
Vol:.(1234567890)

The Journal of Real Estate Finance and Economics (2024) 68:624–653
https://doi.org/10.1007/s11146-022-09893-1

1 3

A Machine Learning Approach to Price Indices: Applications 
in Commercial Real Estate

Felipe D. Calainho1  · Alex M. van de Minne2 · Marc K. Francke1,3 

Accepted: 22 February 2022 / Published online: 9 April 2022 
© The Author(s) 2022

Abstract
This article presents a model agnostic methodology for producing property price 
indices. The motivation to develop this methodology is to include non-linear and 
non-parametric models, such as Machine Learning (ML), in the pool of algorithms 
to produce price indices. The key innovation is the use of individual out-of-time 
prediction errors to measure price changes. The data used in this study consist of 
29,998 commercial real estate transactions in New York, in the period 2000–2019. 
The results indicate that the prediction accuracy is higher for the ML models com-
pared to linear models. On the other hand, ML algorithms depend more on the data 
used for calibration; they produce less stable results when applied to small samples 
and may exhibit estimation bias. Hence, measures to reduce or eliminate bias need 
to be implemented, taking into consideration the bias and variance trade-off.
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Introduction

Having reliable real estate price indices is pivotal for several reasons. Firstly, index 
volatility is an important input in determining the cost of capital of real estate (Gelt-
ner et  al., 2017). This is helpful for investors, underwriters and policymakers to 
determine interest rates. Secondly, it allows one to (re-)appraise real estate portfolios 
mark-to-market, by multiplying (historic) book values by the corresponding index 
returns (Francke & Van de Minne, 2021a). This is of obvious interest for investors, 
but also for owner-occupiers in determining their household wealth. This can also 
help appraise commercial and residential property values for property tax purposes. 
Finally, real estate indexing would allow for derivative trading (Deng & Quigley, 
2008), especially in the absence of index revisions. However, producing real estate 
indices is a nontrivial task as real estate is a heterogeneous asset class that transacts 
infrequently (Francke & Van de Minne, 2021b).

In the real estate literature, several methods haven been proposed to compile 
transaction price indices. Hedonic pricing models and repeat sales are two of the 
most popular ones. The hedonic pricing model is the “original” method of price 
index construction (Malpezzi, 2002), and will be the focus of this paper. The hedonic 
pricing model has its origins in appraising farmland values (Haas, 1922a; 1922b; 
Wallace, 1926), and has been used for making constant quality indices in the auto-
mobile industry (Court, 1939). Later examples of literature using hedonic pricing 
models include Griliches (1961), Lancaster (1966), and Rosen (1974). The hedonic 
pricing model assumes that the price of a commodity is composed by aggregating 
the individual contributions of each of its characteristics.1

Classic hedonic approaches employ linear models, estimated by Ordinary Least 
Squares (OLS), or its generalizations for index construction. These linear algorithms 
have the convenience of the β parameter, that elicits a linear relationship, in units, 
between the dependent and independent variables. Nevertheless, the dependence on 
estimating a parameter vector β constrains the use of a wide family of other regres-
sion algorithms, such as Machine Learning (ML) approaches, that are non-linear 
or non-parametric. This paper proposes a (hedonic) framework which admits the 
usage of parametric as well as non-parametric/non-linear models to construct price 
indices.

The proposed method can be viewed as a model that predicts the price of a prop-
erty ( ̂Y  ) sold in the current period (t) as if it had been sold in the previous period (t 
− 1) The difference between the estimated price ( ̂Yt−1 ) and actual price (Yt) at a prop-
erty level can be decomposed into a market price change and some noise. More spe-
cifically, we first estimate some (linear/non-linear/non-parametric) model using only 
transactions in (or up to and including) period t − 1. In a second step, we predict the 
values of all properties sold in period t, using the estimated model in the first step. In 
the final step, we take the out-of-sample prediction errors for transactions in period t, 

1 The repeat sales approach, initially proposed by Bailey et al. (1963), is a method that utilizes the rela-
tive price difference of a real estate property that was sold twice or more in a given time interval as the 
basis for index construction.
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and compute the average change in order to compute the price index change. To find 
the returns in subsequent periods, we simply redo these three steps for the remain-
ing time periods ( t, t + 1,… , T − 2, T − 1 ). This methodology is called the chained 
“Paasche” price index (Geltner et al., 2017). Note that this three step framework is 
agnostic as to which model and estimation technique is used in the first step, and it 
can include, but is not limited to, ML techniques.

One of the many reasons to have an price index methodology that incorporates 
other (regression) algorithms such as ML is that these permit a more flexible rela-
tionship between variables when compared to linear models (Varian, 2014). This 
flexibility increases our expectations of better approximating the unknown complex 
data generating process that underlies real estate property prices. In other words, it 
might improve our ability to find the “true” price change between periods that is less 
affected by noise.

Following this line of thought, this article proposes a new methodology that gen-
eralizes the chained hedonic approach in a way that any ML regression algorithm 
can be used to compile property price indices. Hence, this paper contributes to the 
existing literature for building non-linear price indices, such as McMillen and Dom-
brow (2001), and it connects the fields of number theory, econometrics, and ML. 
In fact, to the best of our knowledge, this paper is the first to estimate price indi-
ces using ML approaches.2 Our proposed framework therefore opens up the field of 
chained hedonic pricing models for numerous new possibilities.

The data used in this study have been provided by Real Capital Analytics (RCA) 
and consist of 29,998 individual transactions from commercial real estate properties 
in New York metropolitan area, in the period from 2000 to 2019. We construct an 
aggregate price index and indices per property type.

In general, the results show that using individual predictions of real estate trans-
action prices is a viable solution for building price indices. Another finding is that 
Out-of-Time prediction accuracy is higher for the ML algorithms when compared to 
OLS. However, ML algorithms are more dependent on the data used for estimating 
the models, and have less stability when applied to smaller data sets. Additionally, 
the bias and variance trade-off from the ML algorithms has an important role in this 
methodology, as bias affects the index being estimated. A solution for regression 
algorithms that exhibit estimation bias is the use of the double imputation method.

We perform a stress test to determine sensitivity to sample size and to examine 
how much leverage the sample size has on the proposed methodology. This test is 
performed by sampling 50%, 25%, 10%, and 5% of the available transactions 30 
times for each percentage level, totalling 120 samples. The number of repetitions 
was chosen to ensure that the hyperparameters would be estimated 30 times.

Additionally, we allow the model’s predicted property prices in period t to be 
estimated on multiple periods up to and including period t − 1. Two approaches for 

2 However, it should be noted that research in the field of real estate price levels, or appraised values, is 
quite established by now. See for example: Tay and Ho (1992), Do and Grudnitski (1992), Evans et al. 
(1992), Worzala et al. (1995), McGreal et al. (1998), Nghiep and Al (2001), Wong et al. (2002), Peterson 
and Flanagan (2009), and Kok et al. (2017).



