are often used as the loss function g, expressed as

(6)ul+1 = Wl+1zl + bl+1,

(7)zl+1 = f
(
ul+1

)
,

(8)g =
1

n

n∑

i=1

(
yi − ŷi

)2
.
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The process of determining Wl+1 and bl+1 to minimize g is referred to as DNN 
learning, which is performed using the gradient algorithm, whereas backpropagation 
is used to calculate the gradient (LeCun et al., 2015). However, several hyperparam-
eters must be calibrated in the DNN, including the number of layers and units in the 
hidden layers, learning rate, and batch size. DNN parameter tuning is commonly 
performed using grid and random searches (Bergstra & Bengio, 2012).

Machine Learning Approaches and Spatial Dependence

Hengl et al., (2018) argued that RF is essentially a non-spatial approach to spatial pre-
diction because the sampling locations and the general sampling pattern are ignored 
during the estimation. In this study, we examined and discussed appropriate methods 
for introducing or considering spatial dependence in the machine learning framework. 
In this experiment, we focused on RF because it has fewer hyperparameters than DNN 
and XGBoost, which may make it easier to understand the impact of differences in 
model structure on prediction accuracy. Certain possible approaches are as follows:

1. Geographical covariates
As mentioned in Sekulić et  al., (2021), one approach to include a geographic 
context into RF is to introduce the X and Y coordinates as covariates. We refer 
to this method as the RF_coordinates. Hengl et al., (2018) proposed the use of 
buffer distance maps from observation points as covariates. This relative distance 
method is similar to RF_coordinates; the difference is that the latter has a small 
number of covariates, while the former has a large number of covariates. In this 
study, we focused on the RF_coordinates approach.

2. Spatial autoregressive term
Certain studies have attempted to introduce spatially dependent RF by employ-
ing spatial econometrics (Anselin, 1988). Credit (2022) proposed a method for 
constructing spatially explicit RF models by including spatially lagged (spatial 
autoregressive) variables to mirror various spatial econometric specifications. The 
approach entails the introduction of a spatial autoregressive term for the dependent 
variables (y) and explanatory variables (X). Sekulić et al., (2021) adopted a simi-
lar approach, wherein they directly introduced (training) observed values at the k 
nearest locations and the distances from these locations to the prediction location, 
which they termed random forest spatial interpolation (RF_si). Note that Sekulić 
et al., (2021) did not use the weighted average; rather, they directly introduced the 
actual observed values. In this study, we employ Credit’s (2022) approach, that is, 
the introduction of Wy with and without X–Y coordinates (RF_sar and RF_sar_
coordinates, respectively), and the RF_si approach by Sekulić et al., (2021).

3. Eigenvectors of a distance matrix
Considering the results by Murakami and Griffith (2019), Moran eigenvec-
tors from MCM, where M = I − 11

�∕n is a centering operator, 1 is a vector 
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of ones, and C is an n × n spatial weight matrix whose (i, j)th element equals 
exp(−d(i, j)∕r) , can be employed to consider spatial dependence. Here, d(i,j) rep-
resents the Euclidean distance between the (training) sample sites i and j, and r 
is the maximum length of the minimum spanning tree connecting sample sites 
(Dray et al., 2006). Eigen-decomposition is possible only when n < 10,000 in a 
standard computing environment. If C is a binary spatial weight matrix, we can 
utilize eigen-decomposition packages such as ARPACK (Pace et al., 2013; Seya 
et  al., 2015). However, in our specification, C is specified with exp(−d(i, j)∕r) . 
The use of distance-based matrix is needed to employ Nyström extension. That is, 
Nyström extension is available only for positive definite kernels such as the expo-
nential kernel we assumed. In other words, it is not applicable to binary spatial 
weight matrix with which positive definiteness of M(C + I)M, which is required in 
Nyström extension, is not assured.
There exist several approximation methods for eigen-decomposition in the 
machine learning literature, with a popular approach, called the Nyström exten-
sion, being suitable for the Moran eigenvector approximation.9 Using the results 
of Murakami and Griffith (2019), the first h approximate eigenpairs can be for-
mulated as follows:

