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Abstract
This study aims to valorize agricultural waste of Leucaena leucocephala pods (LP) 
as a low-cost precursor for synthesizing high-performance activated carbon (LP-AC) 
for the removal of methylene blue dye (MB). Phosphoric acid  H3PO4 was employed 
as a chemical activator of the LP biomass with a mass ratio of phosphoric acid to 
the precursor (3/1) before being calcined at 500 °C for 55 min. Box Benken design 
was investigated to optimize the experimental parameters of initial concentration, 
adsorbent dose, and pH. Variable optimization indicated that the highest removal 
efficiency of MB dye, estimated as 99.99%, was noticed at the initial concentration 
of 300.87 mg  L−1, adsorbent dose of 0.049 g, and solution pH of 10.07. Isotherm 
study revealed that Temkin model shows the best agreement with the experimental 
data with a correlation coefficient of  (R2 = 0.990). The adsorption capacity of MB 
dye was determined as 584.32 mg  g−1. The kinetic study suggested that the pseudo-
second-order model is the best-correlated model for data fitting with  (R2 > 0.997). 
The thermodynamic analysis indicated an enthalpy change (ΔH) of −  18.50  kJ/
mol, confirming that the adsorption of MB dye onto LP-AC material is an exother-
mic process. SEM characterization of the surface showed that the LP-AC exhibits 
a heterogeneous structure. The BET analysis revealed a remarkable surface area 
of 1367.30   m2   g−1 for the produced carbon, including a blend of mesoporous and 
microporous structures. Furthermore, complementary analyses including EDS, 
TGA, and FTIR confirmed the presence of crucial properties, underscoring its 
potential effectiveness as an adsorbent for removing MB dye.
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Introduction

The presence of dyes in water is one of the major causes of water pollution, even 
at low concentrations, because of their high solubility in water and resistance to 
bio-degradability [1, 2]. These toxic substances have a detrimental impact on 
aquatic life, not only because they prevent light from reaching aquatic plants, 
which hinders the photosynthesis process, but also because they reduce the oxy-
gen ratio in water [3]. For these reasons, the current challenge is discovering an 
efficient technique to protect the environment from these toxic issues.

In reason of environmental protection, various techniques have been applied 
in textile industries to eliminate dye from wastewater before being discharged, 
such as oxidation[4], flocculation [5], membrane filtration [6], biodegradation 
[7], adsorption [8], electrochemical method [9], photo-oxidation [10]. Adsorption 
using Carbonaceous materials is supposed to be a better choice for water depol-
lution because of its noticeable surface area, thermal stability, favorable porous 
structure, high dyes adsorption capacity, and low environmental impact.

The production of a potential activated carbon needs physical and chemical 
processes that could be costly or consume energy, so endeavors are focused on 
using economical, renewable, and sustainable sources of the initial precursor 
[11]. In this pursuit, agricultural wastes are the most commonly applied precur-
sors for activated carbon production, such as rubber leaf [12], sorghum straw[13], 
Dacryodes edulis seeds[14], rice husk [15], soursop seeds [16], Ficus carica bast 
[17], and fig grape leaves [18]. Leucaena leucocephala is known for its expe-
ditious growth as an arboreal plant, attaining heights of up to 20  m. This tree 
is well-known all over the world and grows over an area that is thought to be 
between 2 and 5 million hectares. A notable feature of this tree is its ability to 
generate an ample amount of pods on many occasions throughout the year, mak-
ing it a renewable and accessible resource suitable for exploitation as a precursor 
in the production of activated carbon [19].

The quality of the carbon produced by the activation process is significantly 
influenced by the activation conditions that modify the surface proprieties and 
the adsorption capacity, these conditions include the biomass source, the method 
of activation, and the chemical activator choice [20]. Chemical activation has 
been demonstrated as an effective method for preparing potentially activated car-
bon with highly porous structures. This method provides a significant benefit by 
requiring lower pyrolysis temperatures and shorter processing periods. Further-
more, it exhibits the potential of creating a high surface area surpassing what can 
be achieved by the physical activation method [21]. Chemical activation involves 
the impregnation of the biomass in a chemical activator solution with a specific 
concentration followed by subjecting the mixture to a thermal treatment. Com-
monly used activators for chemical activation are  H2SO4, KOH, NaOH,  Zncl2, 
 KMnO4,  HNO3,  H2O2,  H3PO4, and  K2CO3. These activators play a crucial role in 
enhancing the porosity and adsorption capacity of the produced carbon [22, 23].

