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Abstract

We examine the distribution of sales for a retail chain in the Houston market using a spatial gravity model.

Unlike previous empirical studies, our approach models spatial dependencies among both consumers and

retailers. The results show that both forms of spatial dependence exert statistically and economically significant

impacts on the estimates of parameters in retail gravity models. Contrary to the suggestions of Gautschi (1981)

as well as Eppli and Shilling (1996), our results show the importance of the distance parameter in retail gravity

models may be greatly understated. Thus, ignoring spatial dependence may lead to overestimation of the

deterministic extent of trade areas, and underestimate the importance of good locations.
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1. Introduction

When considering opening a new store, retail executives attempt to maximize performance

across their entire store network. In particular, they wish to avoid opening a profitable store

at the expense of existing stores. To avoid such a loss, executives need the spatial

distribution information of customers and competitors to accurately define trade areas for

site selection. In addition, managers of individual stores can use the spatial distribution of

customers and competitors to promote sales. From an overall market perspective, the

technology of forecasting sales can affect the location premia of retail properties.

We apply retail gravitation notions to examine empirically the spatial distribution of

retail sales.1 Over seventy years ago Reilly (1931) published his seminal proposition,

known as Bthe law of retail gravitation.^ Retail gravity models draw an analogy with

Newton’s gravitational law to account for human behaviors related to shopping ac-

tivities. In retail gravity models, various store features such as size attract customers, just

as larger astronomical bodies have greater gravitational force. Distance between the cus-

tomers and the store diminishes this attraction, just as gravity diminishes with distance.

Many studies have examined empirically this concept of retail gravitation.2 Neverthe-

less, the literature often differs on the importance of the distance among retailers and
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consumers (Mejia and Benjamin, 2002). In particular, Gautschi (1981) as well as Eppli

and Shilling (1996) suggest that the distance parameter may be significantly overstated in

previous retail gravity research.

However, existing studies of retail gravity assume independence among errors after

controlling for distance among customers and retailers. Since spatial dependence per-

vades other forms of real estate data, it seems reasonable to examine retail data for

symptoms of spatial dependence. To do so, we estimate a retail gravity model with

explicit spatial dependence.3 In particular, we model the spatial dependencies with a

spatial simultaneous autoregressive error process (Ord, 1975) among both consumers and

retailers.

Our results confirm the importance of modeling both forms of spatial dependence in a

retail-gravity model. When the spatial dependence is explicitly taken into account, the

estimated parameters of variables pertaining to consumers and retailers change their

magnitudes considerably, and many reverse their signs. In the case of store size, the

parameter estimate goes from an implausible statistically significant negative value under

OLS to a more plausible statistically significant positive value after allowing for spatial

dependence. Compared with the spatial error model, OLS significantly underestimates

the magnitude of the distance parameter for these data. Contrary to the suggestions by

Gautschi (1981) as well as Eppli and Shilling (1996), the results show the importance of

the distance parameter may be materially understated due to the inappropriate assump-

tion of error independence. The inappropriate assumption of independence may lead to

overestimation of the deterministic extent of trade areas for retail stores, and thus

understate the importance of good locations.

The rest of this paper is organized as follows: Section 2 discusses retail gravitation and

spatial dependence, Section 3 describes retail sales data and empirical methods, Section

4 presents empirical results; and Section 5 concludes with the key results.

2. Retail gravitation and spatial dependencies

Social scientists have drawn an analogy between the spatial interactions of individuals

and Newton’s law of gravity in physics. Over seventy years ago, Reilly (1931) formally

applied the Newton’s gravity concept to retail geography, and many models of shopping

behavior have been developed based on the concept of retail gravitation.4 Many of these

models relate the interaction (shopping trips or expenditures) between retail store b and

consumer c (denoted by Zbc) to the characteristics of store b (denoted by mb), the

characteristics of consumer c (denoted by mc), and the separation measurement between

b and c (denoted by dbc) as in equation (1),

Zbc ¼ �m
�b

b m�c

c d
�d

bc ð1Þ

where � is a constant, and �b, �c, and �d are parameters to be estimated.5

Many earlier studies included only store size and distance in their gravity models.6

