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Abstract
Hedonic regression and repeat sales are commonly used methods in real estate analysis.
While the merits of combining these models when constructing house price indices are
well documented, research on the utility of adopting the same approach for residential
property valuation has not been conducted to date. Specifically, house value estimates
were obtained by combining predictions from repeat sales and various hedonic regres-
sion specifications, which were enhanced to account for spatial effects. Three of these
enhancements—regression kriging, mixed regressive-spatial autoregressive, and geo-
graphically weighted regression—are widely utilized spatial econometric models.
However, a fourth augmentation, which addresses systematic residual patterns in
regressions with district indicator variables and the presence of outliers in housing
data, was also proposed. The resulting models were applied to a dataset containing
16,417 real estate transactions in Oslo, Norway, revealing that when the repeat sales
approach is included, it reduces the median absolute percentage error of solely hedonic
models by 6.8–9.5%, where greater improvements are associated with less accurate
spatial enhancements. These improvements can be attributed to the inclusion of both
spatial and non-spatial information inherent in previous sales prices. While the former
has limited utility for well-specified spatial models, the non-spatial information that is
implicit in previous sales prices likely captures otherwise difficult to observe phenom-
ena, potentially making its contribution highly valuable in automated valuation models.
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Introduction

Accurate property valuation is essential for reducing the inherent uncertainty in housing
transactions. Since home purchase represents the largest investment most individuals
will make in their lifetime, uncertainty tolerance is low. This psychological component
of what is essentially a financial transaction arguably underpins the real estate agent
industry and its business of human appraisal of property market value (Levin 2001).
Accurate property valuation is also critical for housing research. New, well-specified big
datasets combined with more computer power have made it cost effective to construct
more accurate valuation models. Corcoran and Liu (2014) point out that the growing
demand for automatically generated housing value estimates, as an efficient and cost-
effective alternative, may potentially contribute to a more transparent housing market.

In this article, the benefits derived by combining property price predictions yielded by
two well-known valuation methods—repeat sales and hedonic regression—were investi-
gated. The developed models were tested and applied to 16,417 residential property
transactions in Oslo, Norway, between August 2016 and December 2017. Due to the
spatial effects inherent in housingmarkets, the hedonic regression was enhanced with three
widely-utilized spatial econometric models and one outlier-robust model. This was done to
ensure that any change in model performance was caused by methodological effects from
the model combination, rather than the correction of a spatially misspecified regression.

Historically, hedonic price regression models have been used when conducting
house price analysis. First described by Rosen (1974) to value composite goods, this
model assumes that the residential property value is merely the sum of the market value
of its individual characteristics. Thus, accuracy of such hedonic house price predictions
is determined by the data’s ability to identify important housing attributes and correctly
estimate the structural characteristics, time, and location as the main determinants of the
housing value. Although the first two factors require considerate specification, location
modeling has proven particularly challenging in the classic hedonic regression frame-
work. The issue primarily stems from the difficulty in capturing the spatial interactions
in cross-sectional housing data, as these introduce simultaneity and feedback effects
that necessitate use of spatial econometric models (Anselin 2010). This has been a
long-neglected fact in the studies of economics, arguably because spatial analysis is
commonly associated with disciplines like geography and geology (Dubin 1998).

The repeat sales model is another important real estate analysis methodology, and is
based on the premise that the prices at which a specific property has been sold in the
past are useful inputs for estimating future real estate market development (Bailey et al.
1963). When applying this model, it is common to multiply previous sale prices with
the expected market growth to obtain current price estimates. While this method has
been widely used, Case and Quigley (1991) demonstrated the merits of combining
repeat sales with hedonic regression in the construction of house price indices. Their
findings were subsequently confirmed and discussed by Case et al. (1991). However,
extensive literature review has revealed that broader applicability of this combination
has never been explored.1

1 Extensive literature review has failed to uncover any publicly available research on this topic. However,
some companies advertise automated valuation based on both models, e.g., Home Value Explorer® by
FreddieMac (2017).
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To get robust results against spatial misspecification of the hedonic model, repeat sales
price predictions are combined with the predictions yielded by regression models, which
are further enhanced by applying both traditional and state-of-the-art spatial models
reported in pertinent literature, including an ad hoc spatial model proposed in this paper.
Thus, in addition to the primary contribution to the house price valuation methods, we
provide further empirical evidence on the utility of spatial econometric modeling of the
housing market, linking the analyses and findings reported in this paper to one of the most
prevalent research trends in real estate valuation (Krause and Bitter 2012).

Combining regression predictions with the estimates yielded by the repeat sales
model improved the accuracy of all hedonic models with respect to all examined
metrics. These improvements were attained even when novice combination techniques
were adopted, which was primarily attributed to diversification effects (Bates and
Granger 1969). The geographically weighted regression outperformed the other spatial
specifications, indicating that spatial non-stationarity is more prominent than spatial
dependence in the Oslo housing market. Furthermore, combining hedonic regression
and repeat sales within a single model resulted in greater improvements to the outputs
generated by regression models characterized by low accuracy. As the models differed
in terms of location modeling only, it can be posited that repeat sales estimates
contribute at least some spatial information to the overall model output. While the
value of this contribution diminishes for well-specified spatial models, nonetheless,
previous sales prices likely contain a certain amount of non-spatial information that is
otherwise difficult to discern from the market trends. If this assumption holds, previous
sales prices could be particularly valuable for developing automated property valuation
tools, as few alternatives for detecting such information exist aside from human
inspection.