627

1 3

A Machine Learning Approach to Price Indices: Applications…

determining the optimal window size are tested: Rolling Window (RW) with win-
dows of 2 through 8 years and Expanding Window (EW). These tests determine the 
relation between model complexity (additional observations at the cost of additional 
year variables) and model accuracy for each of the algorithms used.

Chained index results for the full sample show that all ML algorithms have lower 
Root Mean Squared Error (RMSE) and higher R2 than OLS. Regarding volatility and 
first-order autocorrelation (ACF1), ML algorithms have similar results to OLS; none 
of the indices exhibit extreme volatility or a negative ACF1. The trade-off between 
having more observations by using expanding or rolling windows versus the cost 
of including time fixed effects, affects the algorithms differently. Another finding is 
that while performing the stress test, ML algorithms have higher errors compared 
to OLS when data is restricted. This is more evident at the 5% data restriction level, 
which suggests a higher data dependence for the ML algorithms.

Methodology

This paper presents a single imputation Chained Paasche approach towards build-
ing real estate price indices (Balk et  al., 2013). Linear and non-linear models are 
used for imputing the value of a real estate property in a different time period. The 
linear model, estimated by ordinary least squares (OLS), is used as a benchmark. 
For each period, hyperparameter tuning, model estimation and price prediction are 
performed. Therefore, there is a model estimated or trained using each algorithm for 
each period.

Hyperparameter tuning is performed to minimize the risk of overfitting the data, 
consequently lowering the out-of-sample generalization power. To best capture the 
price dynamics and to avoid overfitting, an optimization of a vector of hyperparam-
eters λ is required. Therefore, a five-fold cross-validation with random search is per-
formed to estimate the best set of hyperparameters for each regression algorithm. 
This optimization is explained in depth further in Section labeled “Training and 
bias-variance trade-off”.

Chained Index

The chained hedonic approach is a series of (numeric) indices for a long sequence of 
periods. It is obtained by connecting price changes covering shorter time intervals. 
This approach controls for changes in the pool of real estate properties available in 
period t by specifying a “representative property”. This allows the indexing process 
to explicitly relate property price change either to changes in the implicit prices of 
its characteristics or to general market conditions and omitted longitudinal variables 
(Geltner et al., 2017).

According to Geltner et  al. (2017), the representative property can be speci-
fied relatively freely within the bounds of the sample characteristics. As a result, 
the chained hedonic index is a more powerful approach for exploring asset price 
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dynamics. In this study, the representative property is the average real estate prop-
erty in period t.

The chained hedonic index effectively requires separate, purely cross-sectional 
regression algorithms to be run on each single index period (t), hence, constitut-
ing an out-of-sample estimation. The index number formula can be defined so as 
to establish a Laspeyres, Paasche or Fisher index. In this research, only the Paasche 
index is applied.

The hedonic price modelling approach is susceptible to omitted variable bias or 
model misspecification as it is not possible to control for and observe every real 
estate characteristic. Therefore, the resulting price indices are constant quality with 
respect to the observed characteristics.3

The Chained Paasche Index (CP) is calculated each period by taking log sale 
prices Yt and characteristics Xt in period t for training and then predicting log prices 
of properties transacted in period t + 1 as if they had been transacted in period t, 
Ŷ t
t+1

|(Xt+1,Ft) , where the superscript in Ŷ t
t+1

 denotes the price level date t, and the 
subscript denotes the transacted properties in period t + 1, and Ft is the training set, 
given by (Yt,Xt). All transactions in period t are used for training the model, and 
all transactions in period t + 1 for out-of-sample predictions with price level date t. 
Note that Ŷ t

t+1
|(Xt+1,Ft) does not use time fixed effects, as the data used for estima-

tion (training) is for a single period, t. Thus, within the training data set, time is a 
constant.

The average difference between observed log sale prices in period t + 1 and its 
corresponding predictions in period t is an estimate of the log price change between 
period t and t + 1, denoted by δt+ 1,

where St+ 1 denotes the set of transactions in period t + 1, and nt+ 1 its corresponding 
number.

The Paasche Single Imputation index can be calculated as

As Balk et al. (2013) point out, an alternative to the single imputation approach 
is to use the predicted (fitted) values Ŷ t+1

t+1
|(Xt+1,Ft + 1) instead of observed prices 

Yt+ 1. This approach is known as double imputation. The estimated log price change 
between period t and t + 1 is then given by

(1)𝛿t+1 =
1

nt+1

∑

i∈St+1

(
Yi,t+1 − Ŷ t

i,t+1
|(Xt+1,Ft)

)
,

(2)CP
t
= CP

t−1 × exp(𝛿
t+1).

(3)𝛿t+1 =
1

nt+1

∑

i∈St+1

(
Ŷ t+1
i,t+1

|Ft+1 − Ŷ t
i
|(Xt+1,Ft)

)

3 Omitted variable bias arising from the lack of quality controls can be partially mitigated using other 
data sources such as text. See for example, Nowak and Smith (2020).
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It can be argued that double imputation is a better way to construct indices, as 
biases derived from omitted variables in the model would at least partially offset 
each other (Balk et al., 2013). For the present study, both single and double imputa-
tion have been investigated. For simplicity, this paper focuses on the single impu-
tation approach. Brief results of double imputation are presented in the Section 
labeled “Double and single imputation”.

Additionally, we allow the model to predict property prices in period t to be esti-
mated on multiple periods up to and including period t − 1. We test two variants of 
the CP model: (1) Rolling Window (RW) and (2) Expanding Window (EW) models. 
Both the rolling and expanding window variants have the benefit that they use more 
observations to train the model. For each additional period in the training window, 
a time dummy variable is included in the model, increasing the model complexity 
(dimensionality). The window approach has the objective of analyzing the trade-off 
between model complexity and accuracy.

RW models are estimated based on all observations in periods t − 1 and t (a 
2-period window), so Ft = (yt,Xt), (yt−1,Xt−1) , and then predict the prices of prop-
erties sold in period t + 1 as if they had been sold in t. EW models are estimated 
based on all observations available from the first period in the time series (2000) 
until period t and then predict the prices of real estate sold in period t + 1 as if they 
had been sold in period t. In this approach, the extension of the training window var-
ies (expands) over time, so Ft = (yt,Xt), (yt−1,Xt−1),… , (y1,X1).

