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Abstract The tremendous rise in house prices over the last decade has been both a
national and a global phenomenon. The growth of secondary mortgage holdings and the
increased impact of house prices on consumption and other components of economic
activity imply ever-greater importance for accurate forecasts of home price changes.
Given the boom–bust nature of housing markets, nonlinear techniques seem intuitively
very well suited to forecasting prices, and better, for volatile markets, than linear models
which impose symmetry of adjustment in both rising and falling price periods.
Accordingly, Crawford and Fratantoni (Real Estate Economics 31:223–243, 2003)
apply a Markov-switching model to U.S. home prices, and compare the performance
with autoregressive-moving average (ARMA) and generalized autoregressive condi-
tional heteroscedastic (GARCH) models. While the switching model shows great
promise with excellent in-sample fit, its out-of-sample forecasts are generally inferior to
more standard forecasting techniques. Since these results were published, some
researchers have discovered that the Markov-switching model is particularly ill-suited
for forecasting. We thus consider other non-linear models besides the Markov
switching, and after evaluating alternatives, employ the generalized autoregressive
(GAR) model. We find the GAR does a better job at out-of-sample forecasting than
ARMA and GARCH models in many cases, especially in those markets traditionally
associated with high home-price volatility.
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Introduction

The boom in home values and the growing financial sophistication of consumers,
lenders and pension funds have made modeling house prices more important than at
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any time in recent memory. Some suggest housing may, in some parts of the U.S.,
exhibit speculative bubbles (Case and Schiller 2003). Bubbles are accompanied by
crashes, and thus lead to highly volatile price movements. The volatility of house prices
has been found to be a significant determinant of the probability of default and mortgage
prepayment (Foster and Van Order 1984, Crawford and Rosenblatt 1995). Moreover,
while house prices have a large impact on the financial sector, they also have a greater
effect on the real sector of the economy than at any recent time. An IMF study of
housing booms in OECD countries from 1970–2000 found that in 19 of 20 cases, a
crash in prices was followed by recession (Economist 2005). Consumption in the
United States accounted for 90% of output growth in the first 3 years of the current
recovery, and it has of course been closely tied to real estate prices. Indeed research
from Goldman Sachs found that consumption in the United States was more closely
linked to home prices than in other countries (Economist 2005).

It is thus vital to accurately forecast home prices. Since the housing market is
subject to boom and bust cycles, nonlinear models, which allow for asymmetric
adjustment according to whether prices have been rapidly rising or falling, offer the
promise of better forecasts than standard linear techniques. Accordingly, Crawford
and Fratantoni (2003) employ a Markov-switching (MS) model to house prices in
five states, and compare forecasting results to linear autoregressive (AR)-moving
average (MA) (ARMA) and generalized AR conditional heteroscedastic (GARCH)
models. Initially, the MS models appear to have a lot of potential for predicting
home prices, as the in-sample fit is generally much better than in the ARMA and
GARCH cases. However, out-of-sample results reveals that the MS model is
superior to the two alternatives in only three of 15 possible cases.

Since the Crawford and Fratantoni results were published, other researchers have
discovered that the MS model provides particularly poor out-of-sample forecasts
(Bessec and Bouabdallah 2005). At the same time the use of other nonlinear
techniques besides the MS model has grown exponentially in many areas of finance.
Thus we will employ an alternative nonlinear method, the generalized AR (GAR)
model to the same states that Crawford and Fratantoni utilized. Our findings will
indicate that the GAR is substantially better at forecasting home prices than the MS,
especially in those markets known for high levels of volatility.

As noted, housing is more important for the economy than at any point in recent
memory, so better housing forecasts will be useful. U.S. commercial banks have a
greater proportion of real assets on their balance sheets than at any time in over
30 years. Better forecasts can help banks, as well as their regulators develop better
capital requirements. Many institutional investors hold large amounts of mortgage-
backed securities. Prepayment risk is a major concern, and Foster and Van Order
find volatility to be a determinant of such risk. Better forecasts would help such
institutions better manage such risk. Thus improved forecasts promise important
benefits for many parties exposed to housing and mortgage activity.

Previous Literature and Methodology

The wide swings in house prices in the U.S., especially in certain high-volatility states,
has caused speculation that bubbles may be present in the housing market. A bubble is
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generally defined by an asset price rising above its fundamental value. There is a large
controversy in finance as to whether bubbles exist at all, for any asset. In an efficient
market, bubbles should not exist, as arbitrageurs could presumably profit by selling
overpriced assets. At the same time, many researchers have come to believe such
inefficiencies do exist, and research on rational bubbles proceeds apace.

