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Abstract
In this study, we develop and apply a new methodology for obtaining accurate and
equitable property value assessments. This methodology adds a time dimension to the
Geographically Weighted Regressions (GWR) framework, which we call Time-
Geographically Weighted Regressions (TGWR). That is, when generating assessed
values, we consider sales that are close in time and space to the designated unit. We
think this is an important improvement of GWR since this increases the number of
comparable sales that can be used to generate assessed values. Furthermore, it is likely
that units that sold at an earlier time but are spatially near the designated unit are likely to
be closer in value than units that are sold at a similar time but farther away geograph-
ically. This is because location is such an important determinant of house value. We
apply this new methodology to sales data for residential properties in 50 municipalities
in Connecticut for 1994–2013 and 145 municipalities in Massachusetts for 1987–2012.
This allows us to compare results over a long time period and across municipalities in
two states. We find that TGWR performs better than OLS with fixed effects and leads to
less regressive assessed values than OLS. In many cases, TGWR performs better than
GWR that ignores the time dimension. In at least one specification, several suburban and
rural towns meet the IAAO Coefficient of Dispersion cutoffs for acceptable accuracy.

Keywords Time-geographically weighted regression . Residential property assessment .

Coefficient of dispersion . Price-related differential . Percent absolute prediction error

Introduction

Two important considerations in real estate assessment are the accuracy and equity of
property assessments. These considerations can be measured in terms of the Coefficient
of Dispersion (COD) and the Price-Related Differential (PRD), as described by the
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International Association of Assessing Officers (IAAO). “Uniformity” is measured
with the COD (IAAO, 2013), while “vertical equity” is measured with the PRD
(IAAO, 2003). From a statistical perspective, the percent absolute prediction error
(PAPE) is a common measure of predictive accuracy.

There have been many studies in recent decades that consider spatial aspects to more
uniformly and equitably estimate assessed values. Among others, these include the
nonparametric and/or semi-parametric approaches of Geographically Weighted Regres-
sions (GWR), also commonly referred to as Locally Weighted Regressions (LWR). The
LWR methods were developed in Cleveland and Devlin (1988) and later used in urban
economics by Meese and Wallace (1991) and McMillen (1996). Among a class of
Automated Valuation Methods (AVM), including least squares regressions and fixed
effects regression estimations, GWR has been shown to be a favorable alternative in
general by Bidanset and Lombard (2014a, b), Borst and McCluskey (2008) and
McCluskey et al. (2013), among others. Another set of semi-parametric approaches,
known as local polynomial regressions as in Cohen et al. (2017), is intended to address
the separate valuation of land and improvements; however, its computational intensity
has deterred widespread use in practice.

But little attention has focused on incorporating the time dimension into GWR or
LWR models in the context of AVM, such that when assessing properties, the impor-
tance of comparables will depend on exactly how long ago they sold. Bringing this time
element into the GWR model for the purposes of estimating assessed values and
examining the effects on uniformity and vertical equity is a critical contribution of
our research. The goal of our paper is to provide the foundations of Time GWR as a
method and then demonstrate its potential value for assessors.

Another advantage of our study is that we apply this new methodology to two
extensive data sets. We have sales data for all arms-length transactions of residential
properties in a sample of 50 municipalities in Connecticut for 1994–2013. We also have
transactions of single-family homes for 145 towns in the Greater Boston Area (GBA)
for 1987–2012.

An outline of the remainder of the paper is as follows. First, we provide a brief
literature review of GWR and then present additional background on the GWR
methodology. Then, we explain how we propose to modify the GWR framework to
incorporate time variation, which we call Time-Geographically Weighted Regressions
(TGWR). We also describe the approach to forecast the “estimated sales price” that is to
be used in computing the COD, PRD and PAPE. Next, we describe the data we use for
property sales in municipalities in Connecticut (CT) and Massachusetts (MA), followed
by the analysis of these data using our TGWR approach. As a part of this analysis, we
compare the estimates of COD, PRD and PAPE from using OLS/FE, GWR and TGWR
to demonstrate which approach is more appropriate for use in property assessment.
Finally, we conclude with a summary of the main findings and some suggestions for
future research.

Methodology of GWR and TGWR in AVM

GWR’s popularization in urban economics can be traced back to Meese and Wallace
(1991), and software has been developed to estimate GWR models in Stata (see
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https://www.staff.ncl.ac.uk/m.s.pearce/stbgwr.htm) and more recently there is software
for LWR in R (see https://sites.google.com/site/danielpmcmillen/r-packages). The basic
idea behind GWR (and LWR) is that it allows for a general functional form between the
dependent variable in a regression and the explanatory variables. Such a nonparametric
approach has been explored in other contexts, commonly known as kernel regression,
but the case of GWR utilizes a specific form of the kernel weights based on geographic
distances between a given target observation and the other observations in the sample.
While McMillen and Redfearn (2010) note that the choice of the functional form of the
kernel tends to have little impact on the GWR estimates, a more complicated consid-
eration is the bandwidth parameter. There are various approaches to bandwidth selec-
tion, including the Silverman (1986) “Rule of Thumb” bandwidth, and other ap-
proaches such as cross-validation. McMillen and Redfearn (2010) and Cohen et al.
(2017) provide GWR estimation results for two separate bandwidth choices. We use
one bandwidth for the main analysis and then provide some robustness checks using
other bandwidths.