Machine Learning Algorithms and comparison metrics

There are several studies in the real estate literature that implement machine learn-
ing algorithms. For example, Kok et al. (2017) use machine learning to construct an 
Automated Valuation Model (AVM). Most of these studies benchmark traditional 
hedonic pricing models to Artificial Neural Networks (Tay and Ho, 1992; Do & 
Grudnitski, 1992; Evans et  al., 1992; Worzala et  al., 1995; McGreal et  al., 1998; 
Nghiep & Al, 2001; Wong et al., 2002; Peterson & Flanagan, 2009).

As there are countless ML regression algorithms that allow us to predict the 
value of next period’s transaction prices Ŷ t

t+1
|(Xt+1,Ft) , a preselection of algorithms 

is necessary for practicality. The preselection phase consisted in applying several 
ML algorithms e.g. Lasso (Tibshirani, 1996), Random Forest (Breiman, 2001), 
and k-Nearest Neighbours (Altman, 1992) to the same trial dataset and selecting 
the four with the lowest RMSE. The algorithms which had the best performance 
in the preselection phase were Support Vector Regression (SVR) (Drucker et  al., 
1997), Extreme Gradient Boosting Tree (XGBT) (Chen & Guestrin, 2016), Neural 
Networks Using Model Averaging (avNNet) (Ripley, 1996) and Cubist (Quinlan & 
et al., 1992). These algorithms are among the most popular in the ML domain and 
are applied in a variety of fields.

The linear model estimated by OLS is selected as our benchmark for two reasons. 
First, it is the most popular regression model. Second, it is the norm for chained indi-
ces (Balk et al., 2013). SVR, XGBT, avNNet and Cubist are non-linear ML regres-
sion algorithms. Specifically, SVR is a variation of Support Vector Machine (SVM) 
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for regression, XGBT and avNNet are algorithms that can be used for both regres-
sion and classification, while Cubist is an algorithm used exclusively for regression.

The estimated indices are assessed on two criteria: Regression model accuracy 
and index quality. RMSE and (adjusted) R2 are among the most popular metrics for 
measuring the performance of regression algorithms. According to Steurer et  al. 
(2019), these measures are used by several researchers for evaluating regression 
algorithms in the AVM field. Hence, these are the selected metrics for assessing the 
regression algorithms that form the indices.

For assessing the quality of price indices, Guo et  al. (2014) argue that volatil-
ity and first-order autocorrelation (ACF1) of the index returns are more appropri-
ate measures. Volatility is defined as the standard deviation of the index returns. 
The authors argue that noise (cross-sectional random error) in the index adds to 
volatility, beyond and in addition to the true volatility. Thus, noise generates excess 
or erroneous volatility in the index. This excess volatility reduces the ACF1 to the 
point that a pure noise index would yield an ACF1 of -0.5. Hence, extreme volatility 
and a negative ACF1 are indicative of poor index quality. Finally, the four factors 
established to compare the estimated price indices are: out-of-sample RMSE, R2, 
volatility and the ACF1 of the index returns.

Training and bias‑variance trade‑off

The training of a ML algorithm is marked by the trade-off between bias (central 
tendency) and variance (deviations from the central tendency) of the predicted vari-
able (Geman et  al., 1992; Webb, 2000). The objective is to have the least biased 
model with the highest generalization power. Hyperparameters are settings used to 
control how flexible the resulting model should be when fitting the training data. 
Refinements in ML implementation emphasize stable out-of-sample performance 
to explicitly guard against overfitting (Gu et  al., 2018). Choosing the best set of 
hyperparameters minimizes the occurrence of overfitting and ensures out-of-sample 
generalization.

Cross-Validation (CV) is a sampling technique used during training for hyperpa-
rameter optimization, which results in a nearly unbiased estimator of the generali-
zation error given a finite sample (Scholköpf and Smola, 2002). When employing 
k-fold CV, the lowest bias can be achieved by setting k to n, where n equals the num-
ber of observations in the training data set. This type of CV is also known as Leave 
One Out Cross-Validation (LOOCV), and can be performed at the cost of increasing 
the error variance (Hastie et al., 2009; Smola & Scholköpf, 2004). Conversely, set-
ting k to 10 or 5 yields the best compromise between bias and variance (Breiman & 
Spector, 1992; Kohavi & et al., 1995).

Considering the trade-off between bias and variance, in this paper we opt for 
performing a 5-fold CV with hyperparameter values selected via random search. 
This choice favors the balance between bias and variance. As a result, it cannot be 
asserted that all performed forward predictions are mean unbiased. Note, however, 
that the proposed methodology allows the choice of hyperparameter tuning to war-
rant either less bias or less variance.
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Consider  as a natural distribution with parameters Θ and  as an i.i.d. sam-
ple set drawn from . The learning algorithm  operates as a function that maps the 
data set  to a function f which minimizes some expected loss . Bergstra 
and Bengio (2012) argue that the ultimate goal of a standard learning algorithm  is 
to find the function f. A learning algorithm usually produces f through the optimization 
of a training criterion in connection with the set of parameters Θ, e.g. mean and vari-
ance of . For the present work, the selected training criterion is RMSE.

The learning algorithm has additional features called hyperparameters (λ) which 
control the shape of function f. The actual learning algorithm is the one obtained 
after selecting λ, which can be denoted , where  for training set 
X(train). Identifying the best set of values for the hyperparameters λ is called hyper-
parameter optimization. The objective is to choose λ that minimizes generalization 
error, hence

 Essentially, there are no efficient algorithms to perform the optimization:

Additionally, it is not possible to evaluate the expectation over the unknown natural 
distribution . Hence, cross-validation is employed to estimate the expectation of . 
Cross-validation replaces the expectation with the mean over a validation set
, whose elements are drawn i.i.d .

Equation  6 expresses the hyperparameter optimization problem in terms of a 
hyperparameter response function, Ψ. Hyperparameter optimization is the minimi-
zation of Ψ(λ) over λ ∈Λ. Different data sets, tasks, and learning algorithm families 
yield different sets Λ and functions Ψ. As the information about Ψ and Λ are scarce, 
the current dominant strategy for finding a good λ is to choose some number (S) of 
trial points 

{
�
(1), ..., �(S)

}
 , to evaluate Ψ(λ) for each one, and return the λ(i) that works 

the best as �̂� . This strategy is represented by Eq. 7.
The trial points 

{
�
(1), ..., �(S)

}
 are randomly selected, hence the name random 

search. Bergstra and Bengio (2012) suggest that a random search is better than other 
methods, such as a grid search, because it has a higher chance of finding the global 

(4)
(
Ŷ t
t+1

∣ Xt+1,Ft, �̂�t
)

(5)

(6)

(7)≈ argmin
𝜆∈{𝜆(1)...𝜆(S)}

Ψ(𝜆) ≡ �̂�
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optima. The ML regression algorithms explored in this research have different num-
bers of hyperparameters.