Drawing from the previous works on LP biomass, some studies reported the 
basic activation of LP waste by NaOH where it was applied for the adsorption of 
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dyes and heavy metals [24], while the acidic activation using  H3PO4 as a chemi-
cal activator of LP biomass has not been explored yet. Furthermore, phosphoric 
acid has been chosen in various studies for its potential to interact with biomass 
surface, creating high porosity and surface area [25], as demonstrated in previous 
studies [26–30].

To maximize the efficiency of dye removal, it is essential to optimize the experi-
mental conditions. Response surface methodology (RSM) is a statistical technique 
that involves the simultaneous variation of the experimental factors to maximize the 
response, while considering their interaction effects. Furthermore, this technique 
offers a comprehensive study of how variables influence the response with fewer 
sets of experiments. In the current study Box Benken design was applied for several 
reasons, including the efficiency of this model in providing a precise approach to the 
results and the economic aspect of this model, which offers a reduced set of experi-
ments [31].

The objective of this study is to valorize agricultural wastes in the preparation 
of ecofriendly activated carbon which demonstrates promising capabilities in tex-
tile dye elimination from wastewater. Additionally, the research delves into com-
prehending the adsorption behavior through isotherm, kinetic, and thermodynamic 
study, besides the physicochemical characterizations (FTIR, SEM–EDS, TGA, BET, 
 pHpzc) that enhance the identification of the various interactions that occur on the 
activated carbon structure.

Materials and methods

Preparation of the activated carbon (LP‑AC)

Following the washing and drying steps, LP pods was further processed through a 
grinder to achieve a particle size of 250 μm. The activated carbon was prepared by 
the impregnation of the biomass in phosphoric acid with concentration of 98% (w/v) 
and predetermined mass ratio of (1/3), (biomass/H3PO4), the mixture was stirred 
for 4 h to ensure the homogenization of the slurry, then dried in an oven for 24 h 
at 100 °C. After that, the sample was subjected to pyrolysis in a muffle furnace at 
500 °C for 55 min. The carbonized sample was washed abundantly with hot distilled 
water until the neutralization of the filtrate. Finally, the produced activated carbon 
was dried at 80 °C, crushed, and sieved to a particle size < 80 μm and kept in an air-
tight container for further use.

Reagents and apparatus

This study targets methylene blue molecules  (C16H18ClN3S3.H2O) with a molecular 
weight of 319.86 g   mol−1. Phosphoric acid  H3PO4, sodium hydroxide NaOH, and 
hydrochloric acid HCl were acquired from Sigma Aldrich company. The residual 
concentration of methylene blue was determined using a UV–Visible spectropho-
tometer type (GENESYS 10SUV-VIS). pH measurements were conducted using pH 
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meter type (OHAUS, STARTER 3100). Design Expert software 13 was used as an 
analytical tool in the response surface methodology study.

Characterization of the adsorbent

Carbon porosity and surface area were determined using adsorption–desorption iso-
therms of  N2 at 77 K with relative pressure range 0 < P/P° < 1 using outgases of 8 h, 
using Autosorb 1C (Quantachrome) machine. The BET (Brunauer–Emmett–Teller) 
method was employed to estimate the surface area  (SBET) of the prepared activated 
carbon. Surface functional groups were qualitatively determined using Fourier trans-
form infrared spectroscopy (FTIR) at wave light ranging from 400 to 4000   cm−1, 
using (Nicolet IS5) instrument. The hydraulic pump was used to produce pellets 
after mixing 2 mg of the sample with 80 mg of KBr. The surface morphology of the 
raw LP and LP-AC materials was identified through SEM analysis, applying magni-
fication of ×2500 with a Quanta FEI 250 apparatus. Elemental composition analy-
sis of both raw and activated carbon was determined using EDS analysis. Thermal 
behavior of LP material was characterized using (TGA/DSC) (thermal gravimet-
ric analysis/differential scanning calorimeter) from room temperature 20  °C up to 
600 °C using sta 449F3 jupiter (Netzsch) apparatus.