Flood and Hodrick (1990) review the literature on empirical tests for speculative
bubbles in liquid markets such as those for equities and currency. Testing for bubbles
in such a fashion involves specifying an asset pricing model, thus rejection of market
efficiency could be due to a lack of efficiency or an incorrectly specified model of
asset prices. The authors conclude that most apparent finding of bubbles may be due
to this or other difficulties of interpreting empirical results.

Gatzlaff and Tirtiroglu (1995) review the literature on efficiency in the real estate
market. They review evidence that the housing market may not be as efficient as
more liquid financial assets such as equities. This is plausible, as housing entails
greater information and transactions costs.

Case and Schiller (2003) use a unique survey to investigate the possibility of
housing bubbles in three U.S. cities. The authors first find that housing fundamentals
such as income, employment and interest rates explain much of the variation in
prices in most states, but there are eight states in which the fundamentals explain less
of house prices. In three cities – Boston, Los Angeles, and San Francisco – the
authors believe there may well be bubbles, based on responses to survey questions.

Having defined a bubble in terms of expectations–homebuyers making purchases
based on a belief in future price increases–the authors present results pointing to a
bubble. In particular, people in boom cities often believe that prices can keep rising
at implausibly high rates, and perceive little risk of price drops. The authors also
note that the housing market is dominated by amateurs, rather than professional
speculators. This could mean fewer arbitrageurs to damp bubbles.

Thus there may well be a propensity to bubbles in some parts of the country.
Bubbles are of course followed by busts, in which owners are reluctant to sell, and
time-on-the-market (TOM) increases. Clearly, house sellers face a tradeoff between
setting a high asking price and suffering high TOM (Anglin et al. 2003). Empirically,
however, research into TOM has been plagued by an inability to explain much of the
variation in time to sale (Horowitz 1992; Knight 2002).

Ong and Koh (1990) find that expectations of capital gains lead to greater TOM,
which is consistent with a glut of unsold houses in the aftermath of a burst bubble. It is
also consistent with the pattern of asymmetric price adjustment, where house prices
are sticky downward. As Case and Schiller (2003) ask, “What happens in a bust?...It is
important to point out that the housing market is not an auction market. Prices do not
fall to clear the market quickly, as one observes in most asset markets. Selling a home
requires agreement between buyer and seller. It is a stylized fact about the housing
market that bid–ask spreads widen when demand drops, and the number of
transactions drops sharply. This must mean that sellers resist cutting prices.” (p. 335)

Thus prices should exhibit nonlinear patterns of adjustment, and forecasting
models which take account of such nonlinearity may do better than those which
impose symmetric adjustment to rising and falling prices. Forecasts of housing
prices may be more important than at any time for the U.S. economy. As noted,
consumption is tied more closely to home prices in the U.S. than in other countries.
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Housing, both directly and indirectly, is responsible for two-fifths of the jobs created
in the U.S. since 2001 (Economist 2005). Home builders would clearly like to be
able to forecast prices to avoid unwanted build-ups in inventories. Banks would
certainly like to forecast home prices for optimal portfolio management. Despite the
growth of secondary mortgage markets, real estate represents 33.5% of the U.S.
banking industries as of the 2006, the highest level since 1973 according to Federal
Reserve officials (Wall Street Journal 2006).

There is an existing literature on home price forecasting using linear techniques.
Case and Schiller (1989) was the canonical paper on forecasting house prices. The
authors were investigating the informational efficiency of the housing market in the
United States, and found that prices did not follow a random walk. Price changes are
thus persistent and therefore forecastable. Gu (2002) confirms that different housing
markets display varying autocorrelation patterns, and shows that in the case of
California, excess returns are in principle possible using a simple trading rule. Gillen
et al. (2001) find varying patterns of spatial autocorrelation in different housing
markets in greater Philadelphia.

Zhou (1997) uses linear cointegration and error-correction models (ECM) to
forecast prices for the U.S. Barot and Takala (2001) use cointegration analysis for
house prices in Finland and Sweden.

Muellbauer and Murphy (1997) discuss boom and bust cycles in the UK housing
market, and then go on to explicitly mention non-linearities in price changes, which
they believe arise from transactions costs. However, the authors build a structural,
rather than a forecasting model, the goal of which is to estimate elasticities and other
parameters, rather than generate predictions about future price changes.

Thus the Crawford and Fratantoni (2003) paper is a major contribution. While the
testing of hypotheses and estimation of structural parameters, as was the focus in
Muellbauer and Murphy, is important, it is also obviously essential to generate accurate
forecasts of future prices, given the role home prices now play for both the financial
sector and the economy as a whole. And Crawford and Fratantoni is the first study to
highlight the importance of the boom–bust nature of house prices, and to utilize a
particular non-linear model in an attempt to capture this cycle and improve forecasts.