Data

The data used in this study consist of individual commercial real estate transactions 
in New York over the period 2000–2019. It is divided in five regions, four prop-
erty types and four building periods. For each property, the data contain the price in 
USD and the area in squared feet. The data are provided by Real Capital Analytics 
(RCA), a well-established commercial real estate transaction dataset in the United 
States. Founded in 2000, they collect over 90% of all transactions of “investable” 
real estate by now.

Observations in the bottom and top 1% of the distribution log(price)∕ log(area) 
have been removed. The main reason for doing so is that data entry errors and outli-
ers tend to be concentrated at the extremes of the distribution (Steurer et al., 2019). 
After performing the previous step and removing any observation with missing 

Table 1  New York sample 
summary statistics

 Avg. Price = Average Price in US Dollars; SD. Price = Price Stand-
ard Deviation in US Dollars; Avg. Area = Average Area in Square 
Feet; SD. Area = Area Standard Deviation in Square Feet; Obs. = 
Number of Observations

Year Avg. Price SD. Price Avg. Area SD. Area Obs.

2000 37,478,974 96,366,158 178,061 323,727 313
2001 27,056,215 81,077,075 132,114 236,834 387
2002 30,258,411 83,920,959 141,908 258,308 450
2003 27,545,576 102,639,934 130,694 260,487 640
2004 23,705,006 60,436,108 113,049 211,754 1,077
2005 21,373,296 74,473,445 84,128 184,572 1,895
2006 26,404,120 159,581,210 79,109 274,189 2,164
2007 26,954,778 109,581,309 72,508 161,258 2,227
2008 22,357,677 112,259,746 63,023 134,594 1,354
2009 11,472,711 42,536,163 57,141 135,668 719
2010 25,275,415 99,605,492 87,926 200,933 892
2011 37,932,610 140,323,829 96,011 239,206 1,149
2012 23,290,705 81,586,946 62,811 140,172 1,907
2013 25,782,133 126,978,651 66,192 157,284 2,311
2014 29,147,148 127,380,169 68,031 166,633 2,429
2015 33,435,428 173,464,626 68,909 254,577 2,681
2016 35,058,311 158,851,647 74,161 200,809 2,205
2017 26,996,847 121,011,114 72,363 175,786 1,927
2018 29,107,151 130,042,150 63,662 144,370 2,082
2019 27,169,438 99,302,021 66,360 131,411 1,189
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values from the original 31,727 observations, the resulting data set is composed of 
29,998 observations.

The yearly summary by transaction date is available in Table 1. A few obser-
vations can be made from this table. First of all, the average square footage of 
properties sold decreased substantially in the first four years. This is mostly 
explained by the fact that the data collecting process improved in that period.4 
This is also reflected in the relatively low number of observations in the same 
period. Secondly, note that the Great Financial Crisis (GFC, 2007 – 2009) is 
clearly visible as well. The average transaction price was $11M during the 
trough of the GFC, considerably lower compared to the $27M long run average. 
The number of observations also fell almost by half between 2008 and 2009, 
falling from 1,354 to 719.

A categorical variable for building period has been created by splitting the data 
into quartiles of the building date. Information about the categorical variables is 
available in Table 2. Note that over 70% of the transactions happen in just Manhat-
tan and the NYC Boroughs (Brooklyn, Queens, Bronx and Staten Island). Likewise, 
over 40% of the transactions are income producing apartment complexes.

Results

This section first presents chained index estimates, followed by stress tests that 
analyze the sensitivity of the results to the sample size. The Section labeled 
“Optimal Window Size” contrasts estimation results using rolling and expand-
ing windows. Finally, the bias-variance trade-off confirms that double imputa-
tion is better for regression algorithms that suffer from estimation biases.

Table 2  Categorical variables summary

 Obs. = Number of Observations

Regions Obs. Property Type Obs. Building Period Obs.

Long Island 2,014 Apartment 12,265 1 - 1732 to 1920 9,313
Manhattan 10,465 Industrial 4,848 2 - 1921 to 1931 7,057
New Jersey 4,418 Office 6,196 3 - 1932 to 1970 6,174
NYC Boroughs 11,035 Retail 6,689 4 - 1971 to 2019 7,454
Stamford 969
Westchester 1,097
Total 29,998

4 Before 2005, RCA used a $5M lower boundary threshold for collecting data. They lowered this num-
ber to $2.5M in 2005. Even though they then retroactively collected transactions of properties sold for 
less than $5M for the period 2000–2004, it is probably still incomplete.
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Chained index results

Figure  1 shows the yearly CP indices. It shows that SVR (Fig.  1a) and Cubist 
(Fig.  1d) indices have higher cumulative price changes compared to OLS. Also, 
XGBT (Fig. 1b) and avNNet (Fig. 1c) have almost identical results as OLS for most 
of the time, but are slightly lower in the last five years.

Figure 2 shows the yearly CP index returns. Despite the fact that the indices are 
different in levels (see Fig.  1), these differences is not that evident when looking 
at the index returns (first differences). Among all the regression algorithms, the 
most notable differences in the returns are displayed by SVR (Fig. 2a) and Cubist 
(Fig. 2d), both of which yield overall higher returns than OLS.

Figure 3 and Table 3 show that overall, the non-linear models have a lower RMSE 
and a higher R2 when compared to OLS. This is expected, as non-linear models 
are more flexible and usually yield a better fit to the data, especially when the data 
is complex and sparse as is the case for real estate. Table 3 shows that for all the 

Fig. 1  New York Chained Paasche Price Indices. OLS = Ordinary Least Squares; XGBT = Extreme Gra-
dient Boosting Tree; SVR = Support Vector Regression; avNNet = Neural Networks Using Model Aver-
aging
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regression algorithms, the index returns have a non-negative first-order autocorrela-
tion and do not exhibit extreme volatility.

Since the commercial real estate market in New York is distinct for each prop-
erty type, an index per property type has been calculated. Figure  9a exhibits the 
index for apartments, Fig.  9b for retail, Fig.  9c for offices and Fig.  9d for indus-
trial. Figure 10a, b, c and d present the respective RMSE values for the underlying 
algorithms.

As the regression algorithms used to estimate the property type indices were 
trained on a restricted data set, the RMSE for the ML algorithms are higher 
when compared to the indices with the full sample. Apartment is the most prev-
alent property type. Therefore, the ML algorithms show a lower RMSE than the 
benchmark, with the only exception being SVR. XGBT and avNNet produce an 
index almost identical to the one generated by the benchmark, while SVR and 
Cubist have much higher values.

