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Abstract
In this paper, we consider the dynamic features of house price in metropolises that
are characterised by a high degree of internationalisation. Using a generalised smooth
transition (GSTAR) model we show that the dynamic symmetry in house price cycles
is strongly rejected for the housing markets considered in this paper. Further, we
conduct an out-of-sample forecast comparison of the GSTAR with a linear AR model
for the metropolises under consideration. We find that the use of nonlinear models to
forecast house prices, in most cases, generate improvements in forecast performance.
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Introduction

During the last decade, housing markets have been characterised by a high degree of
instability. This has particularly been the case in large metropolitan areas where real
estate markets have experienced dramatic swings which resulted in one of the deepest
recessions the world has experienced since the great depression in the 1930s. Partially
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motivated by these events, several authors have investigated the cyclical behaviour of
real estate prices. Housing markets are known to be prone to boom and bust episodes.
In a typical expansion phase, transaction volumes are high, average selling times are
short, and prices tend to rise rapidly. In a bust period, transaction volumes are low,
average selling times are long, and price growth is moderate or negative.

The empirical literature on housing markets recognises that the real economy is
vulnerable to house price swings, but it is less assertive about the features of cycli-
cal patterns. For example, Muellbauer and Murphy (1997) explore the behaviour of
house prices in the UK. The authors suggest that transaction costs associated with
the housing market cause important nonlinearity in house price dynamics. Further,
Seslen (2004) argues that households exhibit rational responses to returns on the
upside of the market, but do not respond symmetrically to downturns. On an upswing
of the housing cycle, households exhibit forward-looking behaviour and are more
likely to trade up, with equity constraint playing a minor role. On the other hand,
households are less likely to trade when prices are on the decline causing stickiness
on the downside of the housing market cycle.

While economic theory suggests that asymmetry may be a characteristic feature
of real estate cycles, there have not been many attempts at modelling this phe-
nomenon in an explicit fashion. Traditionally, in empirical literature house price
dynamics have been analysed using error correction mechanisms to investigate short-
run deviations from the fundamental value of housing. For example, Abrahm and
Hendershott (1993) estimate a cointegrated model which includes lagged house price
changes among other explanatory variables. They found evidence of slow adjust-
ment toward the equilibrium which implies a cyclical adjustment path. Abelson et al.
(2005) estimate an asymmetric threshold cointegrated model to investigate nonlinear-
ity in house prices in Australia. Malpezzi (1999) analyses the impact of supply and
demand factors on the path of house price adjustments. However, modelling asym-
metry would require nonlinear time series models. Econometric models that work
under the assumption of symmetry and linearity, in the presence of asymmetry would
clearly be mis-specified and may lead to spurious inference (see for example Blatt
1980).

In this paper, we investigate the characteristics of housing market cycles in global
cities. A global city (or world city) is defined as a city that is of primary importance
for the global economic system (Sassen 2003). The term ‘global city’ has its origins
from urban studies and relates to the idea that world globalization is facilitated by
strategic cities which are instrumental in supporting the operation of the global sys-
tem of finance and trade. According to Sassen (2003), the process of globalization
gave rise to new geography in which global cities function as places that provide
specific knowledge for multinational enterprises to manage the process of globaliza-
tion. A characteristic feature of world cities is that their housing market dynamics is
driven by local and global investment demand, rather than local household earnings.
Given the peculiarity of world cities, it is most likely that housing markets in these
metropolises have different dynamics than smaller urban settlements.

In this paper, we are interested in addressing three questions. First, what are the
characteristics of house price cycles in global cities? Are housing market cycles
asymmetric? Also, global cities are interconnected and have shared the experience of
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globalization. An obvious question is, therefore: Do world cities have similar housing
market cycles? According to economic theory, housing markets in large metropoli-
tan areas display significant momentum (Case and Shiller 1989), are mean reverting
(Cutler et al. 1991), and experience high volatility with respect to the fundamentals
(Glaeser and Nathanson 2015). While house prices dynamics at national and regional
levels have been widely investigated, research at a more disaggregated level is rare. In
this respect, notable exceptions are the work by Cook and Watson (2017) and Alqar-
alleh and Canepa (2019) who employed disaggregated data for world cities areas
to investigate the dynamics of housing markets. Other related studies that investi-
gate the turning points, such as by Cook (2006), Holly and Jones (1997) and Cook
and Holly (2000), consider asymmetry in house prices aggregated at the regional or
country level. However, to the best of our knowledge, a comprehensive investigation
into the asymmetric adjustment at a disaggregated level is still missing in the liter-
ature. Simply assuming that the properties of the housing market at the national or
regional level would also describe the features of the real estate markets in world
cities is counterfactual. Strong demand pressure and inelastic supply leave these
metropolises more exposed to bubbles in the housing market than the rest of the coun-
try. In this respect, a few recent studies support this conjecture. For example, Glaeser
et al. (2008) show that during boom phases house prices in the US grow much more
strongly in metro areas with inelastic supply. Saiz (2010) demonstrates that geograph-
ical restrictions constrain the elasticity of supply. The author shows that in cities that
lack construction land, the process of urbanisation leads to price increases.

Frequent booms and busts in the housing market of world cities open the question
of how the series of house prices should be modelled. Accordingly, the second issue
we address in this paper is the following: How do we model asymmetric cycles of
real estate prices in global cities? As Sichel (1993) points out, an asymmetric cycle
is one in which a phase of the cycle is different from the mirror image of the opposite
phase. A natural question is, therefore: What kind of econometric model would best
be able to capture asymmetric adjustments in house prices? Once an econometric
model has been specified, one may want to use it to make a forecast. The fact that we
use a nonlinear model to handle asymmetry in the housing market has some practical
implications. When real estate prices are being forecast using nonlinear models, the
estimated forecast densities are asymmetric. On the other side in linear models, the
forecast density is symmetric around each point forecast. Therefore, the third issue
we tackle in this paper is: How does the out-of-sample performance of the adopted
nonlinear model compare to a simple linear specification counterpart?

In order to answer the above questions, a three-step investigation has been con-
ducted. In the first step, we focus on testing for potential asymmetric behaviour in
the house price cycle. In particular, the non-parametric Triples test of Randles et al.
(1980) is used to test for asymmetries in housing market cycles. The advantage with
respect to available alternative inference procedures (see for example Sichel 1993) is
that the test statistic has good finite sample properties and is robust to outliers (see
Eubank et al. 1992). The application of the Triples test reveals evidence of asymmet-
ric adjustment in all metropolises under consideration. In particular, the nature of the
asymmetry observed indicates prolonged expansions phases in the market along with
steeper contractionary periods.
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The empirical results from the first step of our investigation can be a useful guide
for the specification of the nonlinear model that would best be able to capture the
observed features of housing market cycles. Accordingly, in the second step of our
investigation, the generalised smooth transition model (GSTAR) suggested in Canepa
and Zanetti Chini (2016) is used to estimate house price dynamics for the sample
under consideration. The authors propose a STAR-type model where the logistic
smooth transition function has two parameters governing the two tails of the sigmoid
function in the nonlinear component of the model. The advantage of the proposed
parameterisation with respect to the ordinary smooth transition models (STAR) is
that the resulting specification is able to model the tails of the logistic function inde-
pendently so that the rate of change in the left tail of the transition function can be
different from the change in the right tail.

Regime switching models have been used in the literature to capture nonlinear-
ity in the housing market. For example, Kim and Bhattacharya (2009) use a STAR
model to investigate for nonlinearity in the regional housing market in the United
States. The authors find that West and Northeast regions (and to some extent also the
South) are characterized by high-speed transition between regimes. Nonlinear mod-
els are also used by Crawford and Fratantoni (2003) to forecast house price changes.
Regime-switching models such as the STAR allow the dynamic of house price growth
rates to evolve according to a smooth transition between regimes that depends on the
signs and magnitude of past realisation of house price growth rates (see Chan and
Tong 1986). The low speed of transition between different regimes in house price
growth found in empirical studies validates the choice of smooth transition models.
A possible shortcoming of these type of nonlinear models describing the features of
housing markets is that in the model specification a symmetric transition function is
used to capture oscillations from the conditional mean of the changes in house price
series. Although STAR-type models efficiently describe nonlinearity in house price
growth rates, the commonly used transition functions may not be suitable to capture
dynamic asymmetries in real estate cycles.