The authors employ quarterly Office of Federal Housing Enterprise and Oversight
(OFHEO) house price index data from five states – California, Florida, Massachusetts,
Ohio and Texas – over the period 1979–2001. They develop three different types of
forecasting models for each state. The first two types are well-known-ARMA and
GARCH models. While these types of time series models are very useful for producing
forecasts, the authors note that housing prices in many markets exhibit boom–bust cycles.
Thus prices may behave differently depending on what “state” housing conditions are in.
Accordingly, the authors employ a MS model to capture this asymmetry.

The authors thus estimate ARMA, GARCH and MS models for all five states,
with the number of parameters and lag orders determined by goodness of fit, or
minimum root mean square error (RMSE), within the sample. Initially, results seem
to be favorable for the nonlinear MS model, as it has far better fit than either
alternative in all of the states. When out-of-sample forecasts are performed, however,
results are very different. Three different forecast horizons – 2 years, 5 years and
10 years – are used for the five states, for a total of 15 different forecasts. Of the 15
forecasts, the MS model has the minimum RMSE in only three.
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Thus the nonlinear MS model does not appear to improve forecast accuracy.
However, since the Crawford–Fratantoni paper was published, other research has
revealed that the MS model is particularly ill-suited for forecasting (Bessec and
Bouabdallah 2005). The authors’ examination of the literature points to a very
relevant finding for the Crawford–Fratantoni paper-MS models usually display
superior in-sample fit but worst out-of-sample forecasting performance relative to
linear models. Thus some nonlinear model may do a better job of capturing the
boom–bust nature of the housing market than standard linear estimation, but the MS
approach may not be the particular specification needed.

What nonlinear model, then should be used, if MS exhibits poor forecast
performance? There has been tremendous growth in the last several years in the use
of nonlinear models in economics and finance, as theory often suggests that a given
series should exhibit asymmetric adjustment depending on past behavior, and hence
nonlinearity. There are several prominent models, besides MS.

One of the most popular nonlinear models is the threshold autoregression (TAR).
This allows the dependent variable, yt to follow two (or more) different processes
depending on whether the lagged value of yt is above or below a threshold value.
Formally, for the very simple case of an AR(1) model a TAR would be specified as:

yt ¼ a1yt�1 þ "1t if yt�1 > τ ð1Þ

yt ¼ a2yt�1 þ "2t if yt�1 � τ ð2Þ
Here τ is the threshold, and ɛ is a random error. In trying to decide whether a

linear AR(1) model, such as

yt ¼ ayt�1 þ "t ð3Þ
is the correct specification, we can test the null hypothesis of a1=a2. If we cannot
reject this null, we conclude that the process is linear and adjustment symmetric.
However, standard F-tests cannot be employed, as the threshold τ is chosen by a
search procedure designed to minimize the sum of squared errors, and thus an F-test
is biased in favor of finding TAR. Instead, a bootstrapping procedure developed by
Hansen (1997) must be employed. We employed this test for the five state home
price indices over the same 1979–2001 period as utilized in Crawford and
Fratantoni, but were unable to reject the null of linearity for any state (results
available upon request).

The TAR process is a very specific form of nonlinearity, so failure to find TAR effects
does not suggest that a given process is linear. Another popular nonlinear technique is
the bilinear (BL) model. In this model AR and MA terms are interacted, so that
coefficients on past values are time-varying and depend on past shocks. As an example,

yt ¼ a1yt�1 þ b1"t�1 þ c1yt�1*"t�1 þ "t ð4Þ
or, equivalently,

yt ¼ a1 þ c1"t�1ð Þ*yt�1 þ b1"t�1 þ "t ð5Þ
So here the value of ɛt−1 affects the impact of yt−1. While intuitively, the BL

model may be a compelling choice, Brunner and Hess (1995) find many undesirable
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properties of this technique. In particular, standard optimization methods often miss
the optimum estimates, and standard t-statistics often have non-standard distributions
in finite samples.

Given these difficulties, the best nonlinear model may be the simplest, or most
general—the GAR. This model starts, in a sense, as a linear AR model, and then
adds squares, cubes and other higher powers, of the lagged dependent variable, as
well as interactions between yt−i and yt−j, for i ≠ j. A typical GAR model might look
as follows:

yt ¼ a1yt�1 þ a2yt�2 þ a3y
2
t�3 þ a4yt�1*yt�2 þ "t ð6Þ

Thus, @yt=@yt�1 ¼ a1 þ a4yt�2. The effect of yt−1 thus depends on the past value
of y. The model can simulate a large number of functional forms. And unlike the BL
model, the GAR can be estimated with simple OLS. We will thus use the GAR to
develop forecasting models for the same states that Crawford and Fratantoni
employed, and compare the forecasting results to the best forecasting ARMA and
GARCH models for each of the states.