where Ch is an h × h matrix of a spatial weight matrix among h anchor points, 
defined by k-means centers (geometric centers of the clusters defined using the 
k-means method). A greater h yields a better approximation, but results in slower 
computation; that is, the approximation is influenced by the setting of the number 
of h. Murakami and Griffith (2019) suggested that h = 200 be set to balance accu-
racy and computational efficiency, and this study accepts their recommendations. 
Note, however, h = 500 and h = 1000 have also been tested, and we found h = 200 
to be the optimal setting in terms of predictive accuracy. We use the eigenvectors 
as feature vectors in the random forest. These random forests with and without 
eigen-approximation are called as the RF_esf and RF_esf_app, respectively. Note 
that the approximate eigenvectors used in RF_esf_app can correlate each other 
due to the approximation.
Similar approach is possible by replacing the matrix C with C∗ = CnhC

�
hn where 

Cnh is an n × h spatial weight matrix among h anchor points and the n sample 
sites. The (i, j)-th element of the C∗ matrix is large if the i-th location has simi-
lar proximity to the anchor points with the j-th location (i.e., {ci,1,… , ci,n} is simi-
lar to {cj,1,… , cj,n} where ci,j is the (i, j)-th element of the Cnh matrix). Thus, C∗ 

(9)�E = [Cnh − 1⊗ (1�h(Ch + Ih)∕h)]Eh(Λh + Ih),

(10)Λ̃h =
n

h

(
Λh + Ih

)
− Ih,

9 The Nyström extension is available only for positive definite kernels such as the exponential kernel we 
assumed. Because of the reason, this extension is not available for binary spatial weight matrix whose 
positive definiteness is not assured.
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approximates spatial dependence. Consider a singular value decomposition such 
that Cnh = E∗

h
Λ

∗1∕2

h
F∗�

h
 where E∗�

h
E∗
h
= Ih and F∗�

h
F∗
h
= Ih . The following relation-

ship holds: C∗ = CnhC
�
hn = E∗

h
Λ

∗1∕2

h
F∗�

h
F∗
h
Λ

∗1∕2

h
E∗�

h
= E∗

h
Λ∗

h
E∗�

h
 . Thus, E∗

h
 is the 

eigenvector matrix and the Λ∗
h
 is the diagonal matrix of the eigenvalues. We refer 

the method using E∗
h
 and Λ∗

h
 instead of Ẽ and Λ̃h as RF_esf_app2. This approach has 

merits over RE_esf_app that the resulting eigenvectors are exactly orthogonal.

4. Other approaches
Georganos et al., (2019) proposed a method for the remaining algorithms, referred 
to as geographical random forests, where, for each location i, a local RF is com-
puted, but only k number of nearby observations are included. Thus, this results 
in the calculation of an RF at each training data point, with its own performance, 
predictive power, and feature importance. Saha et  al., (2020) proposed RF-GLS, 
an extension of RF for dependent error processes similar to the manner in which 
generalized least squares (GLS) fundamentally extends OLS for linear models 
under dependence. This extension is based on the equivalent representation of local 
decision making in a regression tree as a global OLS optimization, which is subse-
quently replaced by a GLS loss, resulting in a GLS-style regression tree. For spa-
tial settings, RF-GLS coupled with Gaussian process-correlated errors can generate 
kriging predictions at new locations. However, based on our investigations, these 
two methods although having potential are not readily applicable to a massive data-
set on the order of n =  105 or higher at the moment of our writing this paper.

Empirical Comparison

Dataset

The LIFULL HOME data was used on this study to obtain rent price predictions. 
The dataset used is the same as that used by Seya and Shiroi (2022); however, 
we repeated the description to maintain consistency. Of 5.33 million properties, 
4,588,632 properties (after excluding missing data) were employed as the original 
data. Further, the original data did not explicitly contain exact property positional 
coordinates owing to privacy concerns; however, the zip codes were available. 
Hence, to overcome this issue, the barycentric coordinates for zip codes (X and Y 
coordinates projected to the UTM54N WGS84 reference system) were employed 
instead. For cases involving multiple properties sharing the same location (e.g., a 
different room in the same apartment), small perturbations (random noise) were pro-
vided to each positional (X, Y) coordinate within the zip code. This process can 
cause certain positional errors; however, as our study is nationwide in scope, the 
zip codes are reasonably fine in geographical sense (micro-districts), and we focus 
only on comparison, we assume that these errors can be small.10 This dataset is 