First, consider a linear relationship between X (a matrix of observations on property
characteristics and neighborhood amenities) and Y (a vector of observations on prop-
erty sales price), so that:

Y ¼ Xβþ u;
u ¼ f þ ε;
ε∼N 0;Ωð Þ:

ð1Þ

Typically, Y is specified as the log of sales price. It is straightforward to estimate the
vector of parameters β by OLS (where f denotes fixed effects), invoking the classical
assumptions on Ω.

But if one believes that a linear relationship between property values and characteristics
may be too restrictive, one could specify the following general (nonparametric) relationship:

Y ¼ h Xð Þ þ ε; ð2Þ

where h is some unknown function. We can estimate the marginal effects of X on Yat any
point in the sales dataset, by using GWR.

More specifically, GWR can be thought of as a form of weighted least squares
(McMillen and Redfearn 2010). To estimate Eq. (2) using GWR we run a weighted
least squares regression of wijYi against wijXi, where Xi = [x1i, x2i, …, xmi], m is the
number of explanatory variables in the estimation, wij = [kij(•)]1/2, and kij(•) is a set of
kernel weights. A common choice of kernel weights is the Gaussian form, where
kij = (exp(−(dij/b)2) and dij is the geographical distance between observations i and j,
and b is the bandwidth parameter.

The GWR approach can generate separate estimates of βi for each target point, i.
GWR allows for properties that are further away from a subject property to be given
less weight in the estimation, opposed to an arithmetic mean as in the OLS/FE case.

One critical assumption of GWR, however, is that all properties are sold at the same
time, or, at the very least, that the time of sale is not a crucial factor to consider in the
kernel weights. One might address this by including time fixed effects in Eq. (1).
However, as an alternative approach, we propose a methodology similar to that
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suggested by Cohen et al. (2014), where the kernel weights function incorporates the
date of sale of nearby properties. In such a case, the kernel weights might take the
following form:

kijt ¼ exp −
dij
b

� �2
 !

⋅exp −
τ ij
b

� �2� �
ð3Þ

In this version of the kernel weights, τij represents the difference in the time between
the sale of property i and property j (perhaps in terms of the number of days). More
formally, if we order the dates of sale on a line so that the earliest property in our
sample had a sale date, t1 = 1, and suppose the second property in our sample had a
sales date 5 days later so that t2 = 6, etc., then we define:

τ ij ¼ ti−t j; if ti≥ t j;
¼ 0 otherwise:

ð4Þ

In other words, when determining the kernel for each target point, we only consider
sales that occurred prior to the sale date of the target point, i. We define the TGWR
estimator as a generalization of GWR where the kernel weights are given as kijt in
Eq. (3).

We think the TGWR is an important improvement over GWR since this increases
the number of comparable sales that can be used to generate assessed values. Further-
more, it is likely that units that sold at an earlier time but are spatially near the
designated unit are likely to be closer in value than units that are sold at a similar time
but farther away geographically. This is because location is such an important deter-
minant of house value.

For the purposes of AVM, there are a number of recent studies that have demon-
strated the superiority of GWR over OLS, including Lockwood and Rossini (2011) and
Borst and McCluskey (2008). The only known studies that use GWR to consider equity
and uniformity of assessments are Bidanset and Lombard (2014a, b). However, neither
of these two studies incorporate time differentials of sales into the GWR framework.
Given the importance in considering recent sales in the appraisal process, we propose
the following approach to AVM in a space-time context.

But before introducing our approach, we first discuss some common assessment
practices in Connecticut and Massachusetts. In performing revaluations, our informal
conversations with several assessors indicate they often estimate revaluations for
property i by comparing the ratio of sales to previously assessed values of other nearby
properties, j, multiplied by the most recent assessed value of property i. One would
expect the importance of nearby properties (j) to diminish with distance from property i,
although it is not evident how assessors choose the relevant distance. The date of sale of
nearby properties should be an important factor as well, however this might be
determined somewhat arbitrarily.

In addition to a property’s characteristics, there may be other factors that are
important determinants of a property’s value, such as school quality, crime, the
presence of jobs, and the population density of the town, even for nearby properties
that straddle boundaries of different districts. In a regression context, these factors can

Time-Geographically Weighted Regressions and Residential Property... 137



be denoted as X, where X is a matrix consisting of m vectors of variables, where m is
the total number of characteristics and other factors.

One potential set of approaches to estimate these effects that addresses these
issues is as follows. First, for all properties, i, that recently sold (with sales price,
Yi), run a fixed effects regression as in (1) and estimate β. The fixed effects proxy
for neighborhood characteristics.

Second, consider the nonparametric GWR and TGWR models. We can estimate the
marginal effects of X on Yat any point in the sales dataset, by using GWR and TGWR.
This will give us separate estimates of βi for each i. Then, for these same properties that
sold recently, use the estimates of βi to predict the values of the same properties using
eq. (2), separately for GWR and TGWR.