Data and Estimation

We will begin with the same OFHEO price indices for the same five states –
California, Florida, Massachusetts, Ohio and Texas – that Crawford and Fratantoni
employed, and for the same period, utilizing quarterly data from 1979 through 2001,
for a total of 92 observations. We will later extend the analysis through the third
quarter of 2005, yielding one-hundred-and-seven observations, and see if using more
observations affects the results.

Crawford and Fratantoni find for each state one model – an ARMA, GARCH or
MS – that produces optimal out-of-sample forecasts. As noted, the MS is best in
only three of 15 cases. Through experimentation, we will develop GAR models for
all five states, and pit these GAR models against the best ARMA and GARCH
models that Crawford and Fratantoni obtained in a contest of out-of-sample
forecasting performance. For the three cases where the MS model was best for
Crawford and Fratantoni, we will compare the GAR’s performance with both the
best ARMA and GARCH specifications for the particular forecast horizon in the
given state.

ARMA models have been a staple of forecasting for some years. The standard
specification is as follows:

yt ¼
Xp

i¼1

aiyt�iþ
Xq

i¼0

bi"t�i ð7Þ

Here, the AR portion of the model is represented by
Pp

i¼1 αiyt�i while the MA
portion is denoted as

Pq
i¼0 βi"t�i, and the ɛt−i are lagged residuals. If one or more of the

αi coefficients is equal to one, the process is nonstationary, and contains a unit root.
Such a data generating process would be termed an AR integrated MA, or ARIMA
process. However, testing by Crawford and Fratantoni has established that the
OFHEO state price indices do not contain unit roots and are stationary.
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The other set of forecasts, based on GARCH models, are similar to the ARMA
specification in that they posit a constant rate of growth for the long run mean.
However, GARCH processes exhibit time-varying volatility; that is a time-
dependent variance. Some financial markets exhibit periods of relative tranquility,
followed by periods of very large price swings. Miller and Peng (2006), find
GARCH effects in about 17% of the MSA housing markets they survey in the U.S.
The specification for a GARCH is:

yt ¼
Xp

i¼1

aiyt�i þ "t ð8Þ

"t ¼ vth
0:5
t ð9Þ

ht ¼ a0 þ
Xq

i¼1

ai"
2
t�i þ

Xp

i¼1

bht�i ð10Þ

Here vt is a random error with mean zero and a variance of 1, and ht is the
conditional variance process. While this standard GARCH specification is quite
common, it requires non-negativity constraints on the parameters of Eq. 10, since a
variance can never be negative. Nelson (1991) develops and alternative specification,
called exponential GARCH (E-GARCH). The mean equation for an E-GARCH
model is identical to Eq. 9, while a typical specification for the conditional variance is:

ln htð Þ ¼ a0 þ a1 "t�1

�
h0:5t�1

� �þ b1 "t�1

�
h0:5t�1

�� ��þ β ln ht�1ð Þ ð11Þ
Since the conditional variance is in log-linear form, it is impossible for ht to be

negative, regardless of the value of ln(ht). Thus some of the coefficients can be
negative. Given that this model is less constrained than the standard GARCH, it has
been found to out-forecast other GARCH models. Not surprisingly, the E-GARCH
was found to perform well relative to other models for Crawford and Fratantoni.

We will measure forecasting performance by RMSE, as the authors did, and we
will also compare performance in terms of mean absolute error (MAE). The MAE
criterion is most appropriate when the cost of a forecast error rises proportionally
with respect to the absolute size of the error. With RMSE, the cost of the error rises
as the square of the error, and so large errors can be weighted far more than
proportionally. This corresponds to a “quadratic loss function”, common in some
theoretical models. Whether MAE or RMSE is most appropriate surely varies
according to circumstances and individual institutions, and in any case we will find
that the two measures pick the same model in all but several instances.

In addition, while RMSE and MAE are good relative measures, both depend on
the scale of the forecast variable. Moreover, each could hypothetically be quite low,
and still contain systematic bias and do a poor job of forecasting average price
changes. Accordingly, we will examine how each model performs according to a
measure known as the bias proportion (listed as bias in Tables 2 and 4). The bias
proportion measures systematic error, or the extent to which the average values of the
forecast and actual series differ from each other. Unlike RMSE and MAE, bias
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proportion is scale-invariant. A given forecasting model may have a systematic positive
or negative bias and do a poor job of tracking the actual mean of price changes, and
measures such as RMSE and MAE could well miss this defect. We will thus evaluate
forecasts based on the three performance measures of RMSE, MAE and bias.