Adsorption experiment using Box Benken design

Box Benken design was used to determine the optimal conditions for maximizing 
MB removal using activated carbon within three independent variables and three 
levels. To create a Box Benken matrix, a series of primary tests is essential to deter-
mine the parameters that strongly affect the MB adsorption on the LP-AC material. 
The independent variables are codded as A: initial concentration, B: initial pH, and 
C: adsorbent mass. Variables range limits are coded as − 1 for low level and + 1 for 
high level, while 0 for the central points as summarized in the Table 1. During the 
adsorption experiment, a mass of adsorbent was added to 50 mL of MB solution and 
then mixed for 2 h at a shaking speed of 300 rpm. Subsequently, the solid separation 
was performed using a 0.4 μm filter, and the residual concentration of MB dye was 
measured at (λmax = 664 nm). pH solution was adjusted using 0.01 M of HCl and 
NaOH solutions. Removal efficiency (R %) of dye and the adsorbed amount at the 
equilibrium  qe (mg  g−1) was determined using Eqs. 1 and 2:

Table 1  codded levels of the 
input variables

Factors Unit Codded levels

 − 1 0 +1

Dye concentration (A) mg  L−1 300 500 700
Initial pH (B) – 2 7 12
Adsorbent mass (C) g 0.01 0.03 0.05
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Here  Co and  Ce (mg  L−1) are starting and equilibrium concentrations of MB, V, and 
W are the solution volume (L) and the adsorbent mass (g). The statistical study of 
the model was performed using Design Expert (13.0, Stat-Ease, USA).

The mathematical model at the end of the design, which predicts the removal effi-
ciency of MB dye, can be constructed using the following equation:

Here R is the output (MB removal efficiency), β0 is a constant coefficient, βi, βii, and 
βij are regression coefficients of linear interaction, quadratic effect, and linear inter-
action of variable.  Xi,  Xj are experimental variables [32, 33].

Isotherm study

Isotherm models mainly explain the interfacial phenomena between the adsorbent 
and the adsorbate molecules. Various models such as Langmuir, Freundlich and 
Temkin are used to describe the adsorption behavior under equilibrium conditions. 
The Langmuir isotherm suggests that the adsorbent sites are covered by a monolayer 
of the adsorbate molecules occupying uniform sites. The nonlinear form of Lang-
muir is expressed as [34]:

Here  qm (mg  g−1),  KL (L  mg−1), and  Ce (mg  L−1) are the dye maximum adsorption 
capacity, Langmuir constant, dye concentration at the equilibrium. Adsorption fea-
sibility can be determined using Langmuir dimensionless constant as follows Eq. 5:

Depending on the  RL values, the adsorption equilibrium can be unfavorable 
 (RL > 1), linear  (RL = 1), favorable (0 <  RL < 1), or irreversible  (RL = 0) [35].

The Freundlich isotherm is employed to describe the adsorption phenomenon on 
a heterogeneous adsorbent surface, allowing for the formation of multiple layers of 
solute molecules on the adsorbent surface. The Freundlich non-linear equation can 
be illustrated as follows [36]:

(1)R% =

(
C0 − Ce

)
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Here  Kf ((mg  g−1) (L  mg−1)1/n),  Ce (mg  g−1), and n are the Freundlich equilibrium 
constant, equilibrium concentration, and heterogeneity constant respectively.

Temkin isotherm assumes that the heat of the adsorption changes linearly with 
the surface coverage of the adsorbent molecules. The nonlinear Temkin equation is 
expressed as:

Here  bT (J   mol−1) is the heat adsorption constant,  KT (L   mg−1) is the Tem-
kin constant at the equilibrium, T is the temperature in kelvin, R gas constant 
(8.314 J  mol−1  K−1) [37].