10 From the prediction results (see Sect. 4.4), the fact that NNGP outperformed OLS and RF (without 
coordinates) outperformed RF (with coordinates) suggests that spatial information is important even at 
the 7-digit ZIP code level.
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heterogeneous in terms of rent prices, because it spans the entire country of Japan, 
including the center of Tokyo, and some small towns (see Fig. 1). Figure 1 suggests 
that rent prices are highly localized, that is, spatially auto-correlated. Note that in 
some cities with only one sample, outliers are observed in Fig. 1.

The natural logarithm of the monthly rent price (including maintenance fees) 
in yen is considered the dependent variable,11 and the explanatory variables used 
are listed in Tables  1, 2 and 3. Typical variables were chosen to include descrip-
tors of the location of the condominium (location variables) and the condominium 
itself (structural variables). “Walk time to nearest (train) station” (m), “Floor-area 
ratio” (%), and “Use district” (dummies) were employed as the location variables. 
Meanwhile, “Years built” (month), “Number of rooms” (#), “Direction” (dummies), 
“Building structure” (dummies), and “Room layout” (dummies) were employed as 
the structural variables. Further, the number of explanatory variables (K) was 43. 
The descriptive statistics are presented in Tables 1, 2 and 3.12

Experimental Design

From a total sample size of 4,588,632 properties, random sampling was conducted at 
various sizes (n =  104,  105, and  106), and 80% of these data were utilized as training 
data for the learning models. The remaining 20% were employed as the test (valida-
tion) data to assess the predictive accuracy. Thus, the balance of sample sizes for the 
training and testing data followed three patterns: 8,000 vs. 2,000, 80,000 vs. 20,000, 

Fig. 1  Spatial distribution of median rent price by city

11 We also considered the linear functional form; however, it resulted in the predictive accuracy at real-
scale being worse compared to the log-linear form for all the cases.
12 Out of all the explanatory variables, information about use district (zoning) and floor-area ratio was 
often lacking in the original database. Therefore, the National Land Numerical Information database was 
accessed to create these data separately (http:// nlftp. mlit. go. jp/ ksj-e/ index. html).

http://nlftp.mlit.go.jp/ksj-e/index.html
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and 800,000 vs. 200,000. Due to the completely random sampling, no containment 
relations were possible where, for instance,  104 samples were contained in  105 sam-
ples. However, as the data size was sufficiently large, a quite low probability exists for 
the sample bias to conceal any trends. Thus, this study design (based on complete ran-
dom sampling instead of conditionalization) would not significantly affect the results.

We used R version 4.0.2 and python version 3.9.12 running on a Windows 
10 OS (3.70  GHz; 10-Core Intel Xeon W-1290P processor; 128  GB memory). 
OLS, NNGP, RF, and XGBoost were estimated using R, whereas the DNN was 
estimated using Python. However, to use the same random numbers for R and 
Python, a reticulate package that provides an R interface for Python modules, 
classes, and functions was used.

Table 1  Descriptive statistics (continuous variables)

The “rent price” includes maintenance fees

Variable Min Max Median Mean SD

Rent price (yen) 5,250 1,250,000,000 63,000 72,850 1,381,893
Years built (month) 5 1,812 228 236 135.6
Walk time to nearest 

(train) station (m)
1 88,000 640 781.5 661.3

Number of rooms (#) 1 50 1 1.5 0.7
Floor-area ratio (%) 50 1,000 200 234.1 130.6
X (km)  − 841 783.1 352.2 181.5 273.3
Y (km) 2,958 5,029 3,931 3,942 195.3

Table 2  List of explanatory variables (discrete variables)