Industrial properties are the type with the fewest transactions. The RMSE for this 
category is around the same level for all the algorithms used, with ML being below 

Fig. 2  New York Chained Paasche Price Returns. OLS = Ordinary Least Squares; XGBT = Extreme Gra-
dient Boosting Tree; SVR = Support Vector Regression; avNNet = Neural Networks Using Model Aver-
aging
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the benchmark in some years and above in others. The variation of the RMSE values 
is higher for the ML algorithms when compared to the benchmark. For this property 
type, XGBT has a very similar index to the benchmark, whereas SVR and Cubist 

Fig. 3  New York Chained Paasche Indices RMSEs. OLS = Ordinary Least Squares; XGBT = Extreme 
Gradient Boosting Tree; SVR = Support Vector Regression; avNNet = Neural Networks Using Model 
Averaging; RMSE = Root Mean Squared Error

Table 3  Chained Paasche 
performance summary

 OLS = Ordinary Least Squares; XGBT = Extreme Gradient Boost-
ing Tree; SVR = Support Vector Regression; avNNet = Neural Net-
works Using Model Averaging; RMSE = Root Mean Squared Error; 
Volatility = Index Return Standard Deviation; ACF(1) = Index 
Return First-Order Autocorrelation

RMSE Residual Mean Rsquared Volatility ACF(1)

OLS 0.6081 0.0749 0.7473 0.0991 0.1360
XGBT 0.5964 0.0694 0.7588 0.0992 0.1693
SVR 0.5922 0.0873 0.7610 0.1020 0.1169
avNNet 0.5803 0.0707 0.7709 0.1012 0.1719
Cubist 0.5864 0.0853 0.7657 0.0968 0.1317
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have much higher index values. avNNet is the only regression algorithm that exhib-
its an index with a lower value than the benchmark.

Office and Retail have similar numbers of transactions and the RMSE of the ML 
algorithms is usually higher than the benchmark. SVR, XGBT and avNNet gener-
ated indices with values lower than the benchmark. Cubist produces an index that 
has lower values than the benchmark up until 2015, but after that the index values 
are higher.

The restriction per property type imposed in the training sample limits the perfor-
mance of the ML algorithms. This is more evident after examining the RMSE plots, 
which show no conclusive improvement when compared to the benchmark.

Stress Test

In order to check model and index stability, a stress test has been performed by sam-
pling 50%, 25%, 10% and 5% of the available data, 30 times for each percentage 
level, so in total 120 samples. An index has been generated for each sample.

Figure 4 shows the average index return for each percentage level. Inter-
estingly, all indices exhibit a higher volatility at the 5% level, detaching 
from the other percentage levels in years 2001, 2004 and 2011. Table  4 
presents summary statistics of the volatility (standard deviation of the 
index returns) per percentage level. All ML algorithms have a similar 
behaviour, displaying almost no noticeable change in the index until the 5% 
mark. Only at the 5% level is there a significant index return change, with 
the index return exhibiting a higher volatility when compared to the full 
sample. It is possible to corroborate the results in Fig. 4 by examining the 
mean volatility of the 30 samples in Table 4, where, only at the 5% level, a 
significant increase in volatility of the returns is noticeable for all regres-
sion algorithms.

Figure  5 presents the average RMSE over all stress tests performed. The 
RMSE for the ML algorithms is noticeably more sensitive to data availability. 
Nevertheless, for several percentage levels, the RMSE for the ML algorithms is 
lower than the OLS benchmark. Starting from the 10% level, the RMSE of the 
ML algorithms increases, decoupling from the previous levels. At the 5% level 
all ML algorithms display a higher RMSE than the OLS benchmark.

Table 4 provides insight in how “stable” the index returns remain when 
using less observations (see Francke and Van de Minne (2017), who employ 
a similar stress test). On average, the mean of the volatility of the returns 
for OLS is lower than the ML algorithms for all suppressed percentage lev-
els, except for the 5% level where XGBT and Cubist have a lower aver-
age return volatility. A common trend among all regression algorithms is 
that the volatility of the returns increases as more data are suppressed. The 
standard deviation of the return volatility also increases when more data 
are removed. Only at the 50% and 10% levels is the standard deviation of 
the return volatility from the benchmark lower than the ML algorithms.
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Table 4  Summary statistics 
of the volatility from the 
30 samples with 50%, 25%, 
10% and 5% of the available 
observations

 Index return volatility is, on average, lower for OLS when compared 
to ML algorithms. Also, only at the 5% level a significant increase 
in index return volatility is noticeable for all regression algorithms; 
Min. = Minimum volatility; 1st Qu. = First Quartile volatility; 3rd 
Qu. = Third Quartile volatility; Max. = Maximum volatility; SD. = 
Standard Deviation of index volatility

50% 25% 10% 5%

OLS Min. 0.0885 0.0915 0.0970 0.1422
1st Qu. 0.1009 0.1025 0.1312 0.1947
Median 0.1054 0.1106 0.1495 0.2251
Mean 0.1046 0.1138 0.1466 0.2471
3rd Qu. 0.1079 0.1179 0.1536 0.2623
Max. 0.1239 0.1679 0.1836 0.5313
SD. 0.0071 0.0171 0.0220 0.0975

XGBT Min. 0.0900 0.0887 0.1171 0.1403
1st Qu. 0.0975 0.1060 0.1387 0.1871
Median 0.1066 0.1120 0.1486 0.2187
Mean 0.1053 0.1144 0.1581 0.2258
3rd Qu. 0.1102 0.1190 0.1696 0.2417
Max. 0.1224 0.1574 0.2369 0.4328
SD. 0.0089 0.0139 0.0316 0.0629

SVR Min. 0.0925 0.0930 0.0973 0.1324
1st Qu. 0.1023 0.1079 0.1396 0.2038
Median 0.1077 0.1198 0.1610 0.2211
Mean 0.1081 0.1194 0.1583 0.2621
3rd Qu. 0.1128 0.1287 0.1729 0.2681
Max. 0.127 0.1610 0.2112 1.0164
SD. 0.0082 0.0147 0.0275 0.1546

avNNet Min. 0.0856 0.0898 0.1010 0.1466
1st Qu. 0.1015 0.1114 0.1331 0.2086
Median 0.1064 0.1179 0.1539 0.2468
Mean 0.1079 0.1218 0.1544 0.253
3rd Qu. 0.1109 0.1295 0.1672 0.2896
Max. 0.1283 0.1894 0.2401 0.3852
SD. 0.0103 0.0198 0.0308 0.0573

Cubist Min. 0.0846 0.0903 0.1180 0.1430
1st Qu. 0.1014 0.1080 0.1342 0.1819
Median 0.1057 0.1167 0.1534 0.2261
Mean 0.1055 0.1174 0.1573 0.2281
3rd Qu. 0.1120 0.1255 0.1846 0.2642
Max. 0.1206 0.1445 0.2024 0.3789
SD. 0.0089 0.0132 0.0259 0.0576
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Optimal Window Size

This subsection presents model results from both rolling (RW) and expanding win-
dows (EW) samples. The main motivation for investigating alternative samples is 
to account for the trade-off between model complexity and out-of-sample accuracy.