In this paper, we argue that what in the related literature has been called ‘asymme-
try’ can at most define a qualitative feature of the data, while the modelling issue is
still neglected since the logistic transition function, which is commonly used to model
house price series, is symmetric by construction. In other words, STAR-type models
used in the related literature are at most able to tackle the question: Do house price
series go back to their original regime after a shock and when? However, the primary
interest of our investigation is to answer another, more challenging question: How do
we model the fact that the speed of the transition between expansion and contraction
phases is different? Also, how can we capture the fact that troughs and peaks are not
symmetric? The model proposed by Canepa and Zanetti Chini (2016) is potentially
promising since the type of parametrisation of the logistic transition function allows
for the expansion and contraction phases to be modelled independently.

In the final stage of our investigation, we consider whether using the GSTAR
model for forecasting leads to important improvements over forecasting with an
incorrectly specified linear model. In the literature, the issue of the forecasting per-
formance of the nonlinear model is still an open question. For example, Balcilar et al.
(2015) use a STAR-type model to forecast house price distributions in the United
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States. They find that the use of nonlinear models to forecast house prices typically
does not generate improvements in forecast performance. On the other side, Cabr-
era et al. (2011) compare the out-of-sample forecasting performance of international
securitised real estate returns using linear and non-linear models. They compare the
performance of several nonlinear models to the benchmark linear AR model and con-
clude that nonlinear models produce better out-of-sample forecasts. Similarly, Miles
(2008) using the generalised autoregressive model concludes that the nonlinear speci-
fication has superior performance in out-of-sample forecasting, especially in housing
markets traditionally associated with high home price volatility.

Against this background, we conduct an out-of-sample forecast comparison of the
GSTAR with a linear AR model for the metropolises under consideration. We find
that the use of nonlinear models to forecast house prices, in most cases, generate
improvements in forecast performance. This is especially the case at short horizons.

The remainder of this paper is organised as follows. In Section “Housing
Market Cycles in Large Metropolitan Areas”, some theoretical background on hous-
ing market cycle asymmetry is introduced. In Section “Data and Asymmetry Tests”,
the characteristic of the housing market in large metropolitan areas are investigated.
In Section “Testing for Asymmetries in the Housing Market Cycles”, the testing and
modelling procedure are briefly discussed before presenting the empirical results. In
Section “Modelling House Price Cycles”, the forecasting performance of the GSTAR
model is investigated. In Section “Forecasting House Prices”, some robustness tests
are performed. Finally, in Section “Robustness Checks”, some concluding remarks
are given.

HousingMarket Cycles in LargeMetropolitan Areas

The behaviour of housing markets over phases of the business cycle has long been
an object of interest in economic literature. From the theoretical point of view
economists have explained asymmetric behaviour of the real estate cycle using
demand and supply framework where the supply side is inelastic. For example, Abra-
ham and Hendershott (1996) describe an equilibrium price level to which the housing
market tends to adjust. The authors divide the determinant of house price apprecia-
tion in two groups: one that explains changes in the equilibrium price and another
that accounts for the adjustment mechanism in the equilibrium process. Slow adjust-
ment toward the equilibrium can be regarded as an indication of asymmetries in real
estate cycles. Abelson et al. (2005) suggest that during periods when house prices
increase, households exhibit forward-looking behaviour, while the equity constraint
factor plays only a minor role. On the other hand, households are less willing to buy
or sell properties during contraction phases due to loss aversion and more pronounced
equity constraints causing stickiness on the downside of the housing market cycle.

The literature points to several of the factors that can explain the asymmetries
of housing price cycles. First, housing prices are closely related to the business
cycle. Asymmetry in housing cycles may result from asymmetry in the determi-
nants of housing prices (see, for example, André 2010). Second, there is a close
relationship between financial cycles and the housing market cycles. Theoretical
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research has argued that endogenous developments in financial markets can greatly
amplify the effect of small income shocks through the economy. In a seminal paper,
Bernanke et al. (1996) term this amplification mechanism the ‘financial accelerator’
or ‘credit multiplier’. The primary idea behind the financial accelerator is that under
the assumption of a fixed leverage ratio, positive or negative shocks to income have
a procyclical effect on the borrowing capacity of households and firms. This, sub-
sequently, affects housing prices. Positive shocks to household income translate into
higher house prices and an increase in economies where the prevailing leverage ratios
are higher, and lower in countries where such leverage ratios are lower. Following
a similar argument, Kiyotaki and Moore (1997) show that rising asset prices may
ignite a lending boom by increasing the collateral values. A reversal in fundamentals
further increases the loan default rate (see also Borio 2014). Third, cyclicality can be
induced by the combination of extrapolative expectations and slow supply responses,
which can generate hog-type cycles (André 2015). Bolt et al. (2014) argue that
heterogeneous expectations and switching between optimistic and pessimistic expec-
tations in the housing market generate cyclical behaviour and nonlinear aggregate
price fluctuations with booms and busts triggered by stochastic shocks and signifi-
cantly amplified by self-fulfilling expectations. Recent literature has used laboratory
experiments to study the relationship between expectation and housing markets bub-
bles. For example, Bao et al. (2017) design an experimental housing market and find
that expectations-driven bubbles and crashes in the housing markets are considerably
similar to those observed in speculative asset markets (see also Glaeser and
Nathanson 2015).

Coming to house price dynamics in large metropolitan areas, several authors have
argued that in densely populated urban areas the rigidity of the supply side plays a
major role in housing market cycles. This literature argues that high real construc-
tion costs and stricter regulations on new developments introduce unpriced supply
restrictions. For example, Capozza et al. (2004) show that strict regulations on new
development such as minimum lot size or regulatory-induced delays increase the cost
of new housing (both in absolute terms and relative to existing housing) and they
reduce the ability of builders to respond quickly to demand shocks. Similarly, Mayer
and Somerville (2000) show that construction is less responsive to price shocks in
markets with more local regulation. The fact that inelastic housing supply in large
metropolitan areas induces high price volatility is broadly consistent with the liter-
ature on housing market bubbles. According to this literature, bubbles are seen as
a temporary increase in optimism about future prices. Therefore, metropolitan areas
where housing supply is more inelastic, demand shocks have a greater effect on price
and less effect on new construction. In an influential paper, Glaeser et al. (2008)
present a theoretical model of housing bubbles which postulates that housing markets
with elastic supply have fewer and shorter bubbles and smaller price increases.

A closely related strand of the literature suggests that real estate prices in
metropolitan areas exhibit short-run persistence and long-run mean reversion (see for
example Abraham and Hendershott 1996; Capozza and Seguin 1996; Malpezzi 1999;
Meen 2002). In their seminal paper Case and Shiller (1989) find that house prices
are correlated, which suggests that residential property markets are inefficient. In a
more recent work Case and Shiller (2003) consider house prices in relation to the
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fundamentals. The authors make a compelling case that house prices exhibit statisti-
cally significant short-term momentum. Also, Shiller (1990) posits that asymmetries
in real estate house price cycles are partially due to backward-looking expectations
of market participants. In a similar vein, Capozza et al. (2004) (see also Dusansky
and Koç 2007) finds that backward-looking expectations are likely to strengthen the
momentum effect in booming housing markets.

High information costs can also result in asymmetric adjustments in the housing
markets. In this respect, empirical research has found evidence of a negative corre-
lation between population density and information costs. For example, Clapp et al.
(1995) find that higher population density increases price transparency in the housing
market. When transaction volume increases information costs are lower and, there-
fore, prices respond more rapidly to macroeconomic shocks. Empirical evidence also
suggests that households show stronger behavioural biases when assets are harder to
price (Hirshleifer et al. 2013; Kumar 2009; Capozza et al. 2004). Thus, we expect
contraction phases to be shorter in large global cities than countrywide.