For building structure: W: Wooden; B: Concrete block; S: Steel frame; RC: Reinforced concrete; SRC: 
Steel frame reinforced concrete; PC: precast concrete; HPC: Hard precast concrete; LS: Light steel, RCB: 
Reinforced concrete block
For room layout: The R refers to a room where there is only one room and there is no wall to separate the 
bedroom from the kitchen. For the others, K: includes a kitchen; D: includes a dining room: L: includes a 
living room; S: additional storage room. For example, LDK is a Living, Dining, and Kitchen area
For use district: Category I exclusively low residential zone, Category II exclusively low residential zone, 
Category I exclusively medium–high residential zone, Category II exclusively medium–high residential 
zone, Category I residential zone, Category II residential zone, Quasi-residential zone, Neighborhood 
commercial zone, Commercial zone, Quasi-industrial zone, Industrial zone, Exclusively industrial zone

Direction North, Northeast, East, Southeast, South, Southwest, West, Northwest, Other

Building structure W, B, S, RC, SRC, PC, HPC, LS, ALC, RCB, Others
Room layout R, K, SK, DK, SDK, LK, SLK, LDK, SLDK
Use district Category I exclusively low residential zone (1 Exc Low), Category II 

exclusively low residential zone (2 Exc Low), Category I exclusively 
high-medium residential zone (1 Exc Med), Category II exclusively high-
medium residential zone (2 Exc Med), Category I residential zone (1 Res), 
Category II residential zone (2 Res), Quasi-residential zone (Quasi-Res), 
Neighborhood commercial zone (Neighborhood Comm), Commercial 
zone (Commercial), Quasi-Industrial zone (Quasi-Ind), Industrial zone 
(Industrial), Exclusive industrial zone (Exc Ind), Others (Others)
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Further, for assessing the predictive accuracy, the following error measures were 
used: the mean absolute error (MAE), root mean squared error (RMSE), and mean 
absolute percentage error (MAPE). Here, ŷ m and ym represent the out-of-sample 
predictive and observed values, respectively, for the mth data. However, the first two 
measures may be affected by outliers for skewed distributions because it is unlikely 
that the noise will be Gaussian with constant variance. Moreover, calculating the 
RMSE on a skewed response variable will cause the resulting statistic to be driven pri-
marily by the observations of the highest magnitude (see descriptive statistics). Thus, 
all error measures were calculated while keeping ym log-transformed. However, MAPE 
for log-transformed variables cannot be interpreted as percentages (see Swanson et al., 
2000). Hence, we also calculated the MAPE for the real scale.

Model Settings

In this section, we describe the settings of each model, that is, for OLS, NNGP, RF, 
XGBoost, and DNN. The descriptions for OLS, NNGP, and DNN are similar to those 
in Seya and Shiroi (2022), but we repeat them to maintain the consistency of this article.

OLS

The variables are presented inTable 1.13 The rent price was used as the dependent 
variable. The other variables, except the X and Y coordinates, were used as explana-
tory variables. Table 4 presents the OLS results for n =  106. The adjusted R2 value 
was found to be 0.5165.

NNGP

The full Bayesian NNGP is theoretically sound for estimation and prediction. However, 
as this study employs massive data, the conjugate NNGP proposed by Finley et  al., 
(2019) was used to aid in the reduction of the computational cost (see Subsection 3.1). 

(11)MAE =
1

M

M∑

m=1

||ym − ŷm
||,

(12)RMSE =

√√√√ 1

M

M∑

m=1

(ym − ŷm)
2
,

(13)MAPE =
100

M

M∑

m=1

|||||

ym − ŷm

ym

|||||
.

13 Note that these variables are selected using the step function in R, based on AIC, with n =  104.
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The conjugate NNGP allows the acceleration of drawing samples by assuming � and � 
to be known. Finley et al., (2019) proposed assigning values to � and � using a grid 
point search algorithm, which is based on the cross-validation (CV) score. However, 
the while performing a grid-point search for n =  106 the computational load it quite 
high. Therefore, an ad-hoc strategy was adopted in this study while assigning values to 
� and �, as detailed by Seya and Shiroi (2022). This was realized by using the spCon-
jNNGP function in the spNNGP package of R. The determination of the number of 
nearest neighbors for consideration is required when employing the NNGP; thus, based 
on the CV, the number of nearest neighbors was set to 30 (Seya & Shiroi, 2022).