Examples include Huff (1965) as well as Lakshmanan and Hansen (1965). Using survey
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data of shopping trips, Gautschi (1981) calibrated Huff’s variation of equation (1). He

suggested that previous studies omitting other retail center variables might overstate the

distance parameter in retail gravity models. Stanley and Sewall (1976) calibrated Huff’s

variation on single stores in a retail chain. Similar to Kolter (1971), Stanley and Sewall

(1976) did not find that store size contributed significantly to estimates of store

patronage. Both Stanley and Sewall (1976) as well as Kolter (1971) conclude that Huff ’s

model is of limited value in estimating sales potential for single stores. Obtaining actual

sales data, Eppli and Shilling (1996) calibrate Lakshmanan and Hansen’s (1965) variant

with an interactive approach and OLS (ordinary least squares). They find that store

location (proximity to the competition) is of little importance and conclude that the

distance parameter for retail gravity models may be significantly overstated.7

More recent research incorporates more characteristics of stores and consumers in

retail gravity models. For example, Okoruwa et al. (1988) include retail center variables

such as age and type, as well as economic and demographic characteristics of shoppers in

estimating shopping trip frequencies obtained from a survey. Okoruwa et al. (1988)

calibrate equation (1) with a Poisson regression. Contradicting the typical hypothesis of

retail gravity models, they find that retail center size exerts a negative influence on

patronization rates. Table 1 summarizes selected prior research on the influences of store

size and distance on retail sales.

While the gravity model incorporates space via a distance variable, this may not

provide a sufficiently rich means of modeling interdependence among customers and

retailers. For example, spatial dependence of errors among stores could arise due to

omission of variables such as accessibility (e.g., turn lanes into centers or lights),

visibility of signage, and retail demand externalities within a shopping center arising

through clustering of stores. Clustering among heterogeneous retailers facilitates multi-

purpose shopping behavior of consumers to reduce total travel costs, and clustering of

homogeneous retailers facilitates comparison-shopping behavior (Eppli and Benjamin,

1994).8 Studies have established the importance of these retailer and consumer behaviors

in the choice of retail shopping trips (Eppli and Benjamin, 1994). Nevertheless, most

empirical studies have not incorporated these behaviors in retail gravity models.9

Spatial dependence of errors among consumers could arise due to clustering of

consumers with similar circumstances (e.g., individuals living in heavily shaded areas

Table 1. The influences of store size and distance on retail sales.

Reference Factor Empirical evidence/conclusions

Kolter (1971), Stanley

and Sewall (1976)

Store size Store size does not contribute significantly

to estimates of store patronage.

Okoruwa et al. (1988) Store size Retail center size exerts a negative influence

on patronization rates.

Gautschi (1981) Distance between consumers

and retailers

The distance parameter may be overstated in

previous studies.

Eppli and Shilling

(1996)

Distance to competing stores The distance parameter for retail gravity

models may be significantly overstated.
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might not spend as much at garden centers), common traffic routes and transportation

problems, as well as sharing of information.

Previous studies did not incorporate such dependence in retail gravity models.

Modeling the dependence offers the possibility of better parameter estimation, correct

inference (OLS standard errors are biased downwards in the presence of positive spatial

dependence), and improved prediction (Cressie, 1993).

3. Retail sales empirical data, methods, and model

Section 3.1 describes the retail sales data and census data employed in this study. Section

3.2 presents the SAR (simultaneous autoregressions) error model, Section 3.3 provides

information on the spatial dependence specification, Section 3.4 gives the relevant

likelihood function, while Section 3.5 shows the empirical model.

3.1. Retail sales data and census data

A retail consultant provided individual store and consumer data of a retail chain selling

medical products in the Houston market under a non-disclosure agreement prohibiting

the release of specific data. The consumer data are for each household who shopped at a

particular store. The variables are the total dollar amounts each household spent at each

individual store for the year 2000, and the block group where each household resides.

We aggregate the data to the block-group level and calculate retail sales in a block group

for each store (Salesbc). The individual store variables are total store sales in year 2000

(store sales) and in year 1999 (lagged store sales), store size in square feet (store size),

type of shopping center where each store resides (strip, pad, or mall ), age of the

shopping center (center age), as well as longitude and latitude of each store.10

We supplement the retail sales data with 1990 census data and 1998 census estimates.