The remainder of this article is organized as follows. First, the Norwegian housing
market, specifically that of Oslo, is introduced in Section 2, while the data employed
when testing the models is presented in Section 3. The real estate evaluation models are
presented in Section 4, while their results are reported and discussed in Section 5. The
main conclusions are presented in Section 6, along with some suggestions for future
research directions in this field.

Background

The Norwegian Property Market

The Norwegian housing market has some noteworthy characteristics, making it highly
suitable for studies on property pricing in general. First, the sales process can be
characterized as an English auction, where the price is determined in a near-perfect
bidding context (Olaussen et al. 2017). Second, most properties for sale in Norway are
announced via standardized advertisements published on the FINN.no website.2 Such a
high degree of transparency and standardization facilitates a comparison between
dwellings and provides high-quality data for market participants. Third, Norwegians

2 FINN covers approximately 70% of the Norwegian housing market (Norge et al. 2017). All properties in the
dataset employed in the current investigation were announced on the site.
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have a strong preference for home ownership as opposed to renting, as indicated by the
82.7% ownership rate reported for 2016 by Eurostat (2016).

The Property Market of Oslo

Oslo is the capital of Norway, and has a 2018 population of approximately 670,000.
Historically, the city has been demographically divided between east and west, whereby
industry workers were based around the Akerselva river in the central and eastern areas,
while wealthier families mainly resided in the western parts (Amundsen 2015). Even
though some former working-class districts like Grünerløkka and Gamle Oslo are
becoming increasingly popular (Faksvåg 2015), the historical pattern with higher prices
in western areas is still evident, as shown in Fig. 1.

Data

The real property transaction data are compiled from the property register of Oslo, andwere
provided by the firm Alva Technologies (Alva). The dataset comprises of all housing

Fig. 1 Administrative districts of Oslo with the price/m2 ranking for 2017 given by Humberset (2018). Data
for district Sentrum (denoted by grey color) were not available, while district Søndre Nordstrand is not
represented in our dataset and is thus not shown on the map

A. Oust et al.186



transactions that took place in Oslo between August 2016 and December 2017. This
dataset provides accurate and comprehensive information on building characteristics for
each transaction, including longitude and latitude of the relevant residential property. Alva
also provided the previous transaction prices for the dwellings, if thesewere available. Prior
to utilizing this data in the current investigation, some modifications were needed. For
example, all entries related to theMarka district were discarded, all dwellings from district
Sentrumwere reassigned to St. Hanshaugen, and there were 36 dwellings labeled asOther
unit type, which after manual checking, were labeled as Apartments. This data preprocess-
ing resulted in 16,417 residential units within the dataset, which was further augmented by
mapping administrative district information from Oslo Kommune (2018), as well as by
obtaining additional data by reviewing the corresponding FINN advertisements. An
overview of the variables included in the regression models is provided in Tables 1, 2, 3,
4, and 5, where all attributes are specified as indicator variables. Variables derived directly
from FINN are described in Table 5.

Parts of the information sourced from FINN were obtained through word recogni-
tion, which was applied to the advertisement title. Thus, only the property character-
istics highlighted by the seller/agent were examined, potentially disregarding the
attributes that certain properties possess. However, the likelihood of missing potentially
vital information was limited, as these titles are comprehensive, with the examined
dwellings included in the dataset containing almost 17 words on average, which is
sufficient for promoting multiple property characteristics. Furthermore, since data
related to variables that typically enhance property value, such as Has a garden, were
also retrieved, the effect of the problem on the models presented is negligible, as
promoting such attributes is in the seller’s interest.

In the repeat sales method, Statistics Norway’s Price index for existing dwellings for
Oslo and Bærum (Monsrud and Takle 2018) was used as a proxy for the expected price
appreciation, as it provides sales information from 1993 to the present. The distribution
of the numbers of previous sales for the dwellings used in the repeat sales method is
provided in Table 6.

Table 1 Construction year
Construction year Dwellings

1820–1989 12,894

1990–2004 1120

2005–2014 2063

2015–2017 340

Total 16,417

Table 2 House type distribution
House type Dwellings

Apartment 14,592

Semi-detached house 367

Detached house 385

Serial house 1073

Total 16,417
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Methodology

In this section, an ordinary hedonic regression model is introduced, with an emphasis
on the intercept area dummy variables constructed using the k-means and k-nearest
neighbor algorithms. Next, the following four extensions to the basic regression model
are described: regression kriging, mixed regressive, spatial autoregressive model,
geographically weighted regression, and vicinity-based residual tuning.

Finally, the way in which the estimates yielded by the repeat sales model are
combined with the hedonic regression estimates is delineated. The schematic represen-
tation of the proposed models is given in Fig. 2, where the geographically weighted
regression is denoted by a dashed line, since variables related to districts are omitted in
this model.

Basic Hedonic Regression Model

The hedonic regression model was first introduced by Rosen (1974), and has since been
widely used in property valuation, due to the prevalent view that residential property
value can be approximated by the sum of the market value of its constituents. In the
model employed, the value of a given dwelling is represented by the sum of its
common debt3 at sales and the sales price, divided by the area in m2, as given below:

Pi ¼ sales pricei þ common debti
house areai

: ð1Þ

3 In Norway, cooperatives and apartment buildings can take on common debt, for example, to renovate the
building. Especially for cooperatives, the common debt can be high compared with the transaction price of an
apartment. The total price of a dwelling in Norway is the transaction price, plus the dwellings share of the total
common debt.