Parameter estimates for the 1979–2001 period are displayed in Table 1, and results
are displayed in Table 2. For the GAR specifications, a notation of GAR(1,3,1*3)
denotes a first and third AR lag, and the interaction of the first and third. The
specifications of the ARMA and ARCH models are standard—i.e. ARMA(1,2)
denotes one AR and two MA lags. Starting with the case of Ohio, Crawford and

Table 1 Forecasting models

Coefficients P values

OHIO
AR(2)-GARCH(1,1)
C 3.5 0.000
AR(1) 0.15 0.24
AR(2) 0.04 0.74
ARCH(1) 0.28 0.05
GARCH(1) 0.6 0.003

GAR (1,2,3, 1*1, 2*2, 3*2)
C 1.3 0.109
AR(1) −0.2 0.09
AR(2) 0.54 0.002
AR(3) 0.21 0.17
AR(1*1) 0.06 0.000
AR(2*2) −0.0 0.003
AR(3*2) −0.0 0.68

TEXAS
AR(2) E-GARCH(1,1)
C 3.6 0.000
AR(1) 0.24 0.001
AR(2) 0.15 0.03
GARCH(1) −0.3 0.02
AbsARCH(1) 0.94 0.002
ARCH(1) −0.3 0.103

ARMA(2,2)
C 0.22 0.42
AR(1) 0.76 0.19
AR(2) 0.12 0.81
MA(1) −0.4 0.41
MA(2) −0.2 0.55

GAR(1,3, 1*1)
C 1.3 0.05
AR(1) 0.4 0.000
AR(3) 0.21 0.02
AR(1*3) −0.0 0.28

MASS
AR(2) E-GARCH(1,1)
C 11.9 0.003
AR(1) 0.63 0.000
AR(2) 0.25 0.01
GARCH(1) 1.0 0.000
AbsARCH(1) −0.0 0.08
ARCH(1) 0.1 0.06
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Fratantoni found that the best forecasting specification at all horizons was an AR(2)-E-
GARCH(1,1) model. Although several GAR models were experimented with, the best
fitting GAR(1,2,3, 1*1, 2*2, 3*2) had worse out-of-sample performance for all
horizons than the E-GARCH. Thus for Ohio, nonlinear modeling does not appear to
improve predictive power.

For Texas, the AR(2)-E-GARCH(1,1) model found optimal by Crawford and
Fratantoni was also best here at the 5-year horizon, as it outperforms the GAR(1,3,1*1).
However, at the 10-year horizon, the GAR(1,3,1*1) outperforms the E-GARCH by the
RMSE and MAE measures, while the E-GARCH still achieves minimum bias

Table 1 (continued)

Coefficients P values

ARMA(2,2)
C 0.8 0.343
AR(1) 0.2 0.29
AR(2) 0.67 0.001
MA(1) 0.42 0.04
MA(2) −0.4 0.001

GAR(1,3, 1*3)
C 0.74 0.33
AR(1) 0.61 0.000
AR(3) 0.33 0.002
AR(1*3) −0.0 0.62

CAL
AR(1)
C 0.77 0.11
AR(1) 0.85 0.000

AR(1) ARCH(1)
C 5.8 0.06
AR(1) 0.88 0.000
ARCH(1) 0.21 0.24

GAR (1, 1*1)
C 0.77 0.12
AR(1) 0.85 0.000
AR(1*1) 0.00 0.99

FLA
ARMA(1,1)
C 2.5 0.001
AR(1) 0.38 0.01
MA(1) −0.1 0.34

AR(1) E-GARCH(1,1)
C 2.4 0.000
AR(1) 0.28 0.000
GARCH(1) −0.7 0.000

AbsARCH(1) 0.4 0.002
ARCH(1) 0.13 0.27

GAR(1,3, 1*3)
C 2.1 0.01
AR(1) 0.21 0.19
AR(3) 0.27 0.05
AR(1*3) −0.0 0.99

Data 1979:1–2001:4
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Table 2 Forecasting results

RMSE MAE Bias

Ohio
Out-of-sample forecast 1992:1–2001:4
(10 years)
AR(2) GARCH(1,1) 1.533 1.189 0.001896
GAR(1,2,3, 1*1, 2*2, 3*2) 3.305 2.987 0.306376

Out-of-sample forecasts 1997:1–2001:4 (5 years)
AR(2) GARCH(1,1) 1.467 1.077 0.002979
GAR(1,2,3, 1*1, 2*2, 3*2) 2.708 2.307 0.37329