In particular, we obtain census data relevant to the total potential expenditure for a

block-group. The data are median medical supplies expenditure (medical supp), median

household income (med inc), median house value (med val ), median house age (house

age), total population (tot pop), land area (area land ), median age (med age), white

population ( pop white ), and female population ( females ). Median house value, median

house age, and land area are for 1990, while the other data are for 1998. We also obtain

the longitude and latitude of each block-group to calculate the distances among retailers

and consumers. Specifically, we compute the distance that consumers travel from their

block group to the stores (distancebc). Research has revealed that shopping trips may not

be home based (Brown, 1992). Therefore, we also obtain average travel time to work

(travel time) for 1990 from 1990 census data to take into account shopping trips

originating from places of employment.

Geographically, the Houston market covers Baytown, Friendswood, Houston, Humble,

Lake Jackson, Sugar Land, and Texas City. The retail chain has 14 stores in the Houston
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market. Twelve stores are located in shopping malls, one in a strip shopping center, and

one in a pad-type shopping center.

Table 2 presents the descriptive statistics of the data used in this study. On average a

store had $1,846 of retail sales in a block group. Retail sales in a block group vary

widely from only $5 to $113,323. This variation indicates that retail sales do not

uniformly originate over space. The distance among retailers and consumers is measured

using the Euclidean metric. Over fifty percent of the consumers traveled less than 10.5

miles from their residence to the store where they shopped. Some consumers lived only

0.15 mile away from the store they patronized while others resided in distant locations.

For the 14 stores in our study, total store sales were stable over year 1999 and year

2000. A store on average generated about $1.3 million in annual sales. The stores

generated sales between about $0.5 million and $2 million. The average store size was

4,579 square feet. The smallest store had 3,157 square feet, and the largest store had

Table 2. Descriptive statistics.

Variables Label Mean Std Dev. Median Minimum Maximum

Retail sales ($) salesbc 1,846.06 3,827.73 524.00 5.00 113,323.00

Distance (miles) distancebc 22.29 45.99 10.49 0.15 712.26

Store sales ($) store sales 1,339,666.71 380,706.15 1,315,324.50 505,601.00 2,030,448.00

Lagged store sales ($) lagged store

sales

1,324,174.57 383,531.07 1,268,676.50 515,538.00 1,853,128.00

Shopping center age

(years)

center age 10.36 3.12 10.88 4.87 15.75

Store size (square

feet)

store size 4,578.79 929.01 4,511.00 3,157.00 6,612.00

Median Medical

supplies

expenditure

($1,000)

medical supp 61.67 42.60 51.00 3.00 782.00

Median household

income ($)

med inc 45,706.62 24,808.02 39,328.00 11,976.00 150,000.00

Median house value

($)

med val 71,301.38 57,253.59 57,100.00 14,999.00 500,001.00

Median house age

(years)

house age 31.98 11.94 29.00 10.00 61.00

Travel time to work

(minutes)

travel time 24.53 6.28 24.40 6.90 54.10

Total population

(persons)

tot pop 1,837.00 1,007.17 1,627.00 70.00 11,125.00

Land area (0.001

square kilometers)

area land 10,428.72 33,201.48 1,125.00 60.00 446,589.00

Median age (year) med age 33.57 6.50 32.70 11.20 75.00

White population

(persons)

pop white 1,407.99 876.56 1,282.00 5.00 10,135.00

Female population

(persons)

females 927.87 507.12 826.00 43.00 6,019.00
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6,612 square feet. The average shopping center age was 10 years. The newest center

opened 5 years ago, and the oldest center opened 15 years ago.

There are 2,977 block-groups in Texas whose residents shopped at the stores in the

study during 2000. Residents in a block group spent on average about $62,000 on

medical supplies in 1998. The median household income was $45,707 a year. The

median house value was about $71,000. Residents on average spent 25 minutes traveling

from their home to work. On average a block group has 1,837 residents and 10 square

kilometers in area. The median age of a resident was of 34 years old. A block group on

average has 1,408 white residents and 928 female residents.

3.2. A SAR in errors model

We describe a SAR in errors model, following the notation of Pace and Gilley (1997),

I � �Dð ÞY ¼ I � �Dð ÞX� þ " ð2Þ

where Y represents a n � 1 vector of observations on the dependent variable, the matrix

X contains n observations on k independent variables, � is a scalar parameter, D is an

n � n spatial weight matrix, and " is an n � 1 vector of error terms. When errors exhibit

spatial autocorrelation, a SAR in errors model partially differences each variable with the

value of that variable at nearby observations (DY, DX ). After transforming both sides,

the errors are normal iid. This model is equivalent to: Y = X � + " where " � N(0, W) and

Wj1 = (Ij�D)0(Ij�D).