Note that when applying fixed effects, GWR, and TGWR, we exclude future sales
from the sample since this is what realistically would be carried out for assessment
purposes. When using fixed effects for units that sold in year t, we include sales in year
t and t-1. When using GWR, we include sales in the previous two years (based on the
month of sale). When using TGWR, we only use previous sales that are weighted by
the kernel (eq. 3) and limited by the bandwidth.

We follow the approach of Bidanset and Lombard (2014a, b) and calculate the
COD and PRD using OLS/FE, GWR, and TGWR. The COD and PRD are
measurement standards from the International Association of Assessing Officers
( 2003). The COD measures, on average, how far each property’s ratio of
estimated to actual sales price differs from the mean ratio of estimated to actual
sales price. It is expressed as a percentage of the median. Thus, a smaller COD
indicates a more uniform assessment. Values less than 15% (but not less than 5%)
are viewed as acceptable.

Meanwhile, the PRD is a measure of whether high-value properties are assessed at
the same ratio to market value as low-value properties. The numerator of the PRD is the
ratio of the simple mean of the estimated to actual sales price, while the denominator is
the weighted mean of the sum of the estimated prices relative to the sum of the actual
sales prices. Values less the 0.98 indicate that high-value properties tend to be
“overappraised” relative to low-value properties. Values exceeding1.03 indicate that
high-value properties tend to “underappraised” relative to low-value ones. The goal for
PRD is to be in the “neutral” range, i.e., close to 1.0.

The formulas for the COD and PRD are as follows:

COD ¼ 100

N

∑N
i¼1j

Estimated Pricei
Sales pricei

−Median
Estimated Pricei
Sales pricei

� �
j

Median
Estimated Pricei
Sales pricei

� � ð5Þ

PRD ¼
Mean

Estimated Pricei
Sales pricei

� �

∑Estimated Pricei
∑Sales pricei

ð6Þ
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We calculate the COD and PRD separately for each of the towns in Connecticut and
Massachusetts that are in our dataset. Finally, we also calculate the PAPE as a measure
of prediction accuracy.1

Note that we run the regressions (Eq. 1) using the log of sales price as the dependent
variable. To convert the predicted values back to levels we use the transformation.

Ŷ ¼α̂0exp l ̂nYÞð ð7Þ

where

α̂0 ¼ expð ̂uiÞ ð8Þ

and ^i is the residual from the corresponding regression (Wooldridge 2016).

Data

We use sales data for all arms-length transactions of residential properties in a sample of
50 municipalities in Connecticut for 1994–2013. These data come from the Warren
Group. An attractive feature of these data is that they may enable us to determine how
the OLS/FE and TGWR approaches perform differently for properties in different
towns within the state.

To filter out non-arms-length sales, we omit properties with sales price under
$50,000. We eliminate outliers on the high end by dropping a small number of
observations with sales price over $7,000,000. In our sample, as shown in Table 1,
the average sales price was approximately $387,500, with an average lot size of 0.68
acres, living area of 1880 square feet, approximately 7 rooms, 3.19 bathrooms, and an
average age at sale date of 47.62 years. The oldest house was 118 years, and there were
some houses that were 0 years old (i.e., new construction). Unfortunately we do not
have information broken down about the number of half baths; instead, the total baths
variable includes the sum of full plus half baths, so that a property with a value of 4
total baths may have 4 full baths or 3 full plus 2 half baths, for example. We have the
sale date and latitude/longitude for each property. There are 258,473 properties in this
CT dataset.

The 50 municipalities included in the Connecticut sample and the 145 towns
included in the Massachusetts sample can be seen in Fig. 1. For the Connecticut
sample, there are several urban cities (e.g., Hartford and New Haven), and many
suburban locations (such as West Hartford, Greenwich, etc.). The towns in the Massa-
chusetts sample are all located in the Greater Boston Area. We also use transactions of
single-family homes in the Greater Boston Area (GBA) for 1987–2012. The data are
from the Warren Group for 1987–1994 and CoreLogic for 1995–2012 and cover towns
in Bristol, Essex, Middlesex, Norfolk, Plymouth, and Suffolk Counties. These data
include the month and year of sale and the exact location (latitude and longitude).
Observations with missing sales date or location information are dropped.

1 The MAE is the mean of the absolute difference of the estimated and true house values divided by the true
house value.
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Sales that were not standard market transactions such as foreclosures, bankruptcies,
land court sales, and intra-family sales are excluded. Further, for each year, observa-
tions with the bottom and top 1% sales prices are excluded to further guard against non-

Table 1 House-level summary statistics

Variable Mean Std Dev Minimum Maximum

Connecticut

Sales Price ($1,000) 387.50 492.97 50.10 6850.00

Lot Size (acres) 0.68 0.84 0.03 10.00

Living Area (1000 sqft) 1.88 1.06 0.21 92.93

Rooms 6.93 1.81 4.00 87.00

Bedrooms 3.19 1.01 0.00 14.00

Bathrooms 1.98 0.93 1.00 11.50

Age 47.62 25.84 0.00 113.00

Massachusetts

Sales Price ($1,000) 318.38 213.23 17.50 1925.00

Lot Size (acres) 0.61 0.77 0.10 10.00

Living Area (1000 sqft) 1.96 0.85 0.50 8.00

Rooms 7 1.61 3.00 23.00

Bedrooms 3.31 0.82 1.00 10.00

Bathrooms 1.71 0.74 1.00 10.00

Half Baths 0.61 0.55 0.00 8.00

Age 44.56 35.06 0.00 200.00

Data for the sample of 50 municipalities in the state of Connecticut - 258,473 arms-length transactions from
1994 to 2013