To summarise, consensus reached in the literature suggests that in densely popu-
lated urban areas the higher level of real construction costs and stricter regulations
increase dynamic asymmetries in housing market cycles. On the other side, greater
market transparency should have the opposite effect, so that in these cities the adjust-
ment towards fundamental price level should be more rapid and the momentum effect
is expected to be weaker. All in all, the dynamic behaviour of house prices is strongly
dependent on the prevalent signs of these combined effects.

Data and Asymmetry Tests

The data used in this study consist of house prices in eleven global cities. The housing
markets under consideration include a selection of metropolises in Europe, the United
States, and the Asia-Pacific region. In the United States, the markets examined are
New York, Los Angeles, San Francisco, and Chicago. For the Asia-Pacific region,
the cities selected for analysis are Hong Kong, Singapore, Seoul, Tokyo, and Sydney.
The cities of Europe chosen for the study are Vienna and Paris. Due to the availability
of data, the period under consideration differs across the sample. For the cities in
the United States, the data considered are the monthly Case-Shiller home price index
from 1987: M1 to 2019: M1; for the Asian cities, the prices are monthly observations
from 1996: M1 to 2015: M12. For Vienna and Sydney, the sample includes quarterly
data from 1986: Q3 to 2018: Q4, and, finally, for Paris, the sample includes data from
1991: Q3 to 2018: Q4. The data were collected from several sources: house price
series for the US cities were sourced from the Federal Reserve Bank of St. Louis data
collection. The Asian cities’ data were provided by Bloomberg and the remaining
house price series were collected from the Bank of International Settlement.

As far as the sample is concerned, global cities have been selected as a represen-
tative sample of metropolitan areas that rank among the top twenty in the Global
Power City Index (GPCI) (2018) as world cities. The GPCI index ranks major cities
of the world in the order of their ‘magnetism’ or their comprehensive power to attract
creative people and business enterprises from around the world. More precisely, the
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Table 1 Global Power City
Index (GPCI) ranking of global
cities

City GPCI

New York 2

Tokyo 3

Paris 4

Singapore 5

Seoul 7

Hong Kong 9

Sydney 10

Los Angelses 12

San Francisco 13

Vienna 17

Chicago 19
Note: The GPCI was produced
by the MMF Institute for Urban
Strategies, Japan

GPCI index ranks a number of metropolises according to the degree of their econ-
omy, the level of research and development, the degree of cultural interaction, the
degree of liveability, the quality of the environment, the degree of accessibility, and
other individual indicators. Most of the cities considered in the sample have in com-
mon the fact that they are i) headquarters of several multinational corporations, ii)
major financial or manufacturing centres, iii) important laboratories of new ideas and
innovation hubs in business, economics, and culture, iv) host high-quality educational
institutions, including renowned universities with international student attendance
and world-class research facilities, v) feature a high degree of diversity in terms of
language, culture, religion, and ideologies.

As Table 1 illustrates, seven of the cities selected are among the 2018 GPCI top-
ten ranked global cities. In many cases, the choice of metropolises was dictated by
the availability of data. However, the final sample does include most of the top-ten
metropolises in the GPCI index.1

Testing for Asymmetries in the HousingMarket Cycles

Detecting asymmetry in the real estate time series is important since linear and
Gaussian models are incapable of generating asymmetric fluctuations. Evidence of
asymmetry may guide empirical investigators toward a particular class of nonlinear
specifications able to model asymmetric cycles.

Therefore, prior to attempting any model estimation, in the following section, we
investigate the characteristic features of housing market cycles for the cities under
consideration.

1Note the city of London was at the top of the GPCI index in 2018. However, an extensive investigation
on housing market cycles in London is considered in Canepa and Zanetti Chini (2019). Note also that the
GPCI index is published yearly, therefore the ranking of the cities changes over time. However, the cities
under consideration have been ranking in the top twenty for at least the last five years.
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In this paper, we focus on two types of asymmetries which may or not occur simul-
taneously in the housing market: steepness and deepness. As Sichel (1993) points
out, steepness occurs when contractions are steeper than expansions, or vice-versa.
The second type of asymmetry occurs when troughs are deeper than peaks are tall.
Steep cycles in the housing markets may be generated by stiff housing supply. On the
one hand, improving economic conditions tend to increase the incomes of households
and, therefore, to boost the demand for housing. On the other hand, when property
prices rise above the replacement costs, property developers initiate the construction
process based on current property prices. However, creating a supply of new prop-
erties is, by definition, a slow process. By the time new properties are delivered,
economic conditions may have changed for worse and prices begin to decline. This
inertia of supply responsiveness causes asymmetries in the real estate cycles (Davis
and Zhu 2005). Deepness could be generated by a model where endogenous devel-
opments in financial markets may amplify the effect of small income shocks through
the economy.

To investigate possible asymmetries in the housing market cycles the Triples test
suggested in Randles et al. (1980) has been used. Loosely speaking, the test is based
on the principle that if a time series exhibits steepness, then its first differences should
exhibit negative skewness. On the other hand, if a time series exhibits deepness, then
it should exhibit negative skewness relative to mean or trend. Therefore, a test for
steepness can be computed by using the series in first difference, whereas a test for
deepness can be based on the coefficient of skewness of the house price series in
levels. Intuitively, the Triples test counts all possible triples from a sample of size T
of a univariate time series. When most of the triples are right-skewed the process is
said to be asymmetric (see Randles et al. 1980 for more details).

Table 2 shows the calculated test statistics and relative p-values. In particular,
the second column in Table 2 displays the calculated Triples test obtained using the
logs of house price series for each city under consideration, the third column also

Table 2 Triples test statistic for
symmetry (deepness and
steepness)

City Deepness Steepness

Tripple test p-value Tripple test p-value

New York 1.925 0.054 2.750 0.006

San Francisco 1.796 0.072 0.077 0.938

Los Angeles −1.356 0.174 −2.607 0.009

Chicago 4.674 0.000 −2.789 0.005

Sydney 2.158 0.030 −2.191 0.028

Singapore −1.874 0.061 0.766 0.443

Hong Kong −0.265 0.791 −2.511 0.012

Seoul −1.796 0.072 −0.450 0.949

Tokyo 2.077 0.038 −0.780 0.435

Paris −1.940 0.052 0.447 0.654

Vienna −0.668 0.504 −1.767 0.077

Note: Deepness refers to
asymmetry in the level of
detrended data. Steepness refers
to asymmetry in the first
difference of the data. The null
hypothesis is symmetry; and the
under the alternative the series
presents asymmetry. The Triples
test statistic is asymptotically
N (0, 1) and the p-values are
those of a standard Normal
distribution
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contains the same test statistic but calculated using the logs of first differences of the
house price series. In both cases, under the null hypothesis, the distribution of the
house price series is symmetric around the unknown median against the alternative
of asymmetry. Therefore, failure to reject the null hypothesis implies symmetry.

The asymptotic reference distribution of the test is a standard normal random vari-
able. Note that prior to calculate the test statistics the Christiano and Fitzgerald (2003)
filter2 has been used to filter the series of house prices taken in natural logs.

From Table 2 it appears that all the cities under consideration feature asymmetric
housing price cycles, but they have different characteristics. Most cities in the United
States features deep and steep cycles, as in both cases the test statistics reject the
null hypothesis. As for the Asian cities, Singapore and Seoul feature a deep cycle as
the null hypothesis is rejected when the test statistic is calculated using house price
changes. In these two cities troughs are deeper than peaks are high, as indicated by
the calculated value of the statistic for the series in levels which have negative signs.
The city of Tokyo features a deep but not steep cycle, whereas the city of Hong Kong
presents a steep cycle with expansions that are longer than contraction phases.

House price cycle in Sydney presents deep and steep cycles with cyclical peaks
that are higher than troughs are deep and peaks that are approached more slowly than
troughs. Finally, both Paris and Vienna present house prices with asymmetric cycles.
For Paris, however, the null hypothesis of steepness is rejected, and the opposite is
the case for Vienna.