In the SAR in error model, � > 0 indicates a positive spatial dependence. This implies

that errors of same sign are geographically clustered together. On the other hand, a � < 0

implies a negative spatial dependence, and this implies that the errors of the opposite

sign are clustered together geographically. When � = 0, the SAR in errors model reduces

to an OLS model. In a retail context, similar consumer populations and shopping en-

vironments may result in a positive spatial dependence among consumers. Individual

stores sharing a similar retailing environment with other stores may lead to a positive

spatial dependence among stores in a retail chain.

To prevent an observation from directly predicting itself, D has zeros on its diagonal.

To facilitate interpretation, each row of D sums to 1. To ensure the stability of the entire

error process, the spatial autocorrelation parameter, �, is restricted to be less than one,

and since negative dependence seems unlikely, we restrict � to the interval [0, 1).11

These assumptions are summarized in the following:

að Þ D
n�nð Þ

1½ �
n�nð Þ
¼ 1½ �

n�nð Þ
bð Þ diag Dð Þ ¼ 0½ �

n�nð Þ
cð Þ 0 � � < 1

dð Þ " � N 0; �2Ið Þ

ð3Þ

58 LEE AND PACE



3.3. Specification of the spatial weight matrix

To model the spatial dependence among stores and consumers, we specify a spatial

weight matrix D = wC + (1 j w)S, where C and S are weight matrices for consumers and

stores respectively, and 0 e w e 1. When w = 1, D reduces to C. When w = 0, D reduces

to S. Empirically, we search for the optimal w over [0.00, 0.01, . . . 1.00].

Since D is a n � n matrix, a straightforward dense specification of this would quickly

result in intractable computations. Accordingly, we take a route that preserves sparsity

among the components of D. This permits use of this approach in both large and small

markets.

We form C using the approach of nearest neighbors with geometrically decaying

weights. Under this scheme, the weight given to each customer depends on the proximity

of each customer relative to all other customers. To make this feasible, we consider only

the m nearest customers (nearest neighbors) to each customer. To make this more

flexible, we allow for a geometrically declining weight for more distant neighbors.

Let N (h) represent an n by n matrix where Nij
(h) > 0 when observation j is the hth

nearest neighbors for observation i (h = 1, 2, : : :m, i, j = 1, 2, : : :n, i m j) and let Nij
(h) = 0

otherwise. Thus, N (1), N (2), : : :, N (h) represents a sequence of neighbor matrices. Let r
represent the rate of geometric decay of weights such that the hth closest neighbors have

a weight of rh where 0 e r e 1. Define C as,

C ¼
Xm

h¼ 1

�hN hð Þ

,
Xm

h¼ 1

�h ð3Þ

and by construction each row sums to 1 and has zeros on the diagonal. Later, we search

for the optimal C by varying m for 36 values over [1, 2 . . . 36] and varying r for 101

values over [0.00, 0.01 . . . 1.00].

Turning to means of modeling spatial dependence among stores, we create S as a

product of sparse matrixes to overcome the computer memory requirement. We can

divide this into five steps. The first step forms the Delaunay triangularization among

stores. The Delaunay triangulation is the geometric dual of the Voronoi diagram that

depicts the geometric expression of connections among contiguous stores (Calciu and

Salerno, 1997).12 Each store at a Delaunay triangle serves similar consumer populations

who tend to live together. With this approach, let Vij = 1 when observations i and j share

contiguous triangles (i m j) and let Vij = 0 otherwise. Thus, V represents a ns � ns weight

matrix of Delaunay triangulation for ns stores.

The second step involves the row-standardization of V. Let

Gi ¼ Vij

,
Xns

j¼ 1
i 6¼ j

Vij ð3Þ

and hence G 1ns
d e ¼ 1ns

d e; where 1ns
d e represents a vector of ones.
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The third step involves the aggregation of customers at each store. Let Aij = 1 when

customer i shops at store j, and zero otherwise. Therefore, A is a 0, 1 matrix whose

dimension is n � ns.