Data for the 145 towns in the Greater Boston Area - 609,123 arms-length transactions from 1987 to 2012

Fig. 1 COD values – OLS
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arms-length sales and transcription errors. The data include typical house characteris-
tics: age, living space, lot size, the number of bathrooms, bedrooms, and total rooms.
The sample is limited to units with at least one bedroom and bathroom, 3 total rooms
and 500 square feet of living space and no more than 10 bedrooms and 10 bathrooms,
25 total rooms, and 8000 square feet of living space, or 10 acres.

The second transaction is excluded for properties that sold twice within 6 months
(similar to Case/Shiller) and for properties with two sales in the same calendar year with
the same transaction price (likely duplicate records). Properties for which consecutive
transactions occurred in the same year or in consecutive years and where the transaction
price changed (in absolute value) by more than 100% are excluded. Similarly, properties
where consecutive transactions were in year t and t + j and where the transaction price
changed (in absolute value) by more than j00% were excluded for j = 2,…,12.

Thirty-two towns in Massachusetts with less than 100 total observations are dropped
and 36 census tracts with less than 10 observations are excluded leaving a total of 145
towns and 833 census tracts for a total of 609,123 observations. Descriptive statistics
for the data are provided in Table 1.

Results

First, we present OLS results for the entire samples from Connecticut and Massachu-
setts, including year and town fixed effects in Table 2 to see how the results compare
across the two states.2,3 The dependent variable is the log of sales price. We include
independent variables for log of living area square feet, log of lot size, and categorical
variables for the number of total rooms number of bedrooms, number of bathrooms and
house age.4 In our sample of Connecticut towns, there are 258,473 observations
between 1994 and 2013 and the R2 is 0.844. In our sample of MA towns, there are
609,123 observations between 1987 and 2012 and the R2 is 0.700.

Generally, the results for Connecticut and Massachusetts are similar although there are
some interesting differences that we highlight below. In both regressions, the living square
feet, lotsize, and bathroom dummies coefficients are all positive and highly statistically
significant and the number of bedrooms has little impact on price. But in Massachusetts,
the age of the house is negatively related to price whereas houses age 10 to 30 are worth
the most in Connecticut. Finally, house prices increase with the number of rooms in
Massachusetts but only matter (positively) for the very largest houses in Connecticut.

Given that our goal is to compare different methods for property value assessment,
we estimate hedonic regressions using fixed effects, GWR, and TGWR separately for
each town in Connecticut and Massachusetts. Because assessors canl only use current
and past sales to make their assessments, we limit all samples to sales in the current and
prior years of sale. For fixed effects, we estimate a separate regression for each year

2 We also have OLS results on a town-by town basis, including year fixed effects. Due to the large volume of
output, these OLS results for each of the municipalities are available from the authors upon request.
3 Cohen and Zabel (forthcoming) tried various specifications for the OLS version using the MA dataset, so
here we settled on the preferred one from that study.
4 The Connecticut data for bathrooms has one variable that is the sum of bathrooms and half bathrooms
(counted as 0.5 a bathroom) whereas the Massachusetts data includes separate variables for full bathrooms and
half bathrooms.
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Table 2 Town fixed effects results-dependent variable: logprice

CT MA

Log(living area sqft) 0.458*** 0.323***

(0.032) (0.010)

Log(lotsize) 0.0921*** 0.063***

(0.011) (0.005)

2 bathrooms+ 0.0436*** 0.051***

(0.007) (0.003)

3 bathrooms+ 0.122*** 0.117***

(0.009) (0.008)

4 or more bathrooms 0.282*** 0.070***

(0.018) (0.012)

Age > =10 and < 30 0.166*** −0.033***
(0.012) (0.006)

Age > =30 and < =50 0.0588*** −0.127***
(0.008) (0.007)

Age > =50 −0.0248 −0.177***
(0.013) (0.011)

2 bedrooms 0.0357** 0.010

(0.030) (0.013)

3 bedrooms 0.0500*** 0.019

(0.030) (0.014)

4 bedrooms 0.0356** 0.032**

(0.028) (0.014)

5 or more bedrooms 0.0566*** 0.006

(0.026) (0.014)

5 total rooms −0.0167* 0.024***

(0.009) (0.005)

6 total rooms −0.0210 0.026***

(0.014) (0.007)

7 total rooms −0.00341 0.034***

(0.018) (0.008)

8 total rooms 0.0107 0.064***

(0.022) (0.008)

9 total rooms 0.0293 0.106***

(0.025) (0.009)

10 to 14 total rooms 0.0577** 0.130***

(0.026) (0.011)

15 or more rooms 0.196*** 0.107***

(0.050) (0.023)

1 half bathroom – 0.073***

– (0.002)

J.P. Cohen et al.142



using the current and previous year’s sales. For GWR, we estimate a regression for each
sale using sales in the same town in current and previous year. For TGWR, the time
dimension of the kernel is limited to sales in the current and previous years.