RF

In this subsection, we describe the model setup for RF, estimated using the R package 
ranger (Wright & Ziegler, 2017), which allows for the fast implementation of RF on 
high-dimensional data. According to Probst et al., (2019), RF has several hyperparam-
eters that must be set by the user. The number of trees (number of trees in the forest) 
must be set sufficiently high, and we set it to 500, which is a typical default value. The 
node size (minimum number of observations in a terminal node) was set to five. This is 
because it is generally considered to produce good results (Díaz-Uriarte & De Andres, 
2006; Goldstein et al., 2011), and a small preliminary experiment showed that the pre-
diction results are fairly robust to these settings. Further, we confirmed that for the hyper-
parameter mtry (number of drawn candidate variables in each split), the default setting of 
K/3, where K is the number of explanatory variables, results in poor performance for 
some models (RF_si). Therefore, we attempted to optimize the value of mtry using the 
caret package in R to perform a grid search with fivefold cross-validation in the range [3 
to K]. The calibration results of the mtry are shown in Table 5. For RF_sar and RF_sar_
coordinates, we employed the R code (rfsi function) provided by the developer,14 and the 
number of nearest neighbors k was also cross-validated in the range [3 to 35].

XGBoost

This subsection describes the model setting for XGBoost, which has a wider range 
of hyperparameters that need to be calibrated compared to RF. We observed that 
XGBoost performed worse than (well-tuned) RF when the hyperparameters were 
set to the default values of xgboost and better than RF when the hyperparameters 
were carefully calibrated using CV. The hyperparameters in xgboost include nround, 
which controls the maximum number of iterations; max_depth, which controls the 
depth of the tree; eta, which controls learning rate; gamma, which controls regu-
larization; colsample_bytree, which controls the number of features (variables) sup-
plied to a tree; min_child_weight, which denotes the minimum number of instances 
required in a child node; and subsample, which is the number of samples (observa-
tions) supplied to a tree. Here, nround must be set to a sufficiently large value, and we 
set it to 100, considering the computation time. In addition, we set gamma to 0, indi-
cating no regulation. The others, based on preliminary experiments, were selected 

14 https:// github. com/ Aleks andar Sekul ic/ RFSI

https://github.com/AleksandarSekulic/RFSI
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Table 4  Regression analysis 
results using OLS (example of 
n =  106)

Variables Estimate t-values

Constant term 1.08 ×  101 4.50 ×  103 ***
Years built –1.15 ×  10–3 –4.42 ×  102 ***
Walk time to nearest station –4.88 ×  10–5 –9.87 ×  101 ***
Floor-area ratio 1.30 ×  10–3 2.30 ×  102 ***
Number of rooms 1.49 ×  10–1 2.57 ×  102 ***
Direction_Northeast 8.09 ×  10–2 2.80 ×  101 ***
Direction_East –4.45 ×  10–3 –2.32 ×  100 *
Direction_Southeast 5.40 ×  10–3 2.72 ×  100 **
Direction_South –2.33 ×  10–2 –1.29 ×  101 ***
Direction_Southwest 2.46 ×  10–3 1.23 ×  100