Out-of-sample forecasts 2000:1–2001:4 (2 years)
AR(2) GARCH(1,1) 1.466 0.971 0.12366
GAR(1,3, 1*1) 2.908 2.533 0.699501

Texas
Out-of-sample forecasts 1992:1–2001:4
(10 years)
AR(2) E-GARCH(1,1) 2.915 2.351 0.006791
GAR(1,3, 1*1) 2.881 2.329 0.018157

Out-of-sample forecasts 1997:1–2001:4 (5 years)
AR(2) E-GARCH(1,1) 2.751 2.042 0.40679
GAR(1,3, 1*1) 2.958 2.251 0.52182

Out-of-sample forecasts 2000:1–2001:4 (2 years)
ARMA(2, 2) 3.762 2.8 0.54648
GAR(1,3, 1*1) 3.199 2.148 0.368069

Mass
Out-of-sample forecasts 1992:1–2001:4
(10 years)
ARMA(2, 2) 4.744 3.632 0.039289
GAR(1,3, 1*3) 4.244 3.337 0.000352

Out-of-sample forecasts 1997:1–2001:4 (5 years)
AR(2) E-GARCH(1,1) 3.384 2.415 0.197193
GAR(1,3, 1*1) 5.35 4.23 0.610318

Out-of-sample forecasts 2000:1–2001:4 (2 years)
AR(2) E-GARCH(1,1) 2.997 2.41 0.188074
ARMA(2,2) 3.982 3.176 0.524215
GAR(1,3, 1*1) 3.274 2.471 0.289578

Cal
Out-of-sample forecasts 1992:1–2001:4
(10 years)
AR (1) 6.881 5.869 0.056165
AR(1)-ARCH(1) 6.828 5.779 0.073849
GAR(1,1, 1*1) 6.87 5.87 0.054737

Out-of-sample forecasts 1997:1–2001:4 (5 years)
AR(1) 6.032 4.982 0.66676
GAR(1,1, 1*1) 6.047 4.998 0.667805

Out-of-sample forecasts 2000:1–2001:4 (2 years)
AR(1) ARCH(1) 6.037 5.196 0.662114
GAR(1,1, 1*1) 6.31 5.45 0.703998

Fla
Out-of-sample forecasts 1992:1–2001:4
(10 years)
ARMA(1,1) 3.922 3.251 0.000221
AR(1) E-GARCH(1,1) 3.982 3.354 0.027199
GAR(1,3, 1*3) 3.841 3.207 0.000019

Out-of-sample forecasts 1997:1–2001:4 (5 years)
AR(2) E-GARCH(1,1) 4.396 3.827 0.42712
GAR(1,3, 1*3) 4.038 3.55 0.385216

Out-of-sample forecasts 2000:1–2001:4 (2 years)
ARMA(1,1) 5.217 4.9743 0.909598
GAR(1,3, 1*3) 5.204 4.9752 0.913932

Data 1979:1 2001:4. The RMSE and MAE numbers in bold are those with the lowest value among the
competing forecasting models
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proportion. At the 2-year horizon, the GAR has better forecasts than the ARMA(2,2)
which Crawford and Fratantoni found worked best over that horizon.

InMassachusetts, the authors had found that theMSmodel worked best, though only at
the 2-year horizon. Here, the AR(2) E-GARCH(1,1) forecasts better than GAR at 2 years,
but at 10 years the GAR(1,3,1*3) out-forecasts the ARMA(2,2) which was found by
Crawford and Fratantoni to be optimal at that horizon. At 5 years, the E-GARCH is again
optimal. Thus nonlinearity seems important for the Bay State in one of three horizons.

For California, the best model at 2 years is the ARCH(1) according to RMSE and
MAE, but the GAR(1,1, 1*1) achieves minimum bias proportion. At the 5-year
horizon, the AR(1) model out-forecasts the GAR(1,1, 1*1). At 10 years, the best
forecasting model is the ARCH(1).

In Florida, the GAR model is the best predictor at all horizons, performing better
in terms of RMSE and MAE than both the ARMA and GARCH models. The only
exception is that at the 2-year horizon, the ARMA(2,2) model has a slightly lower
bias proportion. Nonlinearity may therefore be a very important feature of home
price adjustment in the sunshine state.

Given the results, how did the nonlinear GAR model perform as an alternative to
the MS model? In Crawford–Fratantoni, the MS technique was the best forecasting
model in three of 15 possible cases, using the RMSE criterion. Here, the GAR model
had the lowest RMSE in six of 15 cases, while it also has the lowest MAE in six of
15. The GAR model displayed the lowest bias proportion in five of 15. This is a
substantial improvement over the MS model.