Table 3 District distribution
District Dwellings

Alna 1317

Bjerke 719

Frogner 1616

Gamle Oslo 1647

Grorud 771

Grünerløkka 2079

Nordre Aker 816

Nordstrand 1038

Sagene 1949

St. Hanshaugen 1193

Stovner 556

Ullern 641

Vestre Aker 725

Østensjø 1,35

Total 16,417
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The natural logarithm of Pi given by Eq. (4.1) is estimated by evaluating contributions
to the price by using multiple linear regression for each utility-bearing attribute. The
general equation to be estimated is given by:

ln Pið Þ ¼ β0 þ ∑
k
βkX ki þ ∑

n
δnDni þ ϵi; ϵ∼i:i:d: ð2Þ

where P is the price variable as defined in Equation (4.1); Xk is a set of explanatory
variables, describing a presence of the utility-bearing characteristic k (including both
building characteristics and dummy variables pertaining to time); Dn is a set of n area

Table 4 Size distribution
Dwelling Size Dwellings

10—29 m2 578

30—39 m2 1513

40—49 m2 1933

50—59 m2 2886

60—69 m2 3277

70—79 m2 1901

80—89 m2 1303

90—99 m2 757

100—109 m2 578

120—119 m2 348

120—129 m2 292

130—139 m2 203

140—149 m2 165

150—179 m2 328

Above 180 m2 355

Total 16,417

Table 5 Variables retrieved from FINN advertisements

Dwellings % of total

High monthly shared cost 1642 10.0%

Two bedrooms & size <60 m2 932 5.7%

Three bedrooms & size <85 m2 835 5.1%

Housing cooperative 8615 52.5%

Needs refurbishment 1158 7.1%

Is a penthouse 2299 18.2%

Has a garden 1659 10.1%

Has a terrace 1139 6.9%

High monthly shared cost is defined as being ranked within the top 10% for all dwellings in the dataset, the
threshold being NOK 4713 per month; two bedrooms & size < 60 m2 is the number of 2-bedroom dwellings
covering an area smaller than 60 m2 ; three bedrooms & size < 85 m2 is the number of 3-bedroom dwellings
with the floor area smaller than 85 m2 ; housing cooperative denotes whether the dwelling is part of a housing
cooperative. The self-explanatory variables “Needs refurbishment,” “Is a penthouse,” “Has a garden” and
“Has a terrace” were retrieved by word recognition
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indicator variables; ε is the error term, and β0, βk and δn are the parameters to be

estimated, with their respective estimates denoted as β̂0, β̂k and δ̂n. As the data only
span over 17 months and cover a single city, the common assumption that parameter
vectors are invariant across space and time is deemed valid (de Haan and Diewert
2013). In line with the approach adopted by Koenker and Bassett Jr (1978), Equation
(4.2) is estimated using least absolute deviation (LAD), since LAD is more robust
towards outliers compared to ordinary least squares (OLS) and other estimators based
on distributional assumptions (Yoo 2001). An overview of the structural explanatory
variables used in Equation (4.2) is given in Tables 1, 2, 3, 4, and 5. To incorporate
spatial and temporal variability in Equation (4.2), intercept indicator variables, which
are further discussed in the following subsections, were introduced. Price predictions in
nominal values are obtained by taking the exponential and multiplying it by a scale
factor to minimize underestimation bias in the transformation. The scale factor is
estimated by regressing unscaled price estimates from the training sample on their
corresponding real prices through the origin, where the 1% most expensive dwellings
are discarded to control for outliers in the data.

The prices of houses are volatile, as they are subject to seasonality and other effects,
and are generally substantially influenced by time (Reichert 1990). However, since the
aim was to model spatial effects, the temporal dimension is neglected. Specifically, to
ensure that model output is unbiased by market price developments, this effect was
isolated by including monthly dummies as explanatory variables into all regression
models. Furthermore, the test sample was constructed by randomly drawing 20% of the

Table 6 Number of sales for a dwelling in the dataset

Number of sales Dwellings % of total

One sales 3279 20.0%

Two sale 5631 34.3%

Three sales 4109 25.0%

Four sales or more 3398 20.7%

Total 16,417 100.0%

The table shows the number of dwellings and the share of the dataset where we have data on one sale, two
sales, three sales and four or more sales

Fig. 2 Overview of spatial models and extensions used in the present study. The dashed line indicates that
district indicator variables cannot be specified in the GWR model

A. Oust et al.190



observations from the full sample. Because of this approach, the two samples used for
estimating and testing the models, respectively, span the same time horizon and thus
eliminate the temporal dimension.

The k-means algorithm was applied to the training data sample to construct
artificial market districts characterized by more homogeneous property pricing
processes while retaining cohesiveness. For this purpose, the distance between
dwellings was measured as a function of longitude, latitude and price, whereby
the latter was calculated by applying Equation (4.1). After clustering the training
set, k-nearest neighbors were used to classify dwellings in the test sample based on
the newly constructed districts, measuring the distance in a classical, geographic
sense using the haversine formula (Sinnott 1984). In empirical trials, the best results
were obtained when the values of k in the k-means algorithm ranged from 14 to 20,
and k = 18 was adopted in the final model. An illustrative plot comparing a k-means
clustering with k = 14 and administrative borders is shown in Fig. 3. The k in the k-
nearest neighbor algorithm was set to 3, based on empirical trials, as well as visual
inspection of district shapes produced by the k-means.