Modelling House Price Cycles

The Econometric Model

Let yt be a realization of a the house price changes (i.e. yt = �yt ) observed at
t = 1− p, 1− (p − 1), .., −1, 0, 1, T − 1, T . Then, the univariate process {yt }Tt can
be specified using the following model

yt = φ′zt + θ ′ztG(γ, h(ck, st )) + εt , εt ∼ I .I .D.(0, σ 2) (1)

G(γ, h(ck, st )) =
(
1 + exp

{
−

K∏
k=1

h (ck, st )

})−1

. (2)

In Eqs. 1–2 the vectors zt = (1, yt−1, . . . , yt−p)′, φ = (φ0, φ1, . . . , φp)′, θ =
(θ0, θ1, . . . , θp)′ are parameter vectors. The process {εt }Tt in (1) is assumed to be
a martingale difference sequence with respect to the history of the time series up
to time t − 1, denoted as �t−1 = [y1−(p−a), yt−p], with E[εt |�t−1] = 0 and
E[ε2t |�t−1] = σ 2. The expression G(γ̃ , h(ck, st )) defines the transition function,

2Note that in their original work Randles et al. (1980) use the filter suggested in Hodrick and Prescott
(1997) to filter the series prior to testing for asymmetry. However, Hamilton (2018) shows that this filter
has several limitations and introduces spurious dynamic relations that have no basis in the underlying
data-generating process. For this reason the filter in Christiano and Fitzgerald (2003) has been used in this
work.
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which is assumed to be continuously differentiable with respect to the scale parame-
ters γ̃ ∈ (γ1, γ2) and bounded between 0 and 1. Also, G(γ̃ , h(ck, st )) is continuous
in the function h(ck, st ) and h(ck, st ) is strictly increasing in the transition variable
st . The transition variable st is assumed to be a lagged endogenous variable, that is,
st = yt−d for a certain integer d > 0. The parameters ck ∈ {1, 2} are the location
parameters. Defining ηt = (st − c) in Eq. 2 we have

h(ηt ) =
⎧⎨
⎩

γ −1
1 exp (γ1 |ηt | − 1) if γ1 > 0
0 if γ1 = 0

γ −1
1 log (1 − γ1 |ηt |) if γ1 < 0

⎫⎬
⎭ , (3)

for ηt ≥ 0 (μ > 1/2) and

h(ηt ) =
⎧⎨
⎩

γ −1
2 exp (γ2 |ηt | − 1) if γ2 > 0
0 if γ2 = 0

γ −1
2 log (1 − γ2 |ηt |) if γ2 < 0

⎫⎬
⎭ , (4)

for ηt < 0 (μ < 1/2).
Asymmetric behavior in house price dynamics is introduced in the model by

Eqs. 3-4. In particular, Eq. 3 models the higher tail of the probability function,
whereas Eq. 4 models the lower tail of the probability function. The speed of the
transition between the expansion and contraction regimes in the housing markets is
controlled by the slope parameters γ̃ . If the vector γ̃ > 0, the function h(ηk,t ) is
an exponential rescaling that increases more quickly than a standard logistic func-
tion. On the other hand, if γ̃ < 0, the function h(ηk,t ) is a logarithmic rescaling that
increases more slowly than a standard logistic function.

Different choices of the transition function G(γ̃ , h(ck, st )) give rise to different
types of regime-switching behaviour. If k = 1 in Eq. 2 the parameters on the right
hand side of Eq. 1 change monotonically as a function of st from φ to φ + θ and the
corresponding transition function is given by

G
(
γ̃ , h

(
η1,t

)) =
(
1 + exp

{ −h
(
η1,t

)
I(γ1≤0,γ2≤0) + h

(
η1,t

)
I(γ1≤0,γ2>0)

+h
(
η1,t

)
I(γ1>0,γ2≤0) + h

(
η1,t

)
I(γ1>0,γ2>0)

})−1

(5)
with h(η1,t ) given in Eqs. 3–4 and I (·) is an indicator function.

The GSTAR nests several well known linear and non-linear models. Before con-
sidering the estimation procedure of the GSTAR it is of interest at this point to relate
the proposed model to other models available in the literature.

First, the model in (1) with γ1 = γ2 = γ in the transition function in Eqs. 3–4
implies that the GSTAR model reduces to a one-parameter symmetric logistic STAR
model (see Teräsvirta 1994). However, with respect to the STARmodel a clear advan-
tage of the indicator functions in Eqs. 3–4 is that slope parameters are not constrained.
Positiveness of the slope parameter is an identifying condition which was a crucial
assumption in Teräsvirta (1994). Second, the transition function in the GSTAR nests
an indicator function I(st>c) when γ̃ → +∞. Therefore, the GSTAR reduces to the
model in Tong (1983) when γ̃ → +∞ and it becomes a straight line around 1/2 for
each st when γ̃ → −∞. Finally, the GSTAR model nests a linear AR model when γ̃

is a null vector.
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As far as the estimation of the GSTAR model is concerned, estimation is per-
formed by concentrating the sum of square residuals function with respect to the
vectors θ and φ, that is minimizing:

SSR =
T∑

t=1

(yt − ψ̂ ′x′
t )
2, (6)

where

ψ̂ = [φ̂, θ̂ ] =
(

T∑
t=1

x′
t (γ̃ , c)xt (γ, c)

)−1 (
T∑

t=1

x′
t (γ̃ , c)yt

)
,

and

xt (γ̂ , ĉ) = [
zt z

′
tG

(
γ̂ , h

(
ĉ, st

))]
.

As noticed in Zanetti Chini (2018), if all the nonlinear parameters are known and
fixed, the GSTAR model is linear in θ and φ. Therefore, the estimation reduces to
a minimization problem on three parameters, and it is solved via a grid search over
γ1, γ2 and c. Without this simplification, one should adopt a nonlinear least square
minimization of a likelihood function, that is computationally more demanding and
often leading to an inappropriate corner solution.

In our illustrations, both γ1 and γ2 are chosen between a minimum value of γmin =
−10 and a maximum of γmax = 10 with rate 0.25. The grid for the parameter c is
the set the values computed for the range of the 10th and 90th percentile of st with
the increase rate computed as the difference of the two percentiles at the boundary
divided by an arbitrarily high number (in our estimation 400). The initial values were

set according to the following rule: λ0 =
( ∣∣xmax−xmin

∣∣
med[grid(λ)]

)
, were the denominator is

the median of the set of values constituting the grid for parameter λ = [γ1, γ2, c].
The software used to estimate the model was MATLAB R2012b.

Before the estimated GSTARmodel can be accepted as adequate, it should be sub-
jected to misspefication tests. Some important hypotheses which should be tested are:
i) the hypothesis that there is no residual correlation, ii) the hypothesis that there is no
remaining nonlinearity and iii) the hypothesis of parameter constancy (See Canepa
and Zanetti Chini 2016 for more details).

Estimation Results

The adopted modelling procedure, firstly, involves determining the dynamic struc-
ture of the series of house price growth. In our case, for each house price series, the
maximal lag order of the AR(p) model has been chosen by using the Bayesian infor-
mation criterion and the Portmanteau test for serial correlation. Then, the second step
prior to beginning the estimation procedure is to test if the data support the hypothe-
sis of nonlinearity. A natural way of doing it is to perform a test of linearity and check
if the model in Eq. 5 reduces to a linear autoregressive model. This can be done by
using LM principle. However, the distribution of such test would not be identified
under the null hypothesis since the parameters γ̃ and c in Eq. 5 are not identified
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under the null hypothesis. The identification problem can be solved by using a Taylor
series approximation to reparametrise the transition function in Eq. 5.

Table 3 reports the result of the linearity test, the estimated parameters and the
misspecification tests. On the basis of the empirical p -values reported in the top panel
of Table 3 the null hypothesis of nonlinearity can be rejected for all cities at 5% or
10% significance level, thus confirming our conjecture that a nonlinear specification
needs to be used to model the house price series at hand.