Thus far, we have examined data only from 1979–2001. OFHEO data does not go
back much further for many states, so this was as much as was available several
years ago. However, we will add data through the third quarter of 2005, for a total of
107 observations. While more data are always desirable in any empirical study, it is
especially the case with time series. The new parameter estimates are displayed in
Table 3 and the results in Table 4.

For Ohio, there is still no horizon at which the GAR model yields the best
forecast. In Texas, GAR yields the best forecasts at the 2-and-5-year horizons by
RMSE and MAE, while the E-GARCH model is best at 10 years by all measures and
at 5 years by the bias proportion. In Massachusetts, GAR produces the best
predictions at 10 years by all metrics, while at 5 years, the MAE criterion would pick
the E-GARCH, but RMSE and bias proportion would choose the GAR. At 2 years,
the ARMA model is clearly superior to all others.

In Florida, GAR does not improve forecasts at the 2 or 10 year horizons.
However, at the 5-year horizon, GAR yields a smaller MAE and bias proportion than
forecasts generated by the E-GARCH model.

California is the housing market that most clearly benefits from nonlinear
forecasts. The GAR model yields the best forecast at all horizons. California has
experienced several pronounced boom and bust cycles over the past 25 years, and its
market thus appears to benefit most from a nonlinear specification. Ohio, in contrast,
has had a relatively stable housing market compared to coastal states, and thus the
GAR model fails to improve forecast performance at any horizon. Altogether, with
this longer time series, GAR provides the best forecasts in seven of 15 cases as
measured by RMSE, as well as in seven of 15 cases by the MAE yardstick, and
seven cases by bias proportion. It often takes a longer time series to detect the
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Table 3 Forecasting models

Coefficients P values

OHIO
AR(2)-GARCH(1,1)
C 4.3 0.000
AR(1) 0.12 0.32
AR(2) 0.01 0.9
ARCH(1) 0.28 0.03
GARCH(1) 0.6 0.000

GAR (1,2,3, 1*1, 2*2, 3*2)
C 1.4 0.05
AR(1) −0.2 0.06
AR(2) 0.53 0.001
AR(3) 0.22 0.12
AR(1*1) 0.06 0.000
AR(2*2) −0.0 0.001
AR(3*2) −0.0 0.647

TEXAS
AR(2) E-GARCH(1,1)
C 3.7 0.000
AR(1) 0.32 0.001
AR(2) 0.057 0.61
GARCH(1) 1.01 0.000
AbsARCH(1) −0.1 0.000
ARCH(1) 0.07 0.11

ARMA(2,2)
C 0.25 0.35
AR(1) 0.76 0.17
AR(2) 0.12 0.79
MA(1) −0.4 0.38
MA(2) −0.2 0.51

GAR(1,3, 1*1)
C 1.4 0.02
AR(1) 0.4 0.000
AR(3) 0.2 0.015
AR(1*3) −0 0.23

MASS
AR(2) E-GARCH(1,1)
C 6.8 0.06
AR(1) 0.58 0.000
AR(2) 0.24 0.006
GARCH(1) −0.6 0.02
AbsARCH(1) −0.0 0.7
ARCH(1) 0.27 0.01

ARMA(2,2)
C 0.79 0.3
AR(1) 0.24 0.16
AR(2) 0.64 0.000
MA(1) 0.35 0.04
MA(2) −0.4 0.000

GAR(1,3, 1*3)
C 0.83 0.27
AR(1) 0.54 0.000
AR(3) 0.37 0.000
AR(1*3) −0.0 0.69
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inherent nonlinearity in a variable, and thus to benefit from nonlinear forecasts.
Nonlinear modeling appears even more important for the data through 2005,
especially in states known for sometimes volatile housing markets.

Conclusions

Nonlinear models have been widely applied in most areas of finance in the last
several years to obtain better forecasts, and account for inherently nonlinear
adjustment processes. These techniques have vastly increased understanding of the
workings of foreign exchange, bond and equity markets. Housing markets, however,
have rarely been modeled with such techniques, with Crawford and Fratantoni being
a very important exception. Yet given the relatively illiquid nature of housing, as
compared to financial securities, and the corresponding boom–bust nature of housing
markets, home prices are one area that can benefit substantially from nonlinear
forecasting techniques.