Fig. 4  Returns for Stress Tests. All the indices returns are similar until the 10% level. At the 5% level, 
indices returns exhibit a higher volatility, detaching from the other percentage levels in years 2001, 2004 
and 2011. Numbers refer to the percentage of the sample size being used: 50, 25, 10 and 5 percent. When 
omitted the full sample has been used
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Fig. 5  RMSEs for Stress Tests. The RMSE for the ML algorithms is noticeably more sensitive to data 
availability as it is higher then OLS. Starting from the 10% level, the RMSE of the ML algorithms 
increases, decoupling from the previous levels. At the 5% level all ML algorithms display a higher 
RMSE than the OLS benchmark. Numbers refer to the percentage of the sample size being used: 50, 25, 
10 and 5 percent. When omitted the full sample has been used
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A larger time window size is associated with more observations and more 
year control variables, thus adding more dimensions and complexity to the 
models. Up to an Optimal Window Size (OWS), the addition of an extra year 
is expected to have an overall benefit of increasing the out-of-sample accuracy, 
as the model fits the data better and becomes more generalizable. The balance 
between model complexity and out-of-sample accuracy can be explored by test-
ing different window sizes and measuring the impact in terms of out-of-sample 
RMSE.

In our search for the optimal window size, we test windows of 2 to 8 years. 
. Window sizes larger than 8 years would hamper this exercise by being too 
limiting on the data availability for training. The test data used for the differ-
ent window sizes must be identical to allow for a fair comparison of results. 
Therefore, for each window size m, the regression algorithms have been trained 
on data in the years t − m + 1 to t and predicted for year t + 1, where t + 1 = 
2008,…,2019.

Fig. 6  RMSEs per Window 
Size. Each regression algorithm 
behaves differently, depending 
on the training window size. 
The best performing algorithms 
are avNNet with a window size 
of 2 years and XGBT with a 
window size of 7 years; RMSE 
= Root Mean Squared Error

Table 5  Optimal window performance summary

 ML algorithms display a lower RMSE then the OLS benchmark. The lowest RMSE pertains to avNNet 
with a window size of 2 years; RMSE = Root Mean Squared Error; ACF(1) = Index Return First-Order 
Autocorrelation; Volatility = Index Return Standard Deviation; OWS = Optimal Window Size in Years

RMSE Residual Mean R2 Volatility ACF(1) OWS

OLS 0.6120 0.0432 0.7283 0.0913 0.2203 3
XGBT 0.5751 0.0454 0.7600 0.0901 0.1678 7
SVR 0.5837 0.0567 0.7526 0.1024 0.2062 7
avNNet 0.5744 0.0413 0.7605 0.0892 0.1584 2
Cubist 0.5763 0.0651 0.7590 0.0951 0.3031 4
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Figure 6 presents out-of-sample RMSEs for the different algorithms and window 
sizes. The figure shows that each regression algorithm behaves differently, depend-
ing on the training window size. This shows that the out-of-sample model perfor-
mance and corresponding indices are quite sensitive to the window length. Table 5 
provides model and index performance statistics for the optimal window size for 
each algorithm. Table 6 presents the results for the EW approach, which has a lower 
performance when compared to RW. The results for RW and EW suggest that the 
optimal window size is bigger than two years and smaller than using all years as in 
EW. The best performing algorithms are avNNet with a window size of 2 years and 
XGBT with a window size of 7 years.

Table 6  Expanding window 
performance summary

 Expanding window performed worst than the optimal rolling 
window or using only one year as in the chained index methodol-
ogy. XGBT regression algorithm has the best performance for the 
expanding window methodology; RMSE = Root Mean Squared 
Error; ACF(1) = Index Return First-Order Autocorrelation; Volatility 
= Index Return Standard Deviation

RMSE Residual Mean R2 Volatility ACF(1)

OLS 0.6186 0.0414 0.7226 0.0914 0.2092
XGBT 0.5761 0.0376 0.7588 0.0898 0.2405
SVR 0.5852 0.0593 0.7513 0.1010 0.2110
avNNet 0.5791 0.0416 0.7560 0.0914 0.1633
Cubist 0.5773 0.0594 0.7584 0.0926 0.3182

Fig. 7  Cumulative difference 
between single and double 
imputation. All ML algorithms 
exhibit a difference between sin-
gle and double imputation, SVR 
and Cubist have the highest 
cumulative difference; Index dif-
ference = Single minus double 
imputation difference
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Fig. 8  New York Chained 
Paasche Price Indices with 
Double Imputation. Starting 
from year 2013 all the indices 
built using the ML regression 
algorithms are below the bench-
mark, different from the single 
imputation approach, where 
SVR and Cubist had all their 
values above the benchmark

Table 7  Difference between true 
and fitted log price means

 The increase in variance of the fitted values for the ML regression 
algorithms comes at the cost of having some estimation bias. The 
OLS benchmark has no estimation bias

Year OLS XGBT SVR avNNet Cubist

2001 0.0000 − 0.0056 0.0014 0.0134 0.0081
2002 0.0000 − 0.0410 − 0.0032 − 0.0029 0.0165
2003 0.0000 0.0017 − 0.0123 0.0013 0.0254
2004 0.0000 0.0026 0.0078 0.0276 0.0141
2005 0.0000 0.0023 0.0178 0.0007 0.0217
2006 0.0000 − 0.0013 0.0083 0.0017 0.0095
2007 0.0000 − 0.0011 0.0155 − 0.0033 0.0127
2008 0.0000 − 0.0017 0.0136 0.0007 0.0082
2009 0.0000 − 0.0006 0.0117 − 0.0026 0.0211
2010 0.0000 0.0037 0.0257 0.0032 0.0094
2011 0.0000 − 0.0021 0.0055 0.0087 0.0077
2012 0.0000 − 0.0002 0.0393 − 0.0003 0.0042
2013 0.0000 0.0006 0.0376 − 0.0001 0.0058
2014 0.0000 − 0.0001 0.0405 0.0030 0.0037
2015 0.0000 0.0000 0.0232 0.0020 0.0021
2016 0.0000 0.0006 0.0300 0.0041 0.0095
2017 0.0000 − 0.0015 0.0350 0.0017 0.0047
2018 0.0000 0.0002 0.0198 0.0036 0.0253
2019 0.0000 − 0.0054 0.0246 0.0040 0.0062
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Double and single imputation

When comparing the results obtained using single and double imputation 
(Fig.  7) one can notice a significant cumulative difference of single minus 
double imputation for the ML algorithms. SVR and Cubist have the highest 
cumulative difference. Conversely, avNNet shows a moderate cumulative dif-
ference, while XGBT is the only ML algorithm that exhibits a negative differ-
ence between indices using the true or fitted values. OLS shows no cumulative 
difference because the fitted mean is equal to the true mean by definition (when 
a constant is included).