Table 3 Estimated parameters for the GSTAR model and diagnostic tests

New York San Francisco Los Angeles Chicago Sydney

Linearity Tests (p-values)

0.080 0.001 0.002 0.001 0.006

Estimated Parameters

φ0 0.264
(1.56)

0.137∗
(8.56)

0.076∗
(6.33)

0.081∗
(7.36)

0.420∗
(8.57)

φ1 1.244∗
(4.14)

1.851∗
(8.51)

1.844∗
(6.71)

1.584∗
(11.31)

0.277∗
(8.14)

φ2 −0.267
(−2.93)

∗ −0.863∗
(−8.60)

−0.853∗
(−8.53)

−0.596∗
(−4.21)

0.178∗
(7.41)

φ3 0.468∗
(5.77)

− − − −

θ0 −1.399
(−2.03)

∗ −0.084
(−1.03)

−0.103
(−0.64)

−0.130
(−0.64)

0.718
(0.92)

θ1 0.464∗
(5.33)

−0.379∗
(−11.48)

−0.785∗
(−7.13)

−0.603∗
(−8.62)

0.877∗
(2.13)

θ2 0.964∗
(9.45)

0.374∗
(11.00)

0.788
(7.36)

∗ −0.591∗
(−7.67)

−0.619
(−6.72)

∗

θ3 −0.526
(−5.42)

∗ − − − −

γ1 −1.150
(−5.22)

∗ −1.150
(−14.37)

∗ −3.150
(−19.68)

∗ −1.150
(−4.50)

∗ −5.150
(−5.89)

∗

γ2 3.251
(5.60)

∗ 0.750∗
(2.72)

1.250∗
(11.36)

1.250
(6.57)

∗ 3.250
(9.28)

∗

c 4.806∗
(4.03)

8.268
(4.61)

∗ 13.61
(12.29)

∗ 8.786
(5.12)

∗ 3.083
(14.33)

∗

Diagnostic Tests (p-values)

LM test for No Error Correlation

q = 4 0.944 0.257 0.160 0.157 0.460

LM Test for no Remaining Asymmetry

0.999 0.649 0.725 0.995 0.379

LM Test Parameter Constancy

H1 0.999 0.129 0.237 0.866 0.899

H2 0.998 0.995 0.568 0.569 0.999

H3 0.999 0.246 0.650 0.450 0.399
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Table 3 (continued)

Singapore Honk Kong Seoul Tokyo Paris Vienna

Linearity Tests (p-values)

0.081 0.016 0.088 0.063 0.094 0.011

Estimated parameters

φ0 0.027
(0.63)

−0.647∗
(−7.43)

0.086∗
(8.60)

0.074∗∗
(1.81)

1.856∗
(10.31)

−1.776∗
(−3.75)

φ1 0.718∗
(6.31)

0.527∗∗
(1.95)

1.807∗
(11.23)

0.466∗
(3.32)

0.018
(0.33)

−0.544∗
(−6.63)

φ2 0.231∗
(3.58)

−0.085∗
(−3.40)

−1.209∗
(−4.65)

0.482∗
(3.70)

−0.322∗
(−7.85)

0.087∗
(2.55)

φ3 −0.151∗
(−10.78)

−0.885
(−0.57)

0.332∗
(3.71)

− − −

θ0 −1.419
(−0.76)

3.114
(0.96)

0.794
(1.16)

1.253
(0.523)

1.942
(1.42)

0.395
(0.71)

θ1 0.376
(2.34)

∗ 0.026∗
(4.33)

0.100∗∗
(1.89)

0.283∗
(2.97)

0.434∗
(4.93)

−1.209∗
(−2.53)

θ2 0.054
(0.51)

0.203
(1.97)

∗∗ −0.617
(−1.03)

−0.239
(−2.56)

∗ 1.054∗
(3.43)

−0.041
(−0.68)

θ3 −0.449∗
(−2.148)

−0.150
(−0.556)

0.419∗∗
(1.92)

− − −

γ1 −7.500
(−1.94)

∗∗ 5.900
(3.87)

∗ −7.500
(−4.14)

∗ −3.150
(−4.09)

∗ −4.650∗
(−4.69)

−3.000
(−1.17)

γ2 3.000
(0.71)

−1.750
(−1.11)

1.194
(5.40)

∗ 1.027
(8.03)

∗ 0.750∗
(6.14)

1.250∗
(2.62)

c 8.127
(1.81)

∗∗ 8.025
(13.53)

∗ 4.107
(5.73)

∗ 5.016
(5.41)

∗ −0.411∗
(−2.91)

0.530∗
(8.83)

Diagnostic Tests (p-values)

LM test for No Error Correlation

q = 4 0.420 0.999 0.594 0.337 0.630 0.269

LM Test for no Remaining Asymmetry

0.981 0.996 0.995 1.000 0.613 1.000

LM Test Parameter Constancy

H1 1.000 1.000 0.974 0.999 0.579 0.177

H2 1.000 0.985 0.989 0.999 0.753 0.537

H3 0.999 0.992 0.997 0.921 0.963 0.722

In the top panel the table reports the linearity tests. The estimated parameters are reported in the middle
panel along with the t-tests (in brackets). Note that ** and * indicate significance level at 10% and 5% (or
less), respectively. The p-values for the misspecification tests are given in the bottom panel. The diagnostic
statistics are: i) the LM and the F tests for the hypothesis that there is no serial correlation against the q-
order autoregression, ii) the LM test for the hypothesis that there is no remaining asymmetry, iii) the LM
test for parameter constancy
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With respect to the transition function from Eqs. 3–Eq. 4 it is clear that the
choice of the number of location parameters k affects the type of asymmetric
behavior characterized by the model. The nature of the asymmetry observed in
Section “Data and Asymmetry Tests” indicates prolonged upswings in the housing
markets to pronounced cyclical peaks along with sharper contractionary periods. Evi-
dence of asymmetry in Table 2 therefore points toward the GSTAR model which can
be estimated using the expression in Eq. 5 with k = 1. On the other hand, choosing
k = 2 in Eq. 5, would result in an exponential form of the transition function suit-
able to model a symmetric cycle where contraction and recovery phases have similar
dynamics.

In the middle panel of Table 3 the estimated parameters and the relative standard
errors are reported. From Table 3 it appears that house price changes are persistent
since most of the estimated coefficients, φi and θi (for i = 1, ..., 3), are significantly
different from zero. This result is consistent with the findings in Capozza et al. (2004)
where evidence of backward-looking expectations in the housing market is found
(see also Dusansky and Koc 2007).

The estimated parameters γ1 and γ2 indicate the speed of the transition between
expansion and contraction regimes, respectively. These coefficients are also signifi-
cantly different from zero. With regard to the signs of these coefficients it is observed
that the parameter γ1 is negative in most cases, whereas γ2 is in most cases positive.
This indicates that the speed of the transition from one regime to the other regime
increases during periods of house price busts at a rate that is greater than one which
would be consistent with a standard logistic curve, but increases during the periods
of house price expansions at a rate which is slower than one that would be consistent
with a standard logistic function. From Table 3 it appears that the estimated param-
eters |γ1| > |γ2| in the case of San Francisco, Los Angeles, Sydney, Singapore,
Seoul, Tokyo, and Paris, whereas the opposite is true for New York and Chicago.
Therefore, the former group of metropolises features a strong deep and mildly steep
cycle. On the other hand, the housing markets in New York City and Chicago present
more the feature of a cycle which is strongly steep and moderately deep. Finally,
considering Hong Kong and Vienna the estimated coefficients γ2 and γ1, respec-
tively, are not statistically significant, thus indicating that steepness is a predominant
feature of the housing market cycle in these metropolises. Note that the relatively
small estimates of γ1 and γ2 indicate that other types of nonlinear models in the
class of regime switching, such as the Markov switching or the TAR models, are no
suitable to capture housing market dynamics since these models assume a sudden
transition between one regime and the other (i.e. in these models γ1 = γ2 −→ ∞
by assumption). Coming now to the parameter c, this indicates the halfway point
between the expansion and contraction phases of the housing markets. In all cases,
the estimated parameters c are statistically significant at the 5% level. Another sig-
nificant finding is that the estimated location parameters c show the different level
of sensitivity to the magnitude of exogenous shocks. Singapore, Hong Kong, San
Francisco, Los Angeles, and Chicago are more sensitive to market shocks than other
metropolises.
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Once that the model has been estimated, the goodness of fit can be evaluated using
the misspecification tests. The diagnostic statistics considered here are: i) the LM

test and the F -test for the hypotheses that there is no serial correlation against the
forth order autoregression (for q = 4), ii) the LM test the hypothesis that there is
no remaining asymmetry, iii) the LM test for parameter constancy. The p-values of
the tests are reported in the bottom panel of Table 3. Looking at the results of the
misspecification tests it emerges that both tests do not reject the null hypotheses of no
autocorrelation against q-order autoregression for all estimated models. There is also
no evidence of remaining asymmetry given that the LM test does not reject the null
hypothesis for the estimated models. Similarly, the LM test of parameter constancy
also does not reject the null hypothesis at the 5% significant level for all the estimated
models. Overall, the results in Table 3 suggest that the estimated models do not suffer
from misspecification problems.