We use a bandwidth of 200 when applying GWR and TGWR. We offer
robustness checks using different bandwidths below. We provide summary statis-
tics for the results using these three estimators in Tables 3 and 4. The means of the
point estimates for the different explanatory variables are similar. Not surprisingly,
the standard deviations for the GWR and TGWR estimates are larger than for the
fixed effects estimates since GWR and TGWR provide different point estimates
for each sale.

We provide three statistics for evaluating the effectiveness of the three approaches to
property value assessment: PAPE, COD, and PRD.

Table 5 provides the summary statistics for the COD and PRD statistics for
OLS, GWR, and TGWR First, we discuss the COD, which is a measure of
accuracy. With the OLS estimates, all 50 towns in Connecticut have COD below
the suggested upper bound of 15.0, while all but 24 in Massachusetts are in the
acceptable range. This can be seen in Fig. 1. The situation improves in Massa-
chusetts for GWR and TGWR, shown in Figs. 2 and 3, as all towns are below the
cutoff for GWR and all towns but one are below the cutoff for TGWR. Further, in
both states many towns that were close to the cutoff with OLS are now further
below the acceptable cutoff.

Next, we discuss the PRD estimates, which is a measure of equity or progressivity/
regressivity. As seen in Fig. 4, the PRD for OLS in Fig. 4 is above the cutoff of 1.03 for
all 145 municipalities in MA, implying regressivity throughout the state. In Connect-
icut, there are several towns with PRD above the cutoff for OLS (see Fig. 4). While in
Fig. 5, we see that the situation is mixed in Connecticut when re-estimating with GWR;
in Massachusetts PRD improves somewhat with GWR compared with OLS. There is a
dramatic improvement with TGWR, as nearly all towns in both states below the PRD
cutoff of 1.03, implying neutrality (see Fig. 6).

Finally, we consider the PAPE results; summary statistics for the full set of
estimates are given in Table 6. We see that OLS preforms significantly worse than
GWR and TGWR, whereas TGWR has a lower mean and standard deviation than
GWR. The real difference is in the upper tail of the distribution where TGWR

Table 2 (continued)

CT MA

2 or more half bathrooms – 0.112***

– (0.007)

R2 0.844 0.700

N 258,473 609,123

Year dummies included
* p < 0.10, ** p < 0.05, *** p < 0.01, Clustered standard errors in parentheses

+ For the CT results, the data from Warren Group are not broken up into half baths and full baths; rather, 2
bathrooms include 2 or 2.5 bathrooms and 3 bathrooms includes 3 or 3.5 bathrooms
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outperforms GWR. For example, at the town-level in MA, the 95th percentile is
50% PAPE for TGWR, 55% PAPE for GWR, and 88% PAPE for OLS. For CT,
the corresponding percentages in the 95th percentile for TGWR, GWR, and OLS
are 52%, 57%, and 140%.

Next, we consider the town-level statistics for PAPE since assessors will
only be carrying out assessments within their own town. Tables 7 and 8
provide the summary statistics for the town-level distributions of the PAPE.
We find similar results as in Table 6; the TGWR outperforms both OLS and
GWR. The advantage of TGWR over GWR is most evident at the extremes of
the distributions. For an assessor, this could prove quite valuable since avoiding
large errors is important.

The PAPE metric provides a clear signal that TGWR is a preferred approach for
estimating sales prices. This is underscored by the fact that the extreme values are
the properties that in general have fewer sales comparisons for assessors to use in
their valuations, so having a methodology such as TGWR that is demonstrated to
perform well can be particularly valuable in estimating the values of these high-
end properties.

Table 3 Summary statistics for coefficient estimates for town-Level OLS, GWR, and TGWR: CT data, b = 200