As presented in the Section labeled “Training and bias-variance trade-off”, there 
is a trade-off between bias and variance that should be taken into consideration 
when selecting and evaluating ML algorithms. Algorithms with higher fitted vari-
ance have a tendency to overfit, which implies that the mean of the fitted values will 
be equal or virtually equal to the mean of the true (observed) values as the bias is 
close to zero.

Table  7 shows the difference between true mean log price and fitted mean log 
price. All ML algorithms display values different from zero, which indicates bias. 

Table 8  Difference between true 
and fitted log price variance

 All the ML regression algorithms present a fitted variance closer to 
the true variance when compared to the OLS benchmark

Year OLS XGBT SVR avNNet Cubist

2001 0.3302 0.3768 0.2315 0.3271 0.3162
2002 0.3127 0.2053 0.3234 0.2919 0.2467
2003 0.2954 0.3239 0.2296 0.2711 0.2838
2004 0.3136 0.2865 0.2683 0.5195 0.2838
2005 0.3242 0.2838 0.2382 0.2833 0.2740
2006 0.3206 0.2801 0.1976 0.2747 0.2151
2007 0.3333 0.2633 0.2489 0.2936 0.2638
2008 0.3252 0.2648 0.2773 0.6765 0.2581
2009 0.3323 0.3042 0.3230 0.2880 0.3039
2010 0.3566 0.3263 0.3533 0.3736 0.2768
2011 0.3885 0.3550 0.3367 0.3377 0.3387
2012 0.3922 0.4243 0.3393 0.3630 0.3120
2013 0.3903 0.3517 0.3345 0.3558 0.3095
2014 0.3812 0.3640 0.3025 0.3151 0.2741
2015 0.3466 0.3034 0.2993 0.3414 0.2864
2016 0.3349 0.3574 0.2761 0.3023 0.2441
2017 0.2988 0.3472 0.2528 0.2737 0.2147
2018 0.3218 0.3190 0.2458 0.2693 0.2740
2019 0.3570 0.2638 0.2645 0.3040 0.2175
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On the other hand, Table 8 shows that all ML algorithms have a lower difference 
between true and fitted variance. All ML algorithms have a higher fitted variance 
when compared to the benchmark. Hence, Tables 7 and 8 display and quantify the 
bias-variance trade-off for this application.

The double imputation approach is preferred for the ML algorithms as the 
bias in the fitted value 

(
Ŷ t+1
t+1

|Ft+1

)
 and the Out-of-Time prediction 

(
Ŷ t|(Xt+1,Ft)

)
 

will partially offset each other. Hill and Melser (2008) also suggest double 
imputation for similar reasons. For the purpose of price index construction, it 
is necessary to be aware of the estimation bias, as this can be transferred into 
the index. A biased model can potentially produce an index that over or under 
estimates long-term price trends, especially over long time periods, as the index 
is built using prior index values and the bias will accumulate.

Figure 8 shows the price indices for the New York commercial real estate mar-
ket using double imputation. Notice that after the year 2013 all the indices built 
using the ML regression algorithms are below the benchmark, different from the 
single imputation approach, where SVR and Cubist had all their values above the 
benchmark.

Additionally, one of the central assumptions of this paper is that the differ-
ence of the means is the periodic price change. With a biased estimator this dif-
ference will be composed of the periodic price change plus bias. Hence, when 
using the proposed methodology, the bias-variance trade-off should be taken 
into consideration as well as the measures to attenuate or eliminate the esti-
mation bias. As mentioned in the Section labeled “Training and bias-variance 
trade-off”, in the context of this paper, increasing the number of folds during 
training might be a solution to mitigate estimation bias during training.

As a further check, Welch’s t-tests were performed in all actual/fitted price pairs 
to test the hypothesis that the two populations have equal mean. The test results, such 
as t-values, p-values and confidence intervals can be seen in the Appendix labeled 
“Welch’s t-Test Results”. Note that the algorithms which exhibit a higher difference 
between single and double imputation indices are the ones with lower p-values on 
average. However, with a 95% confidence interval, none of the tests rejected the null 
hypothesis. This result indicates the likelihood that the two populations have equal 
means (Tables 9, 10, 11, 12 and 13).

Conclusion

This paper presents a model-agnostic approach based on Out-of-Time individual 
transaction predictions to build price indices for commercial real estate using a vari-
ety of non-linear machine learning (ML) algorithms. The key innovation is the use 
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of prediction error to measure time trends. The results obtained support the viability 
of using ML for constructing price indices. Overall, the non-linear ML algorithms 
yielded higher accuracy and lower volatility with non-negative first-order autocor-
relation of index returns.

The comparison between single and double imputation shows that some of 
the ml algorithms have display estimation bias. Using the proposed methodol-
ogy for index construction requires attention to the bias and variance trade-
off. The findings also highlight the importance of the hyperparameter selection 
phase in minimizing the introduction of bias while keeping the out-of-sample 
generalization power. Regression algorithms that exhibit estimation bias could 
use the double imputation method as a straightforward way to reduce the bias 
problem.

The stress tests show that linear models (OLS) generate overall more stable 
indices when few training data are available than the non-linear ML regression 
algorithms used in this paper, as linear models are less dependent on the num-
ber of observations. Also, looking at the index volatility in the stress test, OLS 
has lower values, on average, than the ML algorithms. Additionally, the vari-
ations of the loss function across the tests with 50, 25, 10 an 5 percent of the 
data are higher for the ML algorithms, especially at the 5% level. The RMSE 
from the property type indices corroborate the idea that ML regression algo-
rithms are more dependent on sample size. These indices were generated using 
regression algorithms estimated using only the property type sample. Data sets 
composed of property types like apartment that contain more observations pro-
duce lower RMSE when compared to the other types with fewer observations, 
such as industrial real estate.

The analysis of the optimal window size for the Rolling Window (RW) 
approach demonstrates that the magnitude of the optimal window varies greatly 
across the different algorithms; the window sizes range from 2 to 8 years. The 
single year window corresponds to the Chained Paasche index (CP) and is ruled 
out, as the RMSE is higher than both the RW and the Expanding Window (EW).