Table 3 (continued)

Coefficients P values

CAL
AR(1)
C 1.6 0.02
AR(1) 0.79 0.00

AR(1) ARCH(1)
C 7 0.04
AR(1) 0.89 0.000
ARCH(1) 0.52 0.003

GAR (1, 1*1)
C 1.0 0.12
AR(1) 1.12 0.000
AR(1*1) −0.0 0.000

FLA
ARMA(1,1)
C −0.1 0.43
AR(1) 1.04 0.000
MA(1) −0.8 0.000

AR(1) E-GARCH(1,1)
C 5.2 0.000
AR(1) 0.5 0.000
GARCH(1) 0.95 0.000
AbsARCH(1) −0.2 0.000
ARCH(1) 0.12 0.016

GAR(1,3, 1*3)
C 2.5 0.003
AR(1) 0.13 0.28
AR(3) 0.2 0.06
AR(1*3) 0.03 0.001

Data 1979:1–2005:3
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Table 4 Forecasting results

RMSE MAE Bias

Ohio
Out-of-sample forecasts 1995:4–2005:3
(10 years)
AR(2) GARCH(1,1) 1.353 1.036 0.01463
GAR(1,2,3, 1*1, 2*2, 3*2) 3.131 2.724 0.159

Out-of-sample forecasts 2000:4–2005:3 (5 years)
AR(2) GARCH(1,1) 1.439 1.107 0.009743
GAR(1,2,3, 1*1, 2*2, 3*2) 2.605 2.085 0.168

Out-of-sample forecasts 2003:4–2005:3 (2 years)
AR(2) GARCH(1,1) 1.365 1.046 0.0152
GAR(1,3, 1*1) 2.787 2.041 0.44

Texas
Out-of-sample forecasts 1995:4–2005:3
(10 years)
AR(2) E-GARCH(1,1) 2.418 1.897 0.036
GAR(1,3, 1*1) 2.483 1.913 0.072

Out-of-sample forecasts 2000:4–2005:3 (5 years)
AR(2) E-GARCH(1,1) 2.416 1.708 0.0409
GAR(1,3, 1*1) 2.352 1.667 0.046

Out-of-sample forecasts 2003:4–2005:3 (2 years)
ARMA(2, 2) 2.525 2.036 0.559
GAR(1,3, 1*1) 2.073 1.701 0.482

Mass
Out-of-sample forecasts 1995:4–2005:3
(10 years)
ARMA(2, 2) 5.343 3.875 0.296
GAR(1,3, 1*3) 4.819 3.572 0.1639

Out-of-sample forecasts 2000:4–2005:3 (5 years)
AR(2) E-GARCH(1,1) 4.57 2.999 0.12
GAR(1,3, 1*1) 4.27 3.242 0.05

Out-of-sample forecasts 2003:4–2005:3 (2 years)
AR(2) E-GARCH(1,1) 6.974 4.661 0.351
ARMA(2,2) 6.41 4.29 0.258
GAR(1,3, 1*1) 6.602 4.46 0.279

Cal
Out-of-sample forecasts 1995:4–2005:3
(10 years)
AR (1) 9.504 6.331 0.1652
AR(1)-ARCH(1) 9.401 6.719 0.247
GAR(1,1, 1*1) 8.173 6.029 0.0381

Out-of-sample forecasts 2000:4–2005:3 (5 years)
AR(1) 12.139 8.145 0.377
GAR(1,1, 1*1) 9.346 5.918 0.0709

Out-of-sample forecasts 2003:4–2005:3 (2 years)
AR(1) ARCH(1) 16.076 12.791 0.633
GAR(1,1, 1*1) 14.038 10.182 0.506

Fla
Out-of-sample forecasts 1995:4–2005:3
(10 years)
ARMA(1,1) 10.153 7.386 0.421
AR(1) E-GARCH(1,1) 9.004 6.228 0.228
GAR(1,3, 1*3) 9.206 6.332 0.268

Out-of-sample forecasts 2000:4–2005:3 (5 years)
AR(1) E-GARCH(1,1) 12.207 9.61 0.619
GAR(1,3, 1*3) 12.28 9.485 0.595

Out-of-sample forecasts 2003:4–2005:3 (2 years)
ARMA(1,1) 11.57 10.31 0.793
GAR(1,3, 1*3) 17.235 16.002 0.862

Data 1979:1 2005:3. The RMSE and MAE numbers in bold are those with the lowest value among the
competing forecasting models
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Results here indicate that, for the data extending into 2005, the GAR model is
very important, especially in those states which exhibit the greatest house price
volatility. These results suggest that models such as GAR may not add much
forecastability in relatively stable markets such as Ohio (Ohio had the lowest raw
variability, as measured by the ratio of the standard deviation to the mean of prices,
of any of the states in the sample). On the other hand, nonlinear methods appear
invaluable for markets such as California, with a history of housing bubbles and
crashes. As rapidly rising and volatile house prices are a phenomenon in a growing
number of localities and regions around the globe, nonlinear modeling will be ever
more helpful in predicting the direction of future prices.
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