Fig. 3 Comparison of administrative districts (lines) and statistically generated districts delineated by using
the k-means (colored markers) for the city of Oslo. The final k-means models are based on k = 18, whereas this
map is obtained by using k = 14 for easier visual inspection of algorithm functioning. Color gradient indicates
the average price/m2 for each k-means district, and is thus directly comparable to the map provided in Fig. 1.
Number of observations is 13,133
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Regression Kriging

As argued by Dubin (1988) and Basu and Thibodeau (1998), among others,
spatial dependence in the housing price process can be modeled by assuming
that the original functional relationship given by Equation (4.2) holds, while
abandoning the assumption that the error term is independent and identically
distributed (i.i.d.), which requires modeling of the error covariance structure.
Adopting this approach for prediction builds on the statistical interpolation
technique known as kriging. Following the previously outlined notation, Equa-
tion (4.2) can be rewritten as:

ln Pið Þ ¼ β0 þ ∑
k
βkX ki þ ∑

n
δnDni þ ϵi; ϵ∼N 0;σ2C

� � ð3Þ

where C is the error correlation matrix. To estimate Equation (4.3), a functional
form for the error term’s covariance structure must be assumed. The parameters
of this function, along with the normal regression coefficients, are simulta-
neously estimated using the maximum likelihood method. However, it should
be noted that estimation of Equation (4.3) can become very complex when the
dataset includes nonlinear explanatory variables (Hengl et al. 2007). Moreover,
parameter instability is another major concern commonly encountered in prac-
tice (Goovaerts 1999).

To mitigate these issues, the estimation process can be divided into two phases. First,
the linear regression parameters β0, βk and δn are estimated using a less complex
estimator—LAD, as previously noted. Next, the error covariance function parameters
are estimated by simple kriging4 with zero mean on the residuals from the first
regression. The prediction process is finalized by adding the fitted residual from the
simple kriging model to the fitted value from the linear regression. In mathematical
terms, the predicted value for dwelling i in the test sample having structural character-
istics X ′ and D ′ is given by

ln P̂i

� �
¼ β̂0;LAD þ ∑

k
β̂k;LADX

0
ki þ ∑

n
δ̂n;LADD0

ni þ ∑
j
wijϵ̂ j;LAD; j≠i ð4Þ

where ε̂ are the LAD residuals from the training sample, and wi j are the elements of the
weight matrix W, determined by the a priori chosen covariance function. This two-step
procedure was denoted as regression kriging by Odeh et al. (1995). Predictions yielded
by Equation (4.4) and those resulting from directly estimating Equation (4.3) are
mathematically equivalent. Indeed, Hengl et al. (2003) demonstrated that as long as
the assumed covariance function is identical, the difference is restricted to the compu-
tational steps.

Several structural covariance functions are applicable in kriging, provided that
correlation between observations decreases with increased physical distance. In the

4 The term simple kriging is used when the mean of the dependent variable is assumed to be known a priori
(Cressie 1990).
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current analyses, it is assumed that the error covariance follows the negative exponen-
tial form given below, as proposed by Case et al. (2004).

cij ¼ b1 þ e−
dij
b2 ; j ¼ 1; 2; 3;…; 100; j≠i

where the parameters b1 and b2 are estimated in the second step of the regression
kriging procedure outlined above; di j are Euclidean distances between dwelling i and
dwelling j, and ci j are entries in the C-matrix derived from Equation (4.3). To calculate
the weights based on the covariance matrix, the relationship W =C−1c was assumed,
where c is a vector of the covariances between the training data points and the
estimation point (Bohling 2005). To limit the computational cost, the number of
neighbors for each dwelling was limited to 100.

At this juncture, it is important to note that generalized least squares (GLS) is
typically recommended as the proper estimator in the first step of regression kriging,
to account for spatial autocorrelation in the error term (Cressie 1990). However,
Kitanidis (1993) demonstrated that the difference between several iterations of GLS
and a single iteration (OLS) is too small to have any notable effect on the final output.
To test this claim, both GLS and LAD were adopted, yielding marginal differences that
were in line with the findings reported by Kitanidis (1993). Thus, LAD was chosen to
ensure that a consistent choice of estimators is employed across all the models
evaluated.

Mixed Regressive, Spatial Autoregressive Model

As argued by Can (1992), spatial dependence in the housing price determination
process can be modeled by including a function of the dependent variable as an
autoregressive term in the standard hedonic regression (Equation (4.2)). Using the
specification put forth by Fotheringham (2009), the model can be expressed as:

ln Pið Þ ¼ β0 þ ρ∑
j
wijln P j

� �þ ∑
k
βkX ki þ ∑

n
δnDni þ ϵi; j≠i ð5Þ

where ρ is a measure of the overall level of spatial dependence among (ln(Pi), ln(Pj))
pairs for which wi j > 0 and wi j are spatial weights assigned to the sales price of dwelling
j. Other variables are as described in Section 3. Including the dependent variable to the
right-hand side of the equation induces simultaneity; hence, estimating Equation (4.5)
with OLS or LAD produces biased estimates. However, this approach is commonly
adopted, as appropriate estimation using maximum likelihood is extremely challenging
(Farber and Yeates 2006). A different solution was proposed by Can and Megbolugbe
(1997), who advocated for inclusion of an additional constraint, thus giving Equation
(4.5) the following revised form:

ln Pitð Þ ¼ β0 þ ρ∑
j
wijln P j;t−m

� �þ ∑
k
βkX ki þ ∑

n
δnDni þ ϵi; m ¼ 1; 2;…; j≠i ð6Þ

The distinction between Equation (4.5) and (4.6) is that the dependent variables in the
latter are determined at time t and are hence exogenous, rendering OLS and LAD
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unbiased estimators. The weighting function, again following Can and Megbolugbe
(1997), is given by:

wij ¼

1
�
dij

∑ j
1
�
dij

� � : dij < 1:5km

0 : dij≥1:5km

j ¼ 1; 2; 3;…; 15; j≠i

8>>>><
>>>>:

ð7Þ

where di j are Euclidean distances between dwelling i and dwelling j, with j representing
the 15 dwellings located closest to dwelling i, and having earlier sales dates than
dwelling i. In the special case where two dwellings share the same location, di j is set to
10 m, to ensure that Equation (4.7) is defined for all observations.

It is also worth noting that some dwellings in the dataset are situated at
remote locations and thus, no relevant neighbors are available for defining the
autoregressive term. The same issue arises for the oldest transactions within the
sample. Therefore, to retain the same number of observations for all models,
the autoregressive term for the aforementioned dwellings was assumed to be
equal to the average log (price) for the relevant district, with the price defined
by Equation (4.1).

Geographically Weighted Regression

As argued by Wheeler and Calder (2007), the housing price process is non-stationary
over space, and the coefficients in the traditional hedonic regression represent the
global “average” only. Thus, accurate predictions necessitate application of an en-
hanced regression model that permits parameter variation across space (Yao and
Fotheringham 2016). The geographically weighted regression method enables such a
local parameter estimation. We adopt the notation given by Fotheringham et al. (2002),
resulting in a revised traditional regression framework given by:

ln Pið Þ ¼ β0 ui; við Þ þ ∑
k
βk ui; við ÞX ki þ ϵi; ð8Þ

where ui and vi denote the coordinates of the ith point in space, and βk(ui, vi) is a
realization of the continuous function βk(u, v) at point i. Note that the location area
indicator variable D from Equation (4.2) is omitted in Equation (4.8), which contains a
greater number of unknown variables. Consequently, at point i, Equation (4.8) is
approximated by:

ln Pið Þ ¼ β0 þ ∑
k
βkX ki þ ϵi; ð9Þ

The parameters β0 and βk are independently estimated for all i locations with dwellings
in the test sample. Estimation is conducted by weighting the observations in accordance
with their proximity to location i, and the parameters are chosen to minimize the
weighted sum of squared residuals. In line with the approach proposed by
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Fotheringham et al. (2002), Equation (4.9) is estimated with the weights calculated
using a Gaussian kernel function:

wij ¼ e−0:5
d2
ij
b ; i≠ j ð10Þ

where dij are the Euclidean distances between point i and j; b is denoted as bandwidth,
and is chosen by applying the cross-validation optimization approach described by
Cleveland (1979). The practical implication of this choice is that only a small subset of
the observations in the training sample is used to estimate Equation (4.9) at the different
points i. Thus, the estimate for a given dwelling is vulnerable to anomalies in the data
related to the neighboring dwellings.

Vicinity-Based Residual Tuning

An automated variant—referred to as vicinity-based residual tuning, or VRT—of a
valuation method commonly used by real estate agents is adopted. In the original
approach, a limited number of recently sold properties in the immediate neighborhood
(usually 3 to 6) is used to provide a house value estimate (Can and Megbolugbe 1997;
Pace et al. 2000). The procedure outlined here is based on the premise that differences
between properties are already controlled for in the residuals of a hedonic regression.
Moreover, the issues that arise from including district intercept dummies in a regres-
sion, as outlined by Fik et al. (2003), are also addressed.

The fitted values for dwellings in the test set were obtained by using regression
coefficients estimated on the training set. Next, for each dwelling in the test set, the
sales date was denoted by τ. The κ closest neighbors from the training set sold before
time τ, located within the same district5 and within a radius of maximum μmeters were
identified. The residuals of the neighbors were extracted before calculating their
median, which was multiplied by a deflation factor α (along with another deflation
factor β if the number of neighbors is below λ). Finally, this residual was added to the
fitted value to obtain the VRT estimate, as shown in Table 7.

Specifying area intercept dummies in a hedonic regression often results in low
prediction accuracy close to district borders, where residuals with different magnitudes
and signs are clustered on either side of the border. Figure 7 provides an example of
such effects. To address this issue, the district constraint was included in the step (i)
above. Further, an outlier with an extreme residual value included as a neighbor can
have a severe impact on the model accuracy. In the present investigation, this effect was
mitigated by using the median and including the (λ, β) clause in the step (ii) above,
where λ = 3 corresponds to the lowest number of neighbors where the smallest and
largest neighbor residual value is discarded in the calculation of the median. The
remaining model parameters were determined by applying the following reasoning: μ
was chosen intuitively, and α and β values were determined by empirical trials, while
the selection of κ was based on the approach recommended by Can and Megbolugbe
(1997).