For the fourth step, we can standardize A0 as well. Let R represent a ns � ns diagonal

matrix with elements equal to the reciprocal of the sum of the columns of A. In which

case, RA0 will be row-stochastic, and thus RA0d1e = d1e. Now forming S as a product of

these matrices,

S ¼ AG RA0ð Þ

yields a feasible means of quantifying spatial averages at the customer level.

To make this more intuitive, consider some variable n � 1 vector v which might

represent customer house values, a measure of wealth. The ns � 1 vector RA0v computes

the average customer house price for each store (aggregates from n customers to ns

stores), the ns � 1 vector GRA0v computes the spatial average of customer house values

at competing stores for each store, and the n � ns matrix A redistributes the store level

data back to the customer level. Thus, AGRA0v represents the average house values of

customers that shopped at nearby stores. If v denotes an error, AGRA0v would measure

the average errors at nearby stores for each customer. If the independent variables

underpredicted the performance of nearby stores for some set of stores, AGRA0v would

be positive for customers who shopped at the store, and the use of this information could

improve model predictions.

With this relation, we can perform operations with S without needing to store an n � n

matrix. Instead, for some v we can first form RA0v, a ns � 1 vector, multiply this by an

ns � ns matrix, and then redistribute this result to each observation via the n � ns matrix

A. None of these operations requires much time or memory. As a result, in our actual

computation, D = wC + (1 j w)AGRA0 instead of D = wC + (1 j w)S.

Here is a numerical example showing how to express S with G and A. Assume we

have following matrixes for 4 retail sale observations for 3 stores:

A ¼

1

1

0

0

0

0

1

0

0

0

0

1

2
664

3
775; RA0 ¼

0:5 0:5 0 0

0 0 1 0

0 0 0 1

2
4

3
5; G ¼

0 1=2 1=2

1=2 0 1=2

1=2 1=2 0

2
4

3
5;

then,

S ¼

0 0 0:5 0:5
0 0 0:5 0:5

0:25 0:25 0 0:5
0:25 0:25 0:5 0

2
664

3
775:
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3.4. Maximum likelihood computations

The SAR in error model in (2) and (3) has the following profile log-likelihood function,

L �ð Þ ¼ �þ ln I � �Dj j � 1

2
ln SSE �ð Þð Þ: ð4Þ

where SSE(�) = (Y j X�)0(I j �D)0(I j �D)(Y j X�) and � represents a constant (Pace

et al., 2004). We maximize the log-likelihood by computing equation (4) for 100 values

of � over [0.00,0.01, . . . .0.99].

To overcome the computer memory requirement, we implement the log-determinant

estimator of Barry and Pace (1999) to compute estimates of lnªI j �Dª. In particular,

lnªI j �Dªcan be expanded in a power series as follows:

ln I � �Dj j ¼
X1

r¼ 1

��rtr Drð Þ
r

ð4Þ

Using a finite approximation of the above expansion together with E u0Mu
u0u

� �
¼ tr Mð Þ for

any real n � n matrix M and n by 1 column vector u � Nn (0, I ), Barry and Pace (1999)

show a computationally simple way of estimating the log-determinant, and provide

confidence limits for the estimated log-determinant.

Note, computation of the log-determinant only requires repeated multiplication of a

D by a vector u since D2u equals D(Du), D3u equals D(D2u), and so forth. For sparse

D with number of elements proportional to n, each matrix-vector calculation uses O(n)

operations. Since D = wC + (1 j w)AGRA0, Du just requires a series of low-cost

computations, and this applies to Dru for r = 1 . . . q as well.

In terms of computing the Monte Carlo estimate of lnªI j �Dª, we set q = 98 and use

30 independent realizations of u.

3.5. The empirical model

We rewrite the retail gravity models, equation (1), in log form and empirically model

retail sales as:

ln Salesbcð Þ ¼ X� þ "bc ð5Þ

where X = [Xbc ..
.

Xb ..
.

Xc], Xbc = [1, ln (distancebc)], Xb = a vector of variables pertaining

to store b, Xc = a vector of variables pertaining to shoppers’ area c and "bc represents an

error term.