Direction_West 1.94 ×  10–3 9.67 ×  100 ***
Direction_Northwest 7.39 ×  10–2 2.53 ×  101 ***
Direction_Others –6.85 ×  10–2 –3.53 ×  101 ***
Structure_B 1.88 ×  10–1 6.39 ×  100 ***
Structure_S 9.41 ×  10–2 9.39 ×  101 ***
Structure_RC 2.40 ×  10–1 2.71 ×  102 ***
Structure_SRC 3.67 ×  10–1 2.06 ×  102 ***
Structure_PC 2.14 ×  10–1 3.48 ×  101 ***
Structure_HPC 9.13 ×  10–2 4.19 ×  100 ***
Structure_LS 5.34 ×  10–2 4.75 ×  101 ***
Structure_ALC 9.17 ×  10–2 3.19 ×  101 ***
Structure_RCB 1.20 ×  10–1 4.55 ×  100 ***
Structure_Others 1.61 ×  10–1 1.81 ×  101 ***
Room layout_K 4.22 ×  10–2 3.62 ×  101 ***
Room layout_SK 1.10 ×  10–1 1.39 ×  101 ***
Room layout_DK 1.37 ×  10–1 1.00 ×  102 ***
Room layout_SDK 3.65 ×  10–1 3.95 ×  101 ***
Room layout_LK 2.79 ×  10–1 1.01 ×  101 ***
Room layout_SLK 3.04 ×  10–1 5.75 ×  100 ***
Room layout_LDK 2.76 ×  10–1 2.12 ×  102 ***
Room layout_SLDK 6.06 ×  10–1 1.39 ×  102 ***
Use district_2 Exc Low –1.15 ×  10–1 –2.72 ×  101 ***
Use district_1 Exc Med –1.52 ×  10–1 –1.22 ×  102 ***
Use district_2 Exc Med –2.77 ×  10–1 –1.83 ×  102 ***
Use district_1 Res –2.36 ×  10–1 –1.97 ×  102 ***
Use district_2 Res –2.48 ×  10–1 –1.38 ×  102 ***
Use district_ Quasi-Res –2.92 ×  10–1 –9.98 ×  101 ***
Use district_ Neighborhood Comm –2.63 ×  10–1 –1.56 ×  102 ***
Use district_ Commercial –4.63 ×  10–1 –1.83 ×  102 ***
Use district_ Quasi-Ind –1.91 ×  10–1 –1.26 ×  102 ***
Use district_ Industrial –2.46 ×  10–1 –9.76 ×  101 ***
Use district_ Exc Ind –3.17 ×  10–1 –5.13 ×  101 ***
Use district_Others 5.00 ×  10–1 3.57 ×  100 ***
Adjusted R2 0.5165
*  significant at 5%; ** significant at 1%; *** significant at 0.1%
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from the following ranges via a five-fold cross-validated grid search using the caret 
package in R: max_depth = (Breiman, 1996; Breiman et al., 1984; Čeh et al., 2018), 
eta = [0.1, 0.2], colsample_bytree = [0.8, 1], min_child_weight = [0.8, 1], and sub-
sample = [0.8, 1]. Although these ranges are commonly used, they are suboptimal 
because the calibrated parameters may provide an outer rather than an inner solution. 
However, these settings are sufficient to draw the conclusion of interest in this study: 
XGBoost has a high performance.

DNN

Several hyperparameters must be determined for DNNs. This study adopted an effi-
cient optimization method called the tree-structured Parzen estimator (TPE) (Berg-
stra et al., 2011), which can appropriately handle the parameter space of the DNN 
tree structure, which has been extensively adopted, with its performance being 
proven to a certain extent (Bergstra et  al., 2011; Bergstra et  al., 2013). The tradi-
tional sigmoid, hyperbolic tangent, softmax, and recently popularized rectified lin-
ear unit (ReLU) are a few of the typical activation functions. ReLU offers a compu-
tational advantage compared to the others as it induces sparsity in the hidden units 
(Glorot et al., 2011); furthermore, it accelerates convergence owing to the non-sat-
uration of its gradient (Krizhevsky et  al., 2012). Thus, this study adopted ReLU. 
For the optimizer of the DNN, the results obtained using the typical algorithms, 
RMSprop (Tieleman & Hinton, 2012), and adaptive moment estimation (Adam) 
(Kingma & Ba, 2014) have been presented. However, techniques designed to pre-
vent overtraining, such as the introduction of regularized terms and dropouts, have 
not been employed in this study.

Based on the method described by Seya and Shiroi (2022), the learning procedures 
were performed as follows. First, considering the tth hyperparameter candidate vec-
tors �t coupled with the results of applying five-fold CV with training data for each �t 
(MSE, Eq. 8), a 50-fold search was performed using the TPE. Second, using the opti-
mal hyperparameter vector and all the training data to assess the predictive accuracy of 
the testing data a model was created once again. Moreover, the explanatory variables 
were standardized in advance. We employed Keras 15 for the development of a DNN, 
while Optuna 16 was used for the implementation of TPE using Python.