5 Either administrative or generated by k-means, depending on the variable type required in the regression.
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Constructing and Combining Repeat Sales Predictions

A common drawback of all hedonic house price models stems from the high hetero-
geneity among dwellings, rendering the inclusion of all price-influencing attributes
infeasible (Case et al. 1991). To overcome this issue, repeat sales analysis was
conducted, as this allowed for some of the effects to be captured that would have been
otherwise difficult to observe through the former sales prices of a given dwelling. The
model is grounded in the assumption that residential property prices have developed in
line with the overall market trends, as described by the house price index, implying that
the quality of each dwelling is assumed comparable at the time of each sales transac-
tion. As outlined in Section 3, Statistic Norway’s Price index for existing dwellings for
Oslo and Bærum provides quarterly data dating back to 1993. In adopting this resource,
a maximum of three previous transactions for each dwelling was considered, giving
preference to the most recent transactions, excluding all sales that occurred prior to
1993, as this period precedes the development of the aforementioned price index.

The premise that a dwelling’s quality is similar at different transaction times is a
questionable assumption. If previous sales conditions are unrepresentative for the
dwelling’s condition at resale, the repeat sales estimate is likely to be erroneous. To
remove such outliers, all repeat sales estimates deviating by more than 25% from the
combined regression estimate were discarded, in line with the approach recommended
by Anon (2013). To obtain one final prediction, the remaining estimates were combined
following a step-by-step procedure. The weight given to the hedonic regression
estimate was at least 60%,6 and heavier weighting was given to predictions based on
more recent sales than preceding transactions. In line with the approach utilized by
Clemen (1989), only simple linear combination techniques were used.

Results and Discussion

The performance7 of an ordinary hedonic regression without any location attributes is
displayed in the top row of Fig. 4. As this model includes no spatial information, it
represents a benchmark for assessing the utility of all enhancements incorporated into
subsequent models to address the spatial aspect of residential property pricing. A
comparison of the results confirms the strong influence of location on housing value.
Indeed, the sole addition of administrative district indicator variables (row 2) reduces
the median error from 12.1% to 8.05%, an improvement of 33.5%. Interestingly,
augmenting the benchmark model with either regression kriging (row 5) or the mixed

6 By testing different weighting and combinations we found no single optimal solution for multiple perfor-
mance metrics, resulting in our choice of a “trail-and-error” based weight of 60% for the regression estimate
that resulted on both high prediction and low volatility across multiple runs.
7 Generally, model performance is measured by median absolute percentage error (Q0.5).

Table 7 Parameter values
yielded by the VRT method

κ μ α β λ

6 150 0.7 0.5 3
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regressive, spatial autoregressive model (row 9) yields similar improvements, from
12.1% to 8.18% and 7.70%, respectively. Thus, it can be argued that district intercept
dummies incorporate the effect of location somewhat accurately, although several
methods can be adopted to address this issue. The extensive use of indicator variables
is likely driven by the intuitive interpretation of the parameters, as well as ease of
implementation. However, reliance on such variables, particularly when based on
administrative districts, disregards intra-district variation and tends to result in irregular
residual patterns close to borders. The resulting residual pattern from using adminis-
trative borders is plotted in Fig. 7.

Statistically-generated districts can mitigate the aforementioned issues. A compari-
son of the administrative and a k-means based division of Oslo is depicted in Fig. 5. As
the k-means operates independently of administrative districts, any area similarities are
coincidental. An interesting case is found in the administrative district Alna, where k-
means classifies the dwellings into four districts, indicating marked internal price

Fig. 4 Model refers to the methods outlined in Section 4.1–4.5; Admin district and the K-means indicate if the
boundaries for the area dummy variables are administrative districts or are generated by the k-means,
respectively (irrelevant for the GWR model); Repeat sales indicates whether the results are obtained after
combining the output with the repeat sales predictions; Q0.25, Q0.5 and Q0.75 denote the first, second, and third
error quartile, respectively, where Q0.5 is boldfaced for emphasis; Within 10% specifies the fraction of errors
below 10%; Row no. is row number provided for convenience when referring to this figure. The results shown
are average values based on the outputs of 10 runs for each implementation. The number of observations used
for model training is 13,133, while the number of out-of-sample observations is 3284

Combining Property Price Predictions from Repeat Sales and... 197



differences. Further observations can be gleaned from comparing and Figs. 1 and 3, as
well as Figs. 6, 7 and 8, which are provided in the Appendix. Improved performance
from using k-means districts becomes evident when comparing row 2 and 3 in Fig. 4,
as the median absolute percentage error improves from 8.05% to 7.67%. Moreover, the
corresponding Moran’s I and Geary’s C values (Moran 1950; Geary 1954; Cliff and
Ord 1970) indicate reduced spatial autocorrelation in the residuals. As stated in
Subsection 4.1.2, the k-means is set to divide the city into a higher number of districts
(18) than the administrative division (14), due to more stable performance. Results
based on different values of k are shown in Appendix Table 8, supporting the
algorithm’s conceptual advantages, as the improvement arising from implementing
the k-means with 14 districts is relatively high compared to the improvement stemming
from finer district fragmentation.