Considering all the tests performed in this study, it is possible to conclude 
that in cases where more observations are available, even at the cost of adding 
more dimensions (controls or features), ML algorithms tend to produce better 
results than OLS. Cases where few observations or characteristics are acces-
sible favor OLS, as it performs better in restricted data sets when compared to 
ML.
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Appendix A: New York Indices and Errors per Property Type

Fig. 9  New York Chained Paasche Price Indices per Property Type. OLS = Ordinary Least Squares; 
XGBT = Extreme Gradient Boosting Tree; SVR = Support Vector Regression; avNNet = Neural Net-
works Using Model Averaging
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Fig. 10  New York Apartment Chained Paasche Indices per Property Type RMSEs. OLS = Ordinary 
Least Squares; XGBT = Extreme Gradient Boosting Tree; SVR = Support Vector Regression; avNNet = 
Neural Networks Using Model Averaging; RMSE = Root Mean Squared Error
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Appendix B: Welch’s t‑Test Results

Table 9  OLS t-test Results

 LBCI = Lower Bound of the Confidence Interval; UBCI = Upper 
Bound of the Confidence Interval

Sample Year t-value p-value LBCI UBCI

2000 − 0.0358 0.9715 − 0.2644 0.2549

2001 0.0149 0.9881 − 0.1908 0.1937

2002 0.0156 0.9876 − 0.1839 0.1868

2003 0.0168 0.9866 − 0.1454 0.1480

2004 − 0.0148 0.9882 − 0.1059 0.1043

2005 − 0.0177 0.9859 − 0.0708 0.0695

2006 0.0002 0.9999 − 0.0650 0.0650

2007 0.0070 0.9944 − 0.0660 0.0665

2008 − 0.0245 0.9805 − 0.0851 0.0830

2009 0.0072 0.9943 − 0.0918 0.0924

2010 − 0.0088 0.9930 − 0.1054 0.1045

2011 0.0023 0.9982 − 0.1067 0.1070

2012 0.0115 0.9908 − 0.0698 0.0706

2013 0.0072 0.9943 − 0.0630 0.0634

2014 − 0.0176 0.9859 − 0.0614 0.0603

2015 − 0.0122 0.9902 − 0.0610 0.0602

2016 − 0.0233 0.9814 − 0.0676 0.0660

2017 − 0.0080 0.9936 − 0.0690 0.0685

2018 − 0.0100 0.9920 − 0.0678 0.0671

Table 10  XGBT t-test Results

 LBCI = Lower Bound of the Confidence Interval; UBCI = Upper 
Bound of the Confidence Interval

Sample Year t-value p-value LBCI UBCI

2000 − 0.0245 0.9804 − 0.2626 0.2561
2001 0.0393 0.9687 − 0.1852 0.1928
2002 0.0635 0.9494 − 0.1801 0.1921
2003 − 0.0741 0.9409 − 0.1501 0.1392
2004 0.0197 0.9843 − 0.1044 0.1065
2005 − 0.1352 0.8925 − 0.0754 0.0656
2006 − 0.0252 0.9799 − 0.0664 0.0647
2007 0.0414 0.9670 − 0.0654 0.0682
2008 − 0.0408 0.9675 − 0.0843 0.0809
2009 − 0.0691 0.9449 − 0.0948 0.0884
2010 − 0.0137 0.9891 − 0.1062 0.1047
2011 0.0460 0.9633 − 0.1045 0.1095
2012 0.0875 0.9303 − 0.0664 0.0726
2013 0.1258 0.8999 − 0.0594 0.0675
2014 0.0106 0.9916 − 0.0601 0.0607
2015 − 0.0582 0.9536 − 0.0616 0.0580
2016 − 0.0702 0.9440 − 0.0687 0.0640
2017 0.0184 0.9853 − 0.0681 0.0694
2018 − 0.0635 0.9494 − 0.0699 0.0655
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Table 11  SVR t-test Results

 LBCI = Lower Bound of the Confidence Interval; UBCI = Upper 
Bound of the Confidence Interval

Sample Year t-value p-value LBCI UBCI

2000 − 0.1645 0.8694 − 0.2836 0.2397
2001 − 0.1158 0.9078 − 0.2037 0.1810
2002 0.1279 0.8982 − 0.1724 0.1964
2003 0.0403 0.9679 − 0.1430 0.1490
2004 − 0.2014 0.8404 − 0.1141 0.0928
2005 − 0.6683 0.5040 − 0.0951 0.0468
2006 − 0.2633 0.7924 − 0.0754 0.0575
2007 − 0.4853 0.6275 − 0.0840 0.0507
2008 − 0.1754 0.8608 − 0.0924 0.0772
2009 − 0.2705 0.7868 − 0.1045 0.0791
2010 − 0.6156 0.5382 − 0.1386 0.0724
2011 0.1647 0.8692 − 0.0995 0.1177
2012 − 0.8191 0.4128 − 0.1010 0.0415
2013 − 0.9747 0.3297 − 0.0957 0.0321
2014 − 1.2794 0.2008 − 0.1019 0.0214
2015 − 0.6992 0.4845 − 0.0832 0.0394
2016 − 0.9726 0.3308 − 0.1009 0.0340
2017 − 0.8629 0.3882 − 0.0999 0.0388
2018 − 0.6286 0.5296 − 0.0903 0.0465

Table 12  avNNet t-test Results

 LBCI = Lower Bound of the Confidence Interval; UBCI = Upper 
Bound of the Confidence Interval

Sample Year t-value p-value LBCI UBCI

2000 − 0.0792 0.9369 − 0.2716 0.2505

2001 0.0012 0.9990 − 0.1925 0.1928

2002 0.0436 0.9652 − 0.1817 0.1900

2003 − 0.0210 0.9832 − 0.1483 0.1452

2004 − 0.0475 0.9621 − 0.1079 0.1028

2005 − 0.0156 0.9876 − 0.0712 0.0701

2006 − 0.1705 0.8646 − 0.0714 0.0600

2007 − 0.0448 0.9643 − 0.0682 0.0652

2008 − 0.1927 0.8472 − 0.0930 0.0764

2009 − 0.2213 0.8249 − 0.1040 0.0829

2010 − 0.0046 0.9963 − 0.1054 0.1049

2011 − 0.0099 0.9921 − 0.1081 0.1070

2012 − 0.0583 0.9535 − 0.0729 0.0687

2013 0.0572 0.9544 − 0.0619 0.0657

2014 0.0511 0.9592 − 0.0598 0.0630

2015 0.1346 0.8929 − 0.0569 0.0652

2016 − 0.1186 0.9056 − 0.0715 0.0633

2017 0.0599 0.9522 − 0.0670 0.0712

2018 − 0.1053 0.9162 − 0.0716 0.0643
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