Table 5  Calibration results of mtry

mtry RF_non_
spatial

RF_
coordi-
nates

RF_si RF_sar RF_sar_
coordinates

RF_esf RF_esf_app RF_esf_app2

n =  104 5 5 29 3 3 7 7 79
n =  105 5 5 51 3 3 - 9 105
n =  106 7 7 58 5 5 - 13 -

15 https:// keras. io
16 A framework developed via Preferred Networks, Inc. (https:// optuna. org).

https://keras.io
https://optuna.org
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Prediction Results and Discussion

Regression‑based versus machine learning models

The predictive accuracy based on the sample size for each model is illustrated in Figs. 2 
(MAE, RMSE, and MAPE for log-scale) and 3 (MAPE for real-scale). For RF, the results 
for RF_non_spatial and RF_coordinates are shown here. No evident differences were 
observed in the predictive accuracy of OLD, even if the sample size was increased because 
OLS does not use local spatial information and thus has a simple model structure such that 
n =  104 was sufficiently large to determine the parameters. Moreover, in the case of the real 
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scale, increasing the sample size resulted in the predictive accuracy reducing further. This 
is because of the increase in the number of high-priced properties in the test data. Seya and 
Shiroi (2022), who focused on OLS, DNN, and NNGP, showed that NNGP performed the 
best when considering the three models for all sample sizes and error measures. They con-
cluded that, for rent price prediction models using standard explanatory variables, kriging 
(NNGP) is useful, provided the sample size is moderate (n =  104,  105), whereas DNN may 
be promising if a sufficient sample size is secured (n =  106).

However, Figs.  2 and 3 show another story. Machine learning models—RF_
coordinates and XGBoost—performed considerably better than NNGP, particularly 
when the sample size was large (n =  106). In fact, XGBoost achieved the highest 
prediction accuracy for all sample sizes and error measures for both logarithmic 
and real scales and for all price bands (when n =  105,  106) (Fig. 4).17;18 Accord-
ing to Fig. 2, the MAE of XGBoost is less than half that of NNGP when n =  106. 
These results show that although regression-based approaches have merit in terms 
of attribution, for pure prediction purposes, machine learning approaches, specifi-
cally XGBoost, have an advantage. Based on log-scale RMSE, OLS underestimates 
or overestimates the true value by about 32.3% for n =  106, whereas XGBoost can 
predict with an error of about 10.4%. This difference is not negligible.

For machine learning methods, our results are in line with existing comparative 
studies, which indicated the highest performance of gradient boosting algorithms 
such as XGBoost, followed by RF (Zhang et al., 2017). This result is natural because 
different from RF which adopts independent learning, XGBoost adopts sequential 
learning where each decision tree depends on the previous tree result to build an 
improved prediction. The higher accuracy of XGBoost compared to NNGP may be 
caused by the skewed distributions of a dependent variable (see Table 1), resulting 
in the non-linear relationship between dependent and explanatory variables. Exist-
ing studies that compared XGBoost and DNN showed mixed findings. For instance, 
Taghizadeh-Mehrjardi et al., (2020) found DNN outperformed XGBoost in the con-
text of soil organic carbon, whereas Giannakas et al., (2021) found opposite results 
in the context of prediction performance. Our results showed that XGBoost outper-
formed DNN for most of the cases.

Differences by method for considering the spatial dependence

The predictive accuracy by sample size for each method considering spatial depend-
ence is shown in Fig.  5 (log-scale). It is evident that RF_coordinates performed 
the best (or at least the second-best) for all sample sizes and error measures. For 
all methods, except RF_esf_app, considering spatial dependence improved the 

17 We confirmed that, compared to the RF approach, XGBoost is sensitive to hyperparameter settings. 
When hyperparameters were set to default values given by the R package xgboost, XGBoost performed 
worse than RF.
18 We followed the same experimental procedure for the samples taken from the Tokyo metropolitan 
area and confirmed that a similar conclusion can be obtained. The prediction results are available on 
request.
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predictive accuracy. The low accuracy of RE_esf_app might be due to an igno-
rance of eigenvalues, which were used as regularizers to stably estimate the model 
in Murakami and Griffith (2019). RF_si outperformed the RF_sar. This implies 
that the weighted average need not be considered when introducing observations at 
neighboring sites. In fact, the introduction of Wy worsens the predictive accuracy 
for higher- and lower-end markets (Fig. 6). RF_esf_app performed poorly, although 
RF_esf performed better than RF_coordinates for n =  104. RF_esf_app2 provides 
similar performance with XGBoost for n =  105. However, RF_esf_app2 does not still 
outperform XGBoost.