Forecasting House Prices

Consider the case where yt is described by the model in Eq. 1, that is,

yt = F (zt ; �t) + εt (7)

where is given by F (zt ; �t) = φ′zt + θ ′ztG(γ, h(ck, st )).
Let y

f
t+h|t = E[yt+h|It ] the optimal point forecast of y|t+h made a t on the base

of the past information It up until that time. Based on Eq. 7, the one step-ahead
forecast for yt+1 is given by

y
f

t+1|t = E(yt+1|It ) = E
{
F

(
z
f

t+1; �t

)
+ εt+1|It

}
= E

{
F

(
z
f

t+1; �t

)
|It

}
,

(8)
where z

f

t+1 = (1, yt + εt , yt−1, . . . , yt−(p−1))
′. Similarly, for the two step-ahead

forecast period we have

y
f

t+2|t = E(yt+2|It ) = E
(
F

(
z
f

t+2; �t

)
+ εt+2|It

)
= E

{
F

(
z
f

t+2; �t

)
|It

}
,

where z
f

t+2 = (1, yt+1 + εt+1, yt, . . . , yt−(p−2))
′. The exact expression for

Eq. 8 is

y
f

t+2|t = E
(
F

(
z
f

t+2; �t

)
|It

)
=

∞∫
−∞

F
(
z
f

t+2; �t

)
d� (ω) dω, (9)

where �(ω) is the cumulate density function of εt+1. Note that if in Eqs. 3–4 the
vector γ̃ is a null vector, then the h-step-ahead forecast can be obtained recursively
in a manner similar to Eq. 8. This the so called “skeleton extrapolation” approach,
that in the case of nonlinear models would yield biased forecasts (see for exam-
ple Granger and Terasvirta 1993). For the GSTAR model when the forecast horizon
increases, the multi-step ahead forecast is not available in closed form, but it could
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be computed by numerical integration. If Eq. 9 is solved by numerical integration
for the model in Eq. 1 with p = 1 and d = 1 the two-steps ahead forecast is given
by

y
f

t+2|t =
∞∫

−∞
[φ0 + φ1(y

f

t+1|t + ω) + (θ0 + θ1

(
y

f

t+1|t + ω
)

(10)

× (1 + exp− {h(c1, ω)} d� (ω) dω) ,

where

h(c1, ω) =
⎧⎨
⎩

γ −1
1 exp(γ −1

(
yt+1|t + ω − c1 − 1

)
, if γ1 > 0

ω − c1, if γ1 = 0
−γ −1

1 log(1 − γ1 + (
yt+1|t + ω − c1

)
), if γ1 < 0

⎫⎬
⎭ (11)

for h(c, ω) > 1/2 and

h(c1, st ) =
⎧⎨
⎩

γ −1
2 exp(γ −1

(
yt+1|t + ω − c1 − 1

)
, if γ2 > 0

ω − c1, if γ2 = 0
−γ −1

2 log(1 − γ1 + (
yt+1|t + ω − c1

)
), if γ2 < 0

⎫⎬
⎭ (12)

for h(c1, ω) < 1/2. Solving the integral in Eq. 10 is relatively easy, however an
exact expression for E[yt+h|It ] would involve solving an h − 1 dimensional integral
which is rather time consuming. A less cumbersome approach to obtain a multi-step
ahead house price forecast is by using the bootstrap method to find an numerical
approximation of y

f
t+h|t . Non parametric bootstrap procedures to forecast time series

in non-linear models were successfully used in Lundbergh and Terasvirta (2004).
Given that the STAR-type models considered in Lundbergh and Terasvirta (2004) are
nested in the GSTAR model considered in this work below we follow these authors
and generate the h-steps ahead forecast of house price change series by using a block
bootstrap procedure to generate the empirical analogue of y

f
t+h|t , say ỹ

f
t+h|t .

Below we use the parameters obtained estimating the GSTAR model to calcu-
late the out-of-sample density forecasts and consider whether the forecasts generated
by the GSTAR outperform those obtained estimating a simple linear AR(p) model.
To avoid cluttering, the estimation results for the AR(p) model are reported in
Appendix. The out-of-sample forecast comparisons do not rely on a single criterion,
for robustness we compare the results of four density forecast performance mea-
sure. Namely, we use the logarithmic score (LogS), the quadratic score (QSR), the
continuous-ranked probability score (CRPS), and the quantile score (qS).

Table 4 reports the results of the h-step-ahead forecasts for the forecast period
h = {1, 3, 6, 12}. In columns 2 and 3 the forecasting horizon and the forecast error
measures are reported, respectively, whereas in columns 4-7 the forecasting results
for each housing market are reported. From Table 4 it is clear that according to the
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Table 4 Forecasting house prices: density predictive performances

Model For. Hor. FEM New York San Francisco Los Angeles Chicago Sydney

AR (p) 1 LogS 0.001 0.007 0.007 0.002 0.002

3 0.002 0.008 0.010 0.005 0.002

6 0.002 0.001 0.016 0.006 0.005

12 0.003 0.009 0.021 0.008 0.007

GST AR 1 LogS 0.002 0.012 0.008 0.002 0.001

3 0.003 0.014 0.011 0.003 0.002

6 0.005 0.009 0.015 0.005 0.003

12 0.007 0.012 0.017 0.007 0.004

AR(p) 1 QSR 0.004 0.020 0.024 0.011 0.160

3 0.004 0.027 0.030 0.019 0.177

6 0.007 0.035 0.038 0.028 0.190

12 0.006 0.040 0.047 0.031 0.208

GST AR 1 QSR 0.002 0.028 0.031 0.010 0.150

3 0.003 0.035 0.040 0.018 0.169

6 0.004 0.039 0.044 0.027 0.197

12 0.006 0.049 0.054 0.032 0.199

AR(p) 1 CRPS 2.104 1.080 1.295 1.822 2.307

3 2.102 1.089 1.460 1.910 2.367

6 2.073 1.094 1.590 1.995 2.250

12 2.097 1.104 1.670 1.995 2.567

GST AR 1 CRPS 2.029 1.061 1.388 1.792 1.995

3 2.034 1.069 1.500 1.814 2.166

6 2.040 1.079 1.691 1.875 2.256

12 2.047 1.085 1.704 1.950 2.225

AR (p) 1 qS 0.014 0.025 0.046 0.015 0.038

3 0.014 0.034 0.050 0.027 0.047

6 0.015 0.044 0.053 0.033 0.043

12 0.015 0.053 0.060 0.040 0.052

GST AR 1 qS 0.016 0.028 0.051 0.017 0.039

3 0.016 0.034 0.049 0.022 0.049

6 0.016 0.050 0.056 0.036 0.054

12 0.017 0.063 0.064 0.040 0.060
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Table 4 (continued)