District indicators are insufficient to appropriately model refined spatial patterns.
Thus, the performance of the global augmentations—the regression kriging, and mixed
regressive, spatial autoregressive models—are examined here first. Without incorpo-
rating district variables, both models display improved prediction accuracy compared to
the benchmark model, as already mentioned. When district variables are included in the
model, accuracy increases further, although not substantially. A less intuitive result is
that the two spatial models seem indifferent to the choice of district representation, as
indicated by a comparison of results reported in row 6 with those in row 7, as well as
row 10 with row 11 in Fig. 4, in contrast to the clear advantage of applying the k-means

Fig. 5 Visualization of improved performance achieved by combining repeat sales predictions with hedonic
regression predictions. The bold number above the arrows indicates the reduction in median absolute
percentage error in percentage terms. The row number at the bottom of each column indicates the corre-
sponding row in Fig. 4
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to the ordinary regression. Two possible explanations can be offered for this finding.
First, the influence of district dummy variables declines when location is concurrently
modelled by several methods. This assertion is supported by a comparison of the
absolute values of the location dummy parameters from the hedonic regressions with
the k-means districts and hedonic regressions, and the k-means districts and
autoregressive term. Second, the two enhancements correct some spatial abnormalities
caused by the administrative district, reducing the need for the k-means. Finally, the
autoregressive model outperforms regression kriging. However, this finding cannot be
compared to previously published results, as none are available. Moreover, in line with
LeSage and Pace (2014), applying different weighting functions in the regression
kriging model did not affect the results. However, while this might reduce the credi-
bility of the kriging implementation presented here, the effect of combining these
predictions with repeat sales estimates, which are discussed later in this section,
coincides with the remaining spatial models.

The VRT model performs second-best among those aimed at spatial enhancements
(as can be seen from the results reported in rows 14 and 15 in Fig. 5). These findings
are supported by the arguments presented by Chan et al. (1999), who highlighted the
severe impact of outliers on most models, which is avoided in VRT since it is
constructed to be more outlier-robust. It is also noteworthy that the VRT model only
performs well for specifications including district variables,8 likely due to the inability
to distinguish more district-wide trends when considering a very limited number of
neighbors. However, rather than adjusting the model to capture such trends, it is
intrinsically tailored to address spatial residual patterns emerging from the use of
intercept dummy variables in a regression. Thus, the method probably has limited
use in general forecasting. Nonetheless, it is highly effective in this specific context.
VRT also seems indifferent to the choice of district representation, most likely for the
reasons suggested earlier for regression kriging and the autoregressive model.

The geographically weighted regression emerges as the most precise spatial en-
hancement (as shown in row 17 of Fig. 4). Since this model assumes and addresses
spatial non-stationarity, such significant improvement strongly suggests that this is the
more prominent spatial effect in the Oslo housing market. The fact that GWR seems to
outperform other spatial models for out-of-sample predictions corresponds with the
findings reported by Farber and Yeates (2006) and Páez et al. (2008). However, it
contrasts arguments put forth by Harris et al. (2010) and Harris et al. (2011), who
recommended universal kriging. Although GWR tends to provide precise predictions, it
has received criticism owing to its limited value for making inferences. Furthermore,
the method is sensitive to outliers on a local level, which is particularly problematic in
housing valuation, where outliers pose a permanent challenge.

The gain from combining repeat sales predictions with hedonic regression
forecasts is evident in Fig. 4 and is further emphasized in Fig. 5, where the
median absolute error achieved by the different regression models pre- and
post-combination is plotted, which is equivalent to comparing rows 4, 8, 12,
16, and 18 with the corresponding values in Fig. 4. In fact, the tabulated results
reveal that combining repeat sales predictions with hedonic regression forecasts
improves model accuracy by every metric and for every variation of the

8 Row 13 in Figure 4 shows unsatisfactory performance by VRT where district variables are omitted.
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hedonic regression. To support diversification as the main driver behind this
improvement, as argued by Bates and Granger (1969), as opposed to a deteri-
oration of highly accurate repeat sales predictions, independent repeat sales
results are provided in Appendix Table 9. The data reported in this table
confirm that, when used in isolation, repeat sales predictions are outperformed
by all regression models incorporated into the combined models, supporting the
diversification argument. It is also worth noting the considerable effect of
outlier removal on the repeat sales estimates, which becomes evident when
the two rows in Appendix Table 9 are compared. This is arguably a necessity
to replicate the level of improvement from the repeat sales/hedonic regression
combination.

Apart from the overall increase in model accuracy, Fig. 5 shows that
improvements derived from combining repeat sales with other enhancements
vary between the regression models, where a more substantial effect is observed
when the initial regression error is large. Since the regression models only
differ in terms of location modeling, it can be argued that repeat sales contrib-
ute at least some spatial information, the value of which diminishes for more
sophisticated spatial models. Arguably, location is modeled well in the
autoregressive, VRT, and GWR models, where the combination of the repeat
sales method resulted in similar improvements of 0.51, 0.52, and 0.45 percent-
age points, respectively. Consequently, it is reasonable to conclude that the
predominant part of these improvements stems from the incorporation of non-
spatial information omitted from the hedonic regression. Although it is not
verifiable, this argument is supported by the inherent heterogeneity of dwell-
ings, making inclusion of all price-influencing attributes in a regression frame-
work infeasible (de Haan and Diewert 2013).

Based on the preceding discussion, it can be posited that previous sales
prices can provide specific value in two ways. Most importantly, they can
incorporate information on difficult to observe attributes. This could have a
pivotal value in automated property valuation, as there are few alternatives for
detecting such information besides human inspection. Second, they enable the
implementation of a scalable, parsimonious forecasting model, incorporating
easily available attributes only, and relying on previous sales prices to incor-
porate information on the omitted, more market-specific attributes. As no
universal hedonic specification presently exists (Bowen et al. 2001), local
expertise remains necessary to identify relevant price-influencing attributes in
each market (Gelfand et al. 1998).