The matrix Xb contains five variables of store characteristics. The five variables are

ln(lagged store sales), ln(center age), ln(store size) as well as two store-type dummies,

strip and pad. The matrix Xc contains nine variables in log form relevant to total po-

tential expenditure and average travel time to work in log form for block group c. Spe-

cifically, the 10 variables are ln(medical supp), ln(med inc), ln(med val ), ln(house age),

ln(tot pop), ln(area land ), ln(med age), ln( pop white), ln( females), and ln(travel time).
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To model the spatial dependence among stores and consumers, we fit equation (5) with

a SAR in error model using Pace and Barry’s (2002) spatial statistics toolbox 1.1.

Specifically we assume "bc � N(0,d(1 j �D) 0(1 j �D)ej1). Additional details on the

implementation of the Spatial Statistics Toolbox are provided in the Appendix.

In summary, we hypothesize the signs for the variables in equation (5) are positive

signs for ln(lagged store sales), ln(store size), ln(medical supp), ln(med inc), ln(med val ),

ln(tot pop), ln(area land ), ln(med age), ln( pop white), ln( females), and negative for

ln(distancebc), ln(center age), ln(house age), ln(travel time), strip, and pad.

4. Empirical results

To understand the importance of spatial dependence, we calibrate four models that

consider different components of spatial dependence among consumers and stores. The

first model ignores spatial dependence. The second model considers spatial dependence

among stores. The third model considers spatial dependence among consumers. The

fourth model considers both spatial dependence among stores and consumers. Table 3

presents the calibration results of equation (5).

The first model calibrates the gravity model with OLS. As hypothesized, the distance

variable has a negative and significant coefficient of j0.818, with signed root deviance

(SRD) j57.346.13 This coefficient is the constant distance elasticity of retail sales, which

measures the proportional change in retail sales with respect to a small proportional

change in distance. In particular, the coefficient here predicts a 0.818% decrease in a

store’s sales in a block group when the distance between the store and block groups

increases 1%.

The strip shopping center indicator variable has a significant and negative coefficient,

as hypothesized. This result matches those of Sirmans and Guidry (1993) as well as

Oppewal and Timmermans (1999). A mall has more aesthetically appealing design and

usually provides more protection to shoppers from the weather than other types of

shopping centers (Sirmans and Guidry, 1993). Oppewal and Timmermans (1999) find

that design influences consumer perception of shopping centers, and thus affects retail

sales. However, several other variables have significant coefficients with signs opposite

to those hypothesized by retail gravity. For variables pertaining to consumers, median

household income and total population of a block group have significant and negative

coefficients. Their signs are inconsistent with our hypotheses. For variables pertaining to

retail stores, store size and shopping center age have significant coefficients with signs

inconsistent with our hypotheses. Shopping center age has a positive coefficient while

hypothesized to have a negative coefficient. In addition, store size has a negative co-

efficient while hypothesized to have a positive coefficient.

The second model only examines the spatial dependence among stores. The distance

variable increases slightly from j0.818 to j0.815 and remains significant with a SRD

j57.204. Although lagged store sales changes its coefficient from a negative value to the

hypothesized positive value, the coefficient is insignificant. The dummy for a pad

shopping center changes to have the hypothesized negative coefficient but remains
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insignificant. Store size still has a significant and negative coefficient. However, its SRD

decreases near 43% in absolute value from j9.378 to j5.355. The spatial dependence

among stores does not change either the signs or the significances of the coefficients of

variables pertaining to consumers. Nevertheless, the signed root deviances for median

household income and total population of a block group decrease 3.46% and 34.84% in

absolute value respectively.

The third model considers only the spatial dependence among consumers. The dis-

tance estimated elasticity dramatically decreases by 68.34% (from j0.815 in the second

model to j1.372 in the third model). The associated SRD increases more than 19% in

absolute value from j57.204 to j68.304. In addition, spatial dependence among

customers materially affects the estimated parameters. The coefficients of median

household income and total population of a block group become insignificant, but still

have signs opposite to our hypotheses. As a result, now there are no consumer variables

having significant coefficients with signs opposite to our hypotheses. Median house age,

median age of consumers, female population, and average travel time to work change

to have insignificant coefficients. Nevertheless, median medical supplies expenditure

changes to have a positive and significant coefficient as hypothesized.

The spatial dependence among consumers also influences store estimated parameters.