Model For. Hor. FEM Singapore Hong Kong Seoul Tokyo Paris Vienna

AR (p) 1 LogS 0.004 0.002 0.001 0.036 0.004 0.002

3 0.006 0.002 0.003 0.040 0.005 0.005

6 0.008 0.002 0.005 0.047 0.009 0.008

12 0.010 0.003 0.008 0.058 0.010 0.010

GST AR 1 LogS 0.004 0.002 0.001 0.030 0.004 0.002

3 0.007 0.003 0.003 0.031 0.005 0.003

6 0.008 0.003 0.004 0.042 0.009 0.005

12 0.009 0.005 0.006 0.059 0.008 0.007

AR(p) 1 QSR 0.007 0.005 0.068 0.100 0.140 0.009

3 0.012 0.006 0.073 0.124 0.151 0.018

6 0.018 0.007 0.079 0.144 0.159 0.026

12 0.019 0.008 0.087 0.158 0.165 0.031

GST AR 1 QSR 0.006 0.005 0.067 0.010 0.140 0.012

3 0.009 0.004 0.068 0.101 0.149 0.020

6 0.016 0.006 0.072 0.136 0.157 0.027

12 0.019 0.007 0.076 0.145 0.164 0.039

AR(p) 1 CRPS 2.270 2.270 2.270 1.805 1.703 2.008

3 2.297 2.297 2.297 1.813 1.809 2.090

6 2.301 2.301 2.301 1.835 2.006 2.250

12 2.302 2.302 2.302 1.849 2.010 2.390

GST AR 1 CRPS 2.406 2.267 2.267 1.800 1.773 1.997

3 2.410 2.272 2.272 1.810 1.856 2.020

6 2.415 2.282 2.282 1.828 2.006 2.142

12 2.420 2.290 2.290 1.831 2.140 2.178

AR (p) 1 qS 0.092 0.015 0.025 0.053 0.055 0.029

3 0.105 0.018 0.028 0.059 0.063 0.046

6 0.114 0.019 0.030 0.077 0.078 0.053

12 0.125 0.020 0.032 0.085 0.079 0.068
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Table 4 (continued)

Model For. Hor. FEM Singapore Hong Kong Seoul Tokyo Paris Vienna

GST AR 1 qS 0.099 0.014 0.024 0.050 0.049 0.021

3 0.107 0.017 0.026 0.056 0.953 0.042

6 0.116 0.018 0.029 0.068 0.060 0.051

12 0.129 0.019 0.035 0.088 0.067 0.060

The table compares for each country a linear AR(p) model and the GSTAR model in their out-of-sample
point forecasts. The forecast measures are: i) the logarithmic score (LogS), ii) the quadratic score (QSR),
iii) the continuous-ranked probability score (CRPS), and iv) the quantile score (qS). The forecast horizon
is 1,3,6 and 12 months

QSR and the CRPS performance measures the GSTAR model performs better than
it’s linear counterpart for most cities, especially for medium and long run horizons.
However, the results according to the LogS and the qS performance measures are
mixed.

Robustness Checks

In Section “Testing for Asymmetries in the Housing Market Cycles”, the GSTAR
model has detected widespread evidence of asymmetric adjustment in the cities under
consideration. The nature of the asymmetry observed indicated prolonged upswings
in the market rising to pronounced cyclical peaks along with sharper recession-
ary or contractionary periods. This result is in accordance with economic theory,
where it is shown that the inertia of supply resulting from construction lags in com-
bination with backward-looking expectations generate asymmetric cycles (see, for
example, Glaeser and Gyourko 2018; Case and Shiller 1989). In metropolises, high
real construction costs such as land cost and stricter regulations on new develop-
ments introduce unpriced supply restrictions. In this respect, our results support the
model proposed by Capozza et al. (2004), wherein it is postulated that a higher real
income, a higher level of real construction costs and strict regulation increase asym-
metries in the housing market cycles. In an influential paper, Gyourko et al. (2013)
provide evidence that house prices and income growth are related. The author labels
as ‘superstar cities’ those metropolitan areas where: i) demand exceeds supply and
ii) supply growth is limited. A crucial characteristic for a city to be classified as a
superstar is that residents are willing to pay a premium to live there and in which the
proportion of high-income households is relatively high. In places that are desirable,
but have low construction rates, households with high incomes or strong preferences
for that location outbid lower income families for scarce housing and drive up the
price of the underlying land. By contrast, in locations where housing supply is not
constrained, households can buy at construction costs so that instead of growth in
house prices, the areas exhibit growth in house supply. According to the theoretical
framework suggested by Gyourko et al. (2013), the clearing process continues as long
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as the growth in the income-weighted demand for a location exceeds the addition in
supply, either in the original location or in a close substitute. In addition to attract-
ing highly skilled workers, global cities also attract inflows of foreign capital due
to increasing financial market liberalisation that the world has witnessed in recent
years. According to Favilukis et al. (2013) (see also Badarinza and Ramadorai 2018)
many countries that saw large housing booms and busts attracted foreign capital and
much of this capital was invested in the property market thank to mortgage credit
extension.

Against this background, a natural question is, are the characteristic features of
house prices cycles in global cities different from less dynamic urban centres? As
a robustness check, we consider house prices in metropolitan areas in the United
States which have lower price-to-income as compared to the global cities considered
in this paper and investigate the characteristic features of house price cycles in these
metropolitan areas. If the hypotheses in Gyourko et al. (2013) and Favilukis et al.
(2013) hold true, we should expect house prices in these metropolitan areas to be
linear and feature more symmetric cycles.

With this target in mind, quarterly data at the metropolitan statistical area (MSA)
level from 1975: Q1 to 2019: Q1 were collected from the Federal Housing Finance
Agency. The data collected included the 100 largest MSAs in the United States.3 Of
these MSAs, those with the lowest house prices growth were selected. To classify
the MSAs according to their level of house price inflation during the period under
consideration, the average price growth in each MSA was calculated and the MSAs
were ranked from the least to the most expensive locations by considering the quan-
tile distribution of the average price growth. The final subsample included the 10
MSAs that were classified in the lowest 10st percentile of the house price inflation
distribution.

To investigate the characteristic features of the housing market in these metropoli-
tan areas nonlinearity and asymmetry tests were calculated. Table 5 reports the two
test statistics for each MSA. In Table 5 the MSAs are ordered according to the low-
est percentile, so that in the MSA of Dayton-Kettering in Ohio was ranked in the 1st

percentile.
Looking at the results in Table 5, it appears that for most of the MSAs considered

the linearity test does not reject the null hypothesis of linearity, which suggests that
the house price series are not suitable to be modelled using highly nonlinear models
such as the GSTAR. Only for three out of ten MSAs, the test suggests that housing
market series are nonlinear at 10% significance level. This is in sharp contrast with
the results in Table 3 where the linearity test rejects the null hypothesis for all global
cities in the same country. Similarly, the Triples test suggests that there is no asym-
metry in the housing market cycles in all but three MSAs in which some steepness is
detected. Overall, the results in Table 5 suggest that less dynamic metropolitan areas
have different house price dynamics than the global cities.

3Note that according to the United States Office of Management and Budget an MSA has an urban-
ized core of minimally 50,000 population and includes outlying areas determined by commuting
measures.

691



A. Canepa et al.

Table 5 Linearity and asymmety tests for MSAs in the United States

MSA Nonlinearity test Tripple test: deepness Tripple test:steepness

p-value p-value p-value

Dayton-Kettering, OH 0.135 0.317 0.035

Cleveland-Elyria, OH 0.060 0.947 0.670

Akron, OH 0.074 0.653 0.954

Buffalo-Cheektowaga, NY 0.226 0.557 0.346

Indianapolis-Carmel-Anderson, IN 0.215 0.536 0.468

Cincinnati, OH-KY-IN 0.327 0.725 0.080

Albuquerque, NM 0.151 0.176 0.030

Detroit-Dearborn-Livonia, MI 0.140 0.355 0.638

Memphis, TN-MS-AR 0.238 0.679 0.376

Kansas City, MO-KS 0.094 0.827 0.624

Note: The linearity test has under the null hypothesis that the house price series are linear. For the Triples
test, deepness refers to asymmetry in the level of detrended data. Steepness refers to asymmetry in the first
difference of the data. The null hypothesis is symmetry and the alternative hypothesis is asymmetry. In
column 1 the MSAs, along with the Federal States, are reported, whereas the tests p-values are reported
in columns 3-5

Discussion

Before concluding this section a question is in order: What do we learn from the
GSTARmodel about housing market dynamics in world cities? Looking at the results
shown in Table 3, it is clear that the type of logistic transition function commonly
adopted in STAR models may be suitable to estimate house price dynamic at higher
level of aggregation (e.g. country or regional level), but may not be the best specifi-
cation to capture asymmetric oscillations from the conditional mean of house price
in global cities. This is because house prices in these metropolises are subject to
strong exogenous shocks that make the stochastic processes highly nonlinear. Being
the sigmoid in the transition equation a logistic function the LSTAR is model reflex-
ively symmetric. Hence, the resulting model may be able to reproduce steepness but
not deepness which we found to be an important feature of the data at hand. In this
respect, using a class of models indexed by two shape parameters that influence the
symmetry and heaviness of the tails of the fitted transition equation may be more
suitable to fit the non-central regions of the probability function and therefore better
capture the asymmetries found in the previous section.