These results may have shown that simply adding spatial coordinates to explana-
tory variables would be a plausible option to consider spatial dependence in RF.

Comparison of Computation Times

Finally, the computational times of the methods are compared in Table 6. For n =  106 case, 
DNN, RF, XGBoost need at least 1 h (3,600 s), whereas NNGP needs only 73.68 s. DNN 
needs more time than XGBoost for all cases. Although RF methods are generally com-
putationally efficient compared with XGboost, RF_si (n =  106 case), RF_esf_app (n =  106 
case) and RF_esf_app2 (n =  105;  106 cases) need more time than XGBoost because these 
methods are use many explanatory variables. Although the prediction accuracies of 
XGBoost and RF_esf_app2 provides similar performances in case of n =  105 (see Fig. 5), 
RF_esf_app2 need more over 100 times than XGBoost. Based on these results, XGBoost 
might be a good choice for heterogeneous localized samples in terms of both estimation 
accuracy and computational efficiency.

We note that spatial methods used for RF can also be used for XGBoost. However, as 
Table 6 illustrates, these spatial methods are computationally expensive and XGBoost is 
more computationally expensive than RF because of the large number of parameters to be 
tuned, requiring further work in both model configuration and software coding.

Conclusion

The limitations of prior studies, which have the predictive accuracy of real estate 
sales and rent prices between regression- and machine learning-based approaches, 
are the use of small sample sizes and the disregard for spatial dependence, which 
is an essential characteristic of real estate properties. This study compared and 
discussed the rent price prediction accuracy of regression- and machine learning-
based approaches by extending the work of Seya and Shiroi (2022) and employ-
ing varying sample sizes in a varying order (n =  104,  105, and  106).

For the regression-based approach, the NNGP model, which enables the applica-
tion of kriging to large data, was employed. Meanwhile, for the machine learning-
based approaches, certain representative models, namely, XGBoost, RF, and DNN, 
were employed. To achieve empirical validation, the LIFULL HOME dataset for 
apartment rent prices in Japan was used in this study. The dataset includes the fol-
lowing variables: rent, lot size, location (municipality, zip code, nearest station, and 
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Fig. 4  MAPE per log rent range (in the case of n =  106)
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walk time to the nearest station), year built, room layout, and building structure. 
Further, the out-of-sample predictive accuracies of the models were compared.

Although Seya and Shiroi (2022) found that NNGP outperformed DNN, particularly 
when rent prices were around the median, our comparison revealed another story. Our 
analysis results showed that, with an increase in sample size, the out-of-sample predictive 
accuracy of XGBoost and RF was higher than that of NNGP. In fact, the performance of 
XGBoost was the best for all sample sizes. Thus, the results suggest that, although regres-
sion-based approaches have merit in terms of attribution, machine learning approaches, 
specifically XGBoost, have an advantage for pure prediction purposes. We also compared 
several methods to consider the spatial dependence with RF and found that simply adding 
spatial coordinates to explanatory variables can be a plausible option.

As demonstrated in this study, machine learning-based approaches like XGBoost gen-
erally out-perform regression-based for pure prediction purposes. Although Efron (2020) 
reported that regression-based approaches have merits in terms of attribution, recently, 
methods to explain the output of machine learning model, such as SHAP (SHapley Addi-
tive exPlanations) (Lundberg et al., 2018, 2020), have been proposed and are beginning to 
be used in the real estate literature (Vargas-Calderón and Camargo (2022). This trend may 
be important to facilitate the interpretation of results from machine learning algorithms.

Fig. 6  MAPE per log rent range for each method of considering spatial dependence (in the case of 
n =  106)
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In future work, it is important to investigate the extent to which the level of hetero-
geneity in large dataset affects the results. It may be important to establish an effective 
means to set NNGP hyperparameters. Further, it may also be interesting to use other 
neural network models, including graph convolutional networks. In addition, it is impor-
tant to conduct experiments with several explanatory variables by using, for instance, 
pictures that show the floor plans and interior details of each property. Finally, it may be 
useful to consider spatial dependence when conducting validation (Ploton et al., 2020).
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