Lagged store sales, a proxy for store management, changes its coefficient from insig-

nificant to significant positive, as hypothesized. This coefficient is consistent with

Black’s (1966) argument. More sales enable a store to carry a greater variety of products,

improve its services to customers, and compete with other stores. In addition, lagged

store sales may capture the effect of store age on better management or other unob-

servables. Start-up problems may adversely affect sales for stores in new locations (Hise

et al., 1983). Stores in business longer should have overcome the start-up problems and

have larger store sales. All these effects can increase the attractive power of a store. Store

size still has a significant and negative coefficient. Nonetheless, it increases from j0.888

to j0.557, and its SRD decreases 1.21% in absolute value from j5.355 to j5.290.

However, the dummy for a pad shopping center changes to have a significant and

positive coefficient. This coefficient is not consistent with Sirmans and Guidry (1993) as

well as Oppewal and Timmermans (1999).

The fourth model models both spatial dependence among stores and consumers.

Compared to the third model, the distance elasticity slightly decreases another 0.36%

from j1.372 to j1.377. The associated SRD increases another 2.07% in absolute value

from j68.304 to j69.721. The next most important variable, store size, in retail gravity

models now has a significant coefficient with hypothesized sign. Its coefficient changes

to significant and positive in Model 4 from significant and negative in Models 1, 2, and 3.

The coefficient changes from j0.557 in Model 3 to 0.490 in Model 4. The SRD for store

size changes from j5.290 to 4.021. The dummy for a pad shopping center changes to

have a significant and negative coefficient, as hypothesized. In addition, center age

changes to have a negative coefficient. Although the coefficient is not significant, it has

the hypothesized sign. This sign agrees with Sirmans and Guidry’s (1993) as well as

Gatzlaff et al. (1994) arguments. They argue that older shopping centers generally suffer

functional or physical deficiencies and have an inappropriate tenant mix due to changing
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markets, and thus have less attractive power. The coefficient for lagged store sales

increases about 58% in magnitude from 0.190 to 0.300. Its SRD also increases by over

50% from 4.644 to 7.012. The coefficients of total population of a block group become

positive, as hypothesized, but remain insignificant. Median household income still has an

insignificant and negative coefficient. However, this may not seem too surprising given

the model already contains medical supply expenditures, a more direct measure of

medical spending potential than income. Nevertheless, the coefficient decreases more

than 97% in absolute value from j0.038 to j0.001. The SRD for the median household

income also decreases more than 97% in absolute value from j0.895 to j0.024. Table 4

summarizes the signs and significances of the variables in the calibrated models.

In addition to producing plausible estimated parameters, model selection criteria also

show models perform better when incorporating both forms of spatial dependence. The

R2 increases from 0.386 for the first model to 0.548 for the fourth model. The log-

likelihoods also show that the fourth model outperforms the other three models. In fact,

the likelihood ratio statistic between Model 1 and Model 4 is about 2,005.

5. Conclusions

Gravity-type models have been applied to the retail context extensively. However, the

results have often seemed disappointing. For example, Kolter (1971) found that store size

Table 4. Signs and significances of the variables in the gravity models.

Independent variables Hypothesized sign

Actual sign (Significance)

Model 1 Model 2 Model 3 Model 4

ln(distancebc) j j1 j1 j1 j1

ln(lagged store sales) + j0 +0 +1 +1

ln(center age) j +1 +1 +1 j0

ln(store size) + j1 j1 j1 +1

strip j j1 j1 j1 j1

pad j +0 j0 +0 j1

ln(med supp) + j0 j0 +1 +1

ln(med inc) + j1 j1 j0 j0

ln(med val ) + +1 +1 +1 +1

ln(house age) j j1 j1 j0 j0

ln(tot pop) + j1 j0 j0 +0

ln(area land ) + +1 +1 +0 +1

ln(med age) + +0 +0 +0 +0

ln( pop white) + +1 +1 +1 +1

ln( females ) + +1 +1 +0 +0

ln(travel time) j j1 j1 j0 j0

Notes: Each model entry gives the actual sign and its significance at the 1% level (denoted by 1) or its lack of

significance denoted by 0. Thus, an entry of +0 means the parameter estimate was positive, but not significant.
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did not prove significant in predicting store sales. Both Stanley and Sewall (1976) as well

as Kolter (1971) conclude the gravity model was of limited value in predicting single

store sales. However, previous studies have assumed independence among customers and

stores. For these data, modeling spatial dependence results in far more plausible

parameter estimates than assuming independence. For example, under independence

previous store sales have an insignificant, negative effect on future store sales. After

modeling spatial dependence, previous store sales have significant, positive effect on

future store sales. Under independence, store size has a significant, negative effect on

store sales. After modeling spatial dependence, store size has a significant, positive effect

on store sales. Under independence, center age has a significant, positive effect on store

sales. After modeling spatial dependence, center age has a insignificant, negative effect

on store sales.