Town-level OLS GWR TGWR

Variable Mean SD Mean SD Mean SD

Log(living area sqft) 0.460846 0.147036 0.494622 0.214319 0.493798 0.194698

Log(lotsize) 0.087939 0.05912 0.098415 0.086663 0.097414 0.078184

Age > =10 and < 30 0.158827 0.066766 0.138405 0.162553 0.136647 0.126485

Age > =30 and < =50 0.056267 0.052834 0.043718 0.122411 0.042734 0.087073

Age > =50 −0.03772 0.076631 −0.03105 0.205574 −0.03186 0.09519

2 bathrooms 0.034511 0.026955 0.030772 0.202676 0.030297 0.138418

3 bathrooms 0.107408 0.046833 0.111545 0.227011 0.111214 0.129238

4 or more bathrooms 0.198859 0.100188 0.190862 0.272103 0.195438 0.242935

2 bedrooms −0.00067 0.068846 0.827136 2.461339 0.199719 1.268229

3 bedrooms 0.000652 0.066883 0.830924 2.465192 0.199368 1.254315

4 bedrooms −0.0081 0.072914 0.819265 2.468122 0.190706 1.258414

5 or more bedrooms −0.03853 0.074284 0.772312 2.432396 0.160399 1.264407

5 total rooms −0.01865 0.077376 0.099089 1.074278 −0.0104 0.343364

6 total rooms −0.01302 0.08898 0.099435 1.087259 −0.01002 0.371523

7 total rooms 0.002402 0.103602 0.113502 1.107922 0.002799 0.359325

8 total rooms 0.013262 0.114643 0.122437 1.115686 0.011115 0.379564

9 total rooms 0.031008 0.124483 0.133033 1.119346 0.022335 0.391953

10–14 total rooms 0.022581 0.130131 0.124008 1.109783 0.015205 0.410715

15 or more total rooms −0.0099 0.266177 0.054643 0.829567 −0.06913 0.545862

Constant 7.692293 0.959022 6.850662 2.860154 7.611603 1.842803

Town-Level regressions include year dummies
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Robustness Checks

As robustness checks, we consider several separate bandwidths.5 For MA, we estimate
TGWR using bandwidths of 200 and 500 (we do not consider other comparisons given the
huge size of this dataset). The comparison of the PAPE calculated using the TGWR results
for the 200 and 500 bandwidths are given in Tables 9 and 10. We can see that TGWR
performs better at the lower bandwidth. The results are similar for CT, in the sense that the
tails continue to perform better with TGWR.

For CTwe use bandwidths of 200, 500, and 1000. We examine the PAPE and find that
theGWRdensity is virtually unchanged but the TGWRdensity is slightlyworse at the lower

5 We recognize that there are formal procedures, such as using cross validation, to choose the optimal
bandwidth. For example, see Fotheringham et al. (2015). In implementing Time GWR at the city level, the
selection of the optimal bandwidth, which is likely to differ across cities, is an important step.

Table 4 Summary statistics for coefficient estimates for town-level OLS, GWR, and TGWR:MAdata, b = 200

Town-level OLS GWR TGWR

Variable Mean SD Mean SD Mean SD

Log(living area sqft) 0.315 0.099 0.309 0.177 0.302 0.157

Log(lotsize) 0.070 0.052 0.078 0.093 0.079 0.079

Age > =10 and < 30 −0.012 0.077 −0.008 0.452 0.019 0.226

Age > =30 and < =50 −0.102 0.094 −0.092 0.506 0.108 0.239

Age > =50 −0.153 0.120 −0.142 0.521 0.158 0.250

2 bathrooms 0.057 0.030 0.055 0.152 0.052 0.080

3 bathrooms 0.097 0.065 0.093 0.247 0.085 0.153

4 or more bathrooms 0.054 0.130 0.043 0.402 0.027 0.407

1 half bathroom 0.069 0.052 0.124 0.779 0.156 0.962

2 or more half bathrooms 0.099 0.079 0.145 0.812 0.175 0.984

2 bedrooms 0.039 0.127 1.621 3.710 0.805 2.684

3 bedrooms 0.045 0.124 1.628 3.708 0.815 2.684

4 bedrooms 0.059 0.132 1.637 3.711 0.826 2.689

5 or more bedrooms 0.028 0.137 1.557 3.666 0.786 2.683

5 total rooms 0.025 0.070 0.354 1.818 0.178 1.254

6 total rooms 0.041 0.076 0.393 1.879 0.196 1.257

7 total rooms 0.055 0.084 0.410 1.887 0.211 1.263

8 total rooms 0.077 0.089 0.433 1.890 0.235 1.270

9 total rooms 0.105 0.099 0.455 1.884 0.260 1.271

10–14 total rooms 0.109 0.114 0.441 1.856 0.252 1.254

15 or more total rooms 0.055 0.270 0.075 0.791 0.074 0.946

Constant 9.723 0.675 8.114 4.240 9.162 3.233

Town-Level regressions include year dummies
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percent errors but slightly improved for the larger percent errors. These differences are
accentuated slightly further when increasing the bandwidth out to 1000. In other words,
across these bandwidths, TGWR does a good job in mitigating large forecast errors that are
present with GWR andOLS. As is the case forMA, the TGWR estimator performs better at

Table 5 Summary statistics for COD and PRD b = 200

Variable Mean SD Min Max

CT data

OLS

COD 3.44 3.41 −7.43 12.36

PRD 1.04 0.05 0.94 1.14

GWR

COD 5.75 1.76 2.84 12.77

PRD 1.00 0.001 1.00 1.01

GWR with time

COD 6.29 1.97 3.03 13.42

PRD 1.02 0.03 0.99 1.09

MA data

OLS

COD 11.89 3.47 5.60 28.02

PRD 1.11 0.03 1.06 1.27

GWR

COD 6.53 2.13 1.18 14.98

PRD 1.05 0.02 1.02 1.15

GWR with time

COD 6.06 2.17 0.04 15.05

PRD 1.02 0.01 1.00 1.07

Fig. 2 COD values – GWR (200)
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the lower bandwidths (i.e., the PAPE is lower for b = 200 at the extreme values when
compared with the extreme values of b = 500 and b = 1000).