While the conceptual advantages of combining the hedonic regression and
repeat sales methods are demonstrated, some practical limitations of such
approaches should also be noted. First, collecting previous sales price data
reflecting current housing quality is generally hard, and can even be impossible
in certain cases. Newly-built dwellings obviously lack such data, but very old
sales prices are not informative either, as they rarely represent the current state
of the property (Case and Shiller 1987). Thus, the combination might be less
useful for markets where houses are traded less frequently, such as rural or
suburban areas in which family homes predominate (Clapp et al. 1991). In
addition, there will be an inevitable lack of data for some residential properties,
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preventing the method’s applicability to all dwellings. Finally, the scale of the
model improvement should also be considered when deciding if combining the
modeling approaches is useful in practice. For example, in the present analyses,
the median error of GWR was reduced from 6.65% to 6.20% (a 6.8% im-
provement) when combining the regression predictions with estimates from
repeat sales. This rather marginal improvement might imply that the combina-
tion has little practical implication. Arguably, both models are good enough for
obtaining an approximate value estimate. Nonetheless, neither is good enough
to make end users confident in the results.

Conclusion

A central aspect of uncertainty in housing transactions is inaccurate property
valuation. In this article, the benefits derived by combining property price
predictions yielded by two well-known valuation methods—repeat sales and
hedonic regression—were investigated. The developed models were tested and
applied to 16,417 historical residential property transactions in Oslo, Norway.
Due to the spatial effects inherent in housing markets, the hedonic regression
was enhanced with three widely-utilized spatial econometric models and one
outlier-robust model. This was done to ensure that any change in model
performance was caused by methodological effects from the model combina-
tion, rather than the correction of a spatially misspecified regression.

The studied combination resulted in improved accuracy for all hedonic
regressions on all metrics, which was attributed to diversification, as proposed
by Bates and Granger (1969). Models with lower pre-combination accuracy
yielded greater improvements, where reduction in median absolute percentage
error ranged from 9.5% for the ordinary regression to 6.8% for the geograph-
ically weighted regression. This difference in gains is argued to indicate that
repeat sales predictions contribute at least some spatial information. While this
contribution might have limited value for refined spatial models, the existence
of some non-locational information in previous sales prices could nonetheless
have pivotal value for automated property valuation, as there are few alterna-
tives for detecting such information aside from human inspection.

When interpreting the findings reported in this paper, certain limitations of the
model combination should be noted. Specifically, non-existent or inapplicable
previous sales price data in certain markets is inevitable. Optimizing the simple
combination scheme presented in this paper is also advantageous for future
studies, e.g., through more considerate implementation of the temporal dimension
of previous sales. Similarly, improving repeat sales accuracy by, for example,
applying local price indices would be beneficial. With broader trends in automatic
housing valuation, machine learning appears to be the focal point of research at
the expense of hedonic regression (Park and Bae 2015). However, these tools
remain highly dependent on the quality and quantity of observable, quantifiable
data (Trawiński et al. 2017). Thus, given that previous sales prices seem to
incorporate some otherwise difficult to capture information, a repeat sales/
machine learning combination is an interesting direction for further research.
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Appendix

Table 8 K-means results with varying k, compared to administrative districts

District type Q0.25 Q0.50 Q0.75 Within 10% Moran’s I Geary’s C

Administrative 3.74% 8.05% 14.1% 59.6% 0.143 0.826

K-means (k = 14) 3.61% 7.78% 13.9% 60.8% 0.125 0.839

K-means (k = 16) 3.66% 7.78% 13.9% 60.8% 0.115 0.853

K-means (k = 18) 3.55% 7.67% 13.5% 61.6% 0.107 0.860

K-means (k = 20) 3.54% 7.62% 13.6% 61.5% 0.098 0.870

K-means (k = 22) 3.57% 7.64% 13.6% 61.5% 0.103 0.866

“District type” refers to the type of district indicator used; “Q0.25, Q0.5 and Q0.75” denote the first, second and
third error quartile, respectively. “Within 10%” specifies the fraction of errors below 10%, and values for
“Moran’s I” and “Geary’s C” is presented. The tabulated results pertain to 14 administrative districts and
represent average values from 10 runs for each implementation. The number of observations used for model
training is 13,133, while there were 3284 out-of-sample observations

Table 9 Independent repeat sales results

Model Q0.25 Q0.50 Q0.75 Within 10% Number
of Observations

Percentage
of Total

Repeat sales 4.11% 8.88% 16.1% 54.8% 13,138 80.0%

Repeat sales after outlier removal 3.68% 7.77% 13.4% 61.5% 11,69 71.2%

Model refers to whether the repeat sales estimates have undergone outlier removal; “Q0.25, Q0.5 and Q0.75”
denote the first, second and third error quartile, respectively and “Within 10%” specifies the fraction of errors
below 10%. “Number of Observations” denotes the number of entries with previous sales prices, and
“Percentage of Total” indicates the latter number as a percentage of the entire data set. The similarity between
the number of entries with previous sales before outlier removal (13,138), and the number of observations
used for model training (13,133) is purely coincidental
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Fig. 6 Out-of-sample residuals from the hedonic regression without spatial enhancements or district indicators
(referred to in Section 5 as the benchmark model) depicted on the map of Oslo. Lines represent administrative
district boundaries, while marker color indicates residual value for each dwelling. Observations: 3284
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Fig. 7 Out-of-sample residuals from the hedonic regression with administrative district indicators depicted on
the map of Oslo. Lines represent administrative district boundaries, whereas marker color indicates residual
value for each dwelling. Observations: 3284
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