Even the distance variable, the central feature of the gravity model, may not be well

estimated under independence. Using actual sales for a retail chain in the Houston

market and modeling spatial dependence among customers and stores, we find that the

assumption of independent errors can lead to understating the magnitude of the distance

parameter by as much as two-thirds. This result implies that previous studies may have

overestimated the deterministic extent of trade areas as reflected in the distance

parameter, and thus have understated the importance of good locations.
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Appendix

This section provides additional details on the implementation of the Pace and Barry

(2002) Spatial Statistics Toolbox for retail data with both consumer and retailer spatial

serial dependencies. We follow the steps of a typical session with the toolbox described

in Pace and Barry (2002) Spatial Statistics Toolbox 1.1. First, import the data into

Matlab. The data forms a matrix including the dependent variable, the independent

variables and the longitudes and latitudes of consumers and those of stories.

Second, create spatial weight matrixes. To create C, we employ three functions,

FDELW1, FNNDEL1, and FNNASYM1. Specifically we input the longitudes and

latitudes of consumers, which is a sub-matrix of the original input data, to FDELW1 and

have the output matrix wswdel. With wswdel and consumers’ locational coordinates,

FNNDEL1 produces smats, a collection of 36 binary spatial weight matrices, for a

specified m. With r further specified, FNNASYM1 creates wwsasymnn which is
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equivalent to C. We search for the optimal C by varying m for 36 values over [1, 2 . . . 36]

and varying r for 101 values over [0.00, 0.01 . . . 1.00]. To create S, we first input the

ns � ns matrix of stores’ locational coordinates into FDELW1 and create wwsdel as G.

We then form A, A0, and R, and have S in the form of AG(RA0). Therefore D = wC +

(1 j w)AGRA0.
Third, compute the log-determinants for a grid of autoregressive parameters. Setting

q = 98 and using 30 independent realizations of u, we employ FMCDETNL1 to compute

the estimates of lnªI j �Dª and 95% confidence limits of the estimated log-deter-

minants. We then utilize FSAR1 to fit our retail gravity model. We compute our profile

log-likelihood function for 100 values of � over [0.00, 0.01, . . . .0.99], and for 101 values

of w over [0.00, 0.01, . . . .1.00]. The best model maximizes the log-likelihood.

Notes

1. Hardin and Wolverton (2001) provide evidence that retail gravitation affects rental rates.
2. Examples of these studies are Gautschi (1981), Okoruwa et al. (1988), and Okoruwa et al. (1994), and Eppli

and Shilling (1996).
3. Porojan (2001) applied spatial statistics to estimate gravity models of international trade flows. Note, this

provides a simpler scenario since each country is both an origin and destination. Thus, modeling spatial

dependence for origins also models spatial dependence for destinations in trade studies.
4. See Brown (1992) for a list of studies of retail gravity models.
5. Gravity models in this form can be applied to all sorts of spatial interaction behavior such as retail

shopping, and population migration (Fotheringham and Webber, 1980).
6. See Okoruwa et al. (1988) for a list of such studies.
7. In most retail gravity models, location means the distance among consumers and retailers.
8. Most of gravity models assume that consumers shop from fixed points (e.g., their places of residence) and

buy just one type of good or service per shopping trip (Carter, 1993).
9. One exception is Nevin and Houston (1980) who include multipurpose shopping opportunities in their

gravity model.
10. A strip (linear) shopping center consists of a line of stores with a pedestrian walk along the storefronts. A

pad (cluster) center is a group of freestanding retail sites linked together by pedestrian walkways.
11. This assumption is for convenience. If � < 0, the estimates should lie on the boundary � = 0. We did not

observe such a boundary solution.
12. The Voronoi diagram has the property that for each store every point in the region around that store is

closer to that site than to any of the other stores.
13. The signed root deviance or SRD equals the square root of likelihood ratio statistic with a sign of its

coefficient. It has an interpretation similar to a t-ratio. Squaring the SRD yields back the likelihood ratio

statistic. We employ it to avoid scaling problems.
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