In the business cycle literature, which is closely related to the application in this
paper, asymmetric behaviour over the business cycle has long been an object of inter-
est in applied and theoretical works. Asymmetric behaviour has been observed in
many macroeconomic series. Therefore, it is not surprising that several variations
of the STAR model have been suggested in the literature. For example, Sollis et al.
(1999) suggest raising the transition function of the STAR to an exponential. Alter-
natively, Sollis et al. (2002) propose to add a parameter inside the transition function

692



Global Cities and Local Housing Market Cycles

in order to control the asymmetry of both tails of the transition function. The sug-
gested procedures successfully address the issue of dynamic asymmetry in several
classical macroeconomic series. However, Zanetti Chini (2018) shows that neither of
these solutions is free from challenges: in the Sollis et al. (2002) model, the transition
function can be non-smooth; whereas the Sollis et al. (1999) parametrisation conveys
a smooth transition, but the ensuing increase in the asymmetry parameter often trans-
lates to no more than a shift effect in the same transition function if it is not properly
restricted. This shift could translate into an almost symmetric predictive density. On
the other hand, the logarithmic (exponential) rescaling of the GSTAR model pre-
serves the smoothness of the transition function by construction. No restrictions are
required for model identification and estimation. Therefore, the specification allows
us to model the two states (or possibly more, if multiple transition functions are
required) in the density function of the process.

The results in Table 4 show that the GSTAR model has good forecasting prop-
erties. This is an important result since the financial stability policy requires action
before the market overheating goes too far and requires financial authorities’ inter-
vention to stabilise the market. It is well known that house price adjustments can
signal impending adjustments in macroeconomic fundamentals (see Iacoviello and
Neri 2010). World cities are more exposed to business cycle movements and may pick
up early signals of economic turmoil. In this respect, reliable forecasting of house
price movements plays a crucial role in informing financial authorities responsible
for maintaining stable markets.

Conclusion

This paper investigates potential asymmetrical adjustment of house prices in cities
which rank high on the Global Power City Index (2018). The index evaluates major
cities in the world according to their comprehensive power to attract people, capital,
and enterprises from around the world. Global cities play a crucial role in support-
ing global finance, trade and enhancing knowledge transfer. A peculiarity of world
cities’ real estate markets is that house price dynamics are driven by local and global
investment demand, which often makes homes rather unaffordable for the average
local income earners. Strong pressure on the demand side and inelastic supply make
these cities vulnerable to housing market bubbles. It is probably not a coincidence
that most of the metropolises under consideration in this paper also score highly in
the UBS Global Real Estate Bubble Index (see UBS Global Real Estate 2018), which
estimates the probability of a bubble bursting in a given metropolis at a given point
in time.

To model house price dynamics we use a generalized logistic function which is
able to parametrize the asymmetry in the transition equation of house price series,
thus capturing the dynamic asymmetry in the conditional mean of house price series.
Our findings reveal several insights into the patterns of the housing markets under
consideration. In particular, the results obtained show extensive evidence of asymme-
try to exist with deep and steep housing cycles frequently detected. This asymmetry
has important implications. First, observing a deep cycle implies that the housing
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market may overheat during expansion phases with high peaks in house prices being
observed or may struggle with severe housing market busts which would trigger
financial instability in the economic system. Therefore, the knowledge of the charac-
teristic features of the cycle may forewarn the economic policymakers to formulate
policy to stabilise the housing market to preserve the economic stability in the coun-
try. Second, given that dynamic asymmetry prevails in the housing markets in all the
cities under consideration, econometric models that tend to be symmetrical in nature
fail to capture fundamental features of the data with important consequences for the
reliability of the estimated parameters. Third, literature has extensively reported on
the ripple effect that the house price dynamics in major metropolitan areas causes in
the neighbouring areas (see, for example, Cook and Holly 2000 and the references
therein). Therefore, the ability to forecast the movements in the housing markets of
large cities may prove crucial for the policymakers and their willingness to ‘lean
against the wind’. Finally, empirical evidence that suggests that housing markets fea-
ture deep and steep cycles may support the construction of theoretical models capable
of explaining why this empirical evidence is so persistent.
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Appendix
Table 6 Estimated parameters for the AR(p) model and diagnostic tests

New York San Francisco Los Angeles Chicago Sydney

φ0 0.002
(0.10)

0.004
(1.33)

0.001
(1.10)

0.004
(1.41)

0.005∗
(2.50)

φ1 0.609∗
(10.5)

0.817∗
(14.58)

0.834∗
(14.13)

0.605∗
(10.08)

0.659∗
(7.24)

φ2 0.290
(5.57)

∗ 0.197∗
(2.98)

−0.156∗∗
(−1.92)

0.199∗
(2.09)

0.175∗∗
(1.66)

φ3 −0.203∗
(−2.98)

−0.335∗
(−4.18)

0.280∗
(3.54)

−0.221∗
(−3.87)

−0.103
(−0.63)

φ4 −0.164
(−2.64)

∗ 0.226∗
(3.96)

−0.167∗
(−3.15)

0.204
(3.64)

∗ −0.297∗
(−2.82)

φ5 0.101
(1.77)

∗∗ − − − 0.113
(1.24)

φ6 −0.234∗
(−2.92)

− − − −
φ7 0.185∗

(3.36)
− − − −

Diagnostic Tests (p-values)

LM test for Serial Error Correlation

q = 4 0.180 0.318 0.966 0.317 0.194

LM Test for Heteroskedasticity

0.731 0.417 0.668 0.245 0.175
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Table 6 (continued)

Singapore Honk Kong Seoul Tokyo Paris Vienna

φ0 0.009
(0.56)

0.002
(0.66)

0.006
(1.50)

−0.004∗
(−4.00)

0.002∗
(2.00)

0.006∗
(3.00)

φ1 0.013
(0.15)

0.343∗
(5.19)

0.962∗
(14.80)

−0.512∗
(−7.87)

0.549∗
(5.96)

0.629∗
(0.110)

φ2 0.246∗
(3.46)

0.154∗
(2.23)

−0.269∗
(−2.92)

−0.164∗
(−2.13)

0.096
(1.07)

0.203∗∗
(5.71)

φ3 0.153∗
(2.09)

0.059
(0.85)

−0.107
(−1.16)

0.032
(0.43)

−0.025
(−0.27)

−0.231∗
(−2.21)

φ5 0.074∗
(2.46)

0.133∗∗
(1.92)

0.076
(0.83)

0.168∗
(2.21)

0.496∗
(5.70)

−
φ6 − − 0.141∗

(2.16)
0.169∗
(2.19)

0.360∗
(4.23)

−
φ7 − − − 0.286∗

(3.76)
− −

φ8 − − − 0.147
(2.16)

∗ − −

Diagnostic Tests (p-values)

LM test for Serial Error Correlation

q = 4 0.129 0.182 0.665 0.583 0.140 0.591

LM Test for Heteroskedasticity

0.207 0.398 0.220 0.574 0.289 0.150

In the top panel the table reports the estimated parameters along with the calculated t-tests (in brackets).
Note that ** and * indicate significance level at 10% and 5% (or less), respectively. The p-values for the
misspecification tests are given in the bottom panel. The diagnostic statistics are: i) the LM test for the
hypothesis that there is no serial correlation against the q-order autoregression, ii) the LM test for the
hypothesis that there is no heteroskedasticity
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