For the b = 500 bandwidth, the mean of all of the coefficient estimates across the more
than 250,000 weighted least squares regressions in CTand 600,000 observations in MA are
similar to the magnitudes of the OLS estimates. But there is substantial variation in these
estimates, which is apparent from viewing the standard deviations of the coefficients and
their minimum and maximum values. For instance, all regressors have some observations
for which the coefficients are negative and some for which the coefficients are positive. In
many cases, the standard deviations are large relative to the mean of the coefficients.

Fig. 3 COD values – TGWR (200)

Fig. 4 PRD values – OLS
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One might hypothesize that including earlier observations with equal weight (i.e.,
OLS) will bias the estimates, especially in a sample like ours that spans 1994–2013 for
CT and 1987–2012 for MA. Given these OLS, TGWR and GWR estimates, our
objective is to use these to calculate predicted values of the sales prices that can be
used to calculate the PAPE, COD and PRD, at the town level, separately for the OLS,
TGWR and GWR models. We also calculate several separate sets of PAPE, COD and
PRD for the GWR estimates, for several different bandwidth estimates. The GWR
estimates are very insensitive to a broad range of bandwidths (including one as low as

Fig. 5 PRD values – GWR (200)

Fig. 6 PRD values – TGWR (200)
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0.5 and as high as 1000, with several in between). For TGWR, there is slightly more
variation in COD, PRD, and PAPE when changing the bandwidth, but not much. Given
this stability, along with the large sample sizes for the CT and MA data (250,000+
observations across 50 towns, and 600,000+ observations over 145 towns), and given
that we find little variation in the estimates for GWR and TGWR across bandwidths,
we present the results for GWR and TGWR for a bandwidth of 200 in the results tables
in this paper.

To compare estimates across the two states, we present the COD and PRD at the
town-level in Figs. 1, 2, 3, 4, 5, and 6. The PAPE estimates for b = 200 are presented in
Tables 6, 7, and 8. All calculations are done at the town level. Regressions include the
same variables as those using the full sample.

Table 6 Summary statistics for percent absolute prediction error: b = 200

Statistics OLS GWR TGWR

CT data

Mean 53.873 20.254 18.928

Standard Dev 70.916 40.119 35.247

Minimum 0.000 0.000 0.000

1st percentile 0.606 0.196 0.190

5th percentile 3.038 1.087 1.065

10th percentile 6.137 2.188 2.187

25th percentile 15.807 5.687 5.644

50th percentile 36.398 12.371 12.187

75th percentile 76.475 22.952 21.956

90th percentile 101.298 41.643 37.900

95th percentile 139.169 61.791 55.831

99th percentile 278.554 137.603 122.055

Maximum 5327.323 4830.420 145.135

MA data

Mean 24.879 19.401 18.374

Standard Dev 50.336 37.108 33.183

Minimum 0.000 0.000 0.000

1st percentile 0.262 0.210 0.175

5th percentile 1.295 1.048 0.993

10th percentile 2.586 2.091 2.076

25th percentile 6.56 5.352 5.407

50th percentile 13.865 11.562 11.605

75th percentile 24.697 20.722 20.372

90th percentile 46.174 34.851 32.835

95th percentile 79.996 55.104 49.376

99th percentile 228.187 173.892 156.674

Maximum 2506.656 1642.226 1384.39

Time-Geographically Weighted Regressions and Residential Property... 149



Conclusion

We develop the TGWR estimator for hedonic pricing models as a new procedure for
calculating assessed values. We compare this new methodology to two previously used
approaches; GWR and OLS. As a means of comparison, we use the Coefficient of
Dispersion (COD) and the Price-Related Differential (PRD); statistics that are com-
monly employed by the IAAO to examine accuracy and regressivity/progressivity. As a
measure of predictive accuracy, we also compare these three methodologies using the
percent absolute prediction error (PAPE).

Based on the PAPE metric, TGWR performs better than GWR and OLS. This
discrepancy in performance is particularly strong at the extreme percentiles. This is
an especially important finding for assessors, because the extremepercentiles (e.g. 95th)
tend to have the highest value properties that are often the most difficult to value
because of the lack of comparable sales. Also, with the PRD and COD measures, there
is variation across towns in terms of the progressivity/regressivity/neutrality. In many

Table 7 Summary statistics for town-level distribution of percent absolute prediction error: CT Data, b = 200

Percentile Mean Median SD Min Max

OLS

5th 3.463 3.269 1.169 1.741 7.301

10th 6.995 6.748 2.342 3.76 14.803

25th 17.882 17.152 5.82 9.317 36.965

50th 39.463 38.153 12.29 20.355 79.75

75th 76.226 75 17.484 39.842 127.416

90th 112.139 100 21.102 100 190.177

95th 139.511 131.541 37.637 100 260.808

GWR

5th 1.059 1.009 0.231 0.674 1.755

10th 2.197 2.012 0.488 1.582 3.62

25th 5.695 5.361 1.227 3.939 9.353

50th 12.45 11.513 2.811 9.201 20.382

75th 22.756 20.65 5.813 16.217 37.9

90th 38.984 35.591 10.039 26.225 62.22

95th 57.32 55.418 12.797 35.597 88.484

TGWR

5th 1.059 1.009 0.231 0.674 1.755

10th 2.18 2.08 0.451 1.343 3.521

25th 5.645 5.369 1.099 4.019 9.175

50th 12.143 11.316 2.436 8.69 19.505

75th 21.702 19.853 4.771 15.5 34.712

90th 35.755 33.426 8.471 24.466 55.992

95th 51.78 50.187 10.891 30.915 75.803
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locations we see PRD estimates that indicate more municipalities are in the neutral
range (i.e., less than 1.03) with TGWR than with GWR or OLS.