Results and discussion

Adsorbent characterization

Zero charge point

The adsorbent performance depends on the interactions formed between its sur-
face charge and the charge of the target molecules. Notably, the adsorbent surface 
could be basic, acidic, or neutral which influences the adsorption efficiency. Fig. S1 
(Online Resource 1) represented the zero charge point of the activated carbon deter-
mined following the salt addition method as expressed by Manna et al. [38]. It can 
be seen that the carbon produced has an acidic surface, as indicated by the zero 
charge point of 2.3. Above this point, the LP-AC surface shows a negative charge, 
which is favorable for creating electrostatic interactions with positive MB molecules 
[39].

Textural characteristics of the activated carbon

Nitrogen adsorption–desorption isotherm model was used to study the porosity and 
texture properties of the activated carbon. According to the IUPAC classification, 
the observed curve shape in Fig. 1a is of type IV, characterized by a narrow hyster-
esis loop of type H4 at 0.4 < P/P0 < 1, indicating the presence of both microporous 
and mesoporous structure, which is confirmed by the Barrett–Joyner–Halenda (BJH) 
pore distribution Fig. 1b, where it can be seen that the most of pores sizes are rang-
ing between 1.55 and 9.75 nm, corresponding to micropores with diameters < 2 nm, 
and mesopores with diameters from 2 to 50 nm [40]. Table 2 shows that the LP-AC 
exhibits a high BET surface area of 1367.30  m2  g−1 with a significant mesoporous 
area of 803.95  m2  g−1 which enhance the MB adsorption.

(6)qe = KfC
1

n

e

(7)qe =
RT

bT
ln
(
KTCe

)
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FTIR analysis

FTIR analysis was applied to identify the surface functional groups on LP acti-
vated carbon as presented in Fig.  2. The broad peak at 3383   cm−1 could be 
attributed to the presence of hydroxyl groups OH originating from alcohol, car-
boxyl, and phenol, or may occur due to water adsorption. The peak at 1578  cm−1 
can be associated with the presence of a C=C bond, indicating that the LP-AC 
may contain aromatic rings [41]. It could be noteced that the intensity of meth-
yle C–H3 peak at 1311   cm−1 is more intense after MB adsorption, besides, the 
appearance of a new peak at 1319  cm−1 which could be due to the formation of 
electrostatic interactions with MB molecules [42]. Peak at 1211 attributed to the 
C–O vibration [43]. The peak at 1075  cm−1 may refer to the symitric and asymi-
tric vibration of P–O–C and P–O respectively [44, 45]. The appearance of small 
peaks at around 885–800  cm−1 after MB adsorption refers to the =C–H Alkene 
bonds of the benzen ring [46, 47].

Fig. 1  N2 adsorption–desorption isotherm (a), and pore size distribution (b) of LP-AC

Table 2  Textural properties of LP-AC

Dp average pore diameter

SBET
(m2  g−1)

Smeso
(m2  g−1)

Smic
(m2  g−1)

Vt
(cm3  g−1)

Vmic
(cm3  g−1)

Vmeso
(cm3  g−1)

Dp
(nm)

1367.30 803.95 563.35 0.78 0.23 0.55 2.30
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SEM analysis

The effect of the chemical activation on the surface morphology of the activated car-
bon was determined using SEM analysis as presented in Fig. 3. It is observable that 
the LP precursor in Fig. 3a is characterized by a wavy, non-porous surface with the 
presence of wrinkles, which may explain their restricted surface area. while, the pro-
duced activated carbon Fig. 3b represents a rough, cracked, and extremely heteroge-
neous surface that includes various forms of cavities and pits that allow the adsorp-
tion of different sizes of solute molecules. Pore formation could be attributed to the 
reaction of the phosphoric acid with the raw LP during the activation process which 
leads to the emission of volatile compounds [29, 48, 49]. After MB adsorption 

Fig. 2  FTIR analysis of LP-AC before and after MB adsorption

Fig. 3  SEM image for raw LP at ×2500 (a), and activated carbon at ×2500 (b)
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Fig. S2 (Online Resource 1), the surface of LP-AC becomes smoother and denser 
confirming that the LP-AC surface is covered by MB molecules. However, there are 
no significant changes in the overall structure of LP-AC.