An important issue that is worthy of further attention is the bandwidth selection,
since the COD and PRD results in some of the individual towns are sensitive to
bandwidth selected. Ideally, an assessor would use cross-validation (CV) separately
on every sale in their municipality to determine a separate optimal bandwidth for the
local regression for each property. But, given approximately 900,000 observations in
our study, this would be extremely time consuming to implement; as it is, for each
bandwidth it takes more than 10 days to solve GWR (and separately, TGWR) for the
900,000+ observations. We recommend that individual assessors use CVon their own
municipalities which would be much more feasible to implement in a TGWR or GWR
setting. Also, while one possibility to reduce computation time might be to use a sub-
sample of the sales in a municipality and interpolate sales prices for other properties,
this results in the loss of some valuable information for assessors. Therefore, it is
important for individual assessors to use all available data on sales when performing
this type of analysis.

Table 8 Summary statistics for town-Level distribution of percent absolute prediction error: MAData, b = 200

Percentile Mean Median SD Min Max

OLS

5th 1.350 1.331 0.232 0.909 2.422

10th 2.697 2.633 0.425 1.913 4.670

25th 6.840 6.691 1.026 4.717 10.428

50th 14.418 14.160 2.175 10.400 22.600

75th 25.673 24.738 4.362 18.333 44.144

90th 49.757 46.791 14.194 30.892 131.752

95th 87.704 79.427 27.65 45.966 188.901

GWR

5th 0.996 0.997 0.089 0.774 1.246

10th 2.102 2.104 0.146 1.637 2.622

25th 5.349 5.353 0.222 4.543 6.213

50th 11.556 11.570 0.324 10.505 12.827

75th 20.718 20.686 0.487 18.479 22.21

90th 34.912 34.835 1.283 31.623 41.251

95th 55.410 54.92 4.079 46.633 75.407

TGWR

5th 0.996 0.997 0.089 0.774 1.246

10th 2.080 2.074 0.159 1.778 2.990

25th 5.415 5.413 0.235 4.771 6.260

50th 11.604 11.574 0.336 10.749 12.602

75th 20.404 20.356 0.509 18.802 21.675

90th 33.021 32.803 1.367 28.858 37.958

95th 50.360 49.337 4.576 41.678 68.912
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Also, TGWR is a very time-intensive set of computations, which is magnified when
considering many different bandwidth options. Therefore, assessors should plan a lot of
time to develop Time-GWR estimates since it can take many hours to run for larger

Table 9 summary statistics for percent absolute prediction error: CT Data, TGWR

Bandwidth

Statistics 200 500 1000

Mean 18.928 20.522 22.518

Standard Dev 35.247 39.247 40.186

Minimum 0 0 0

1st percentile 0.19 0.248 0.289

5th percentile 1.065 1.27 1.49

10th percentile 2.187 2.553 2.987

25th percentile 5.644 6.455 7.574

50th percentile 12.187 13.516 15.853

75th percentile 21.956 23.618 26.695

90th percentile 37.9 39.872 42.114

95th percentile 55.831 59.05 61.046

99th percentile 122.055 133.425 139.354

Maximum 4145.135 5116.346 5575.472

Table 10 Summary statistics for percent absolute prediction error: MA Data, TGWR

Bandwidth

Statistics 200 500

Mean 18.291 20.824

Standard Dev 32.995 35.477

Minimum 0.000 0.000

1st percentile 0.175 0.268

5th percentile 0.989 1.34

10th percentile 2.065 2.716

25th percentile 5.386 6.883

50th percentile 11.566 14.235

75th percentile 20.315 23.704

90th percentile 32.729 35.617

95th percentile 49.104 51.699

99th percentile 155.713 166.152

Maximum 1384.39 1533.289

Note for Table 10: Some estimates here differ slightly from those in Table 6, because sample sizes differ due to
being conditional on observations where PAPE is observed for all methods. In Table 10 it is TGWR for 200
and 500 bandwidths. In the MA results in Table 6, it is OLS, GWR and TGWR for 200 bandwidth
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cities for each bandwidth. If one finds, for instance, that the smaller bandwidths
perform better, this implies that when the tails of the distribution shrink and the
distribution of the kernel weights become more focused around the target point, one
obtains more accurate assessments. But the tradeoff is that we need a sufficient number
of observations to make the local regressions work, so an assessor would not want to
have too few observations that are given positive weight. Therefore, a detailed band-
width consideration, such as cross-validation, may be important for assessors in
refining this approach. However, this adds additional layers of computational difficulty
that need to be considered in future work.
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