EDS analysis Fig. S3a and b (Online Resource 1) indicated that the carbon con-
tent increases from 52.28 to 80.70% in raw and activated carbon respectively. That 
could be attributed to the vaporization of volatile substances during the activa-
tion process, resulting in a material that has a higher concentration of carbon. This 
affirms the efficiency of the activation process in carbon production using phos-
phoric acid. Furthermore, the produced carbon is rich with oxygen and phosphor 
which is in consistent with the FTIR analysis.

Thermal gravimetric analysis of LP‑AC

Thermal gravimetric analysis TGA and differential scanning calorimeter DSC of raw 
precursor represented in Fig. 4 indicated that LP degradation occurs in three main 
sections. At the first stage, a small weight loss of 7.62% was observed at temperature 
of (50–150 °C) because of the volatile matter and water evaporation. At the second 
stage, a notable mass loss of 46.11% was observed within the temperature range of 
(200–350 °C). This aligns with earlier studies which suggests that cellulose, hemi-
cellulose, and lignin decompose within the temperature range of (265–310 °C) [50]. 
At this stage an intense pic of exothermic reaction is observed at 300 °C. The third 
stage of mass loss corresponds to the degradation of the rest of lignin molecules at 
temperature range of (350–500  °C) with a mass loss of 32.39%. At temperatures 
beyond 500 °C, there is no longer any loss of mass, suggesting that this temperature 
is the most favorable for the production of activated carbon.

Fig. 4  TGA/DSC analysis of raw LP material
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Model fitting and statistical analysis

To evaluate the influence of the experimental variables on the removal efficacy 
of MB using Lp-activated carbon, a Box–Benken matrix including 17 batch tri-
als was undertaken. During these trials, three variables were manipulated, each 
with three different levels. The values of MB removal efficiency % are tabulated 
in Table 3. Notably, the experimental results indicated that the maximum removal 
efficiency of 99.42% is highlighted in the experiment run 17, under the following 
conditions: dye concentration of 300 mg  L−1, pH solution of 7, and an adsorbent 
dose of 0.05 g.

The Analysis of variance (ANOVA) was carried out to assess the significance of 
variables variation on the response at a confidence level of 95%. The validation of 
model adequacy relies heavily on the model’s P and F values, where a small p value 
(< 0.05) and large F value (> 0.05) are required for the model significance [51]. The 
ANOVA results summarized in Table 4 indicated that with p-value < 0.0001 and F 
value of 71.15, the quadratic model chosen is significant for the results fitting. More-
over, the model exhibited a non-significant lack of fit as indicated by a p-value of 
0.5948 confirming the suitability and the adequacy of the model.

In addition, an essential set of parameters is required to assess the signifi-
cance of the model, including the correlation coefficient  R2 = 0.9892, which pre-
sents a high value close to 1, suggesting that only 1.08% of the variation remains 
unexplained by the model [33]. High values were also observed for the adjusted 
 R2 = 0.9753 and the predicted  R2 = 0.9289, the difference between these two 
parameters should be less than 0.2 to revealed a good model fit.

Table 3  Box Benken matrix of 
the tree variables

Run A: [MB] 
(mg  L−1)

B: pH C: Adsorbent 
mass (g)

MB removal %

1 500 2 0.01 24.5
2 500 12 0.05 98.41
3 500 7 0.03 63.58
4 500 12 0.01 87.67
5 700 7 0.01 32.53
6 500 2 0.05 86.98
7 700 12 0.03 98.87
8 300 7 0.01 40.52
9 300 2 0.03 81.22
10 500 7 0.03 60.63
11 500 7 0.03 59.87
12 700 2 0.03 43.05
13 300 12 0.03 99.01
14 500 7 0.03 68.69
15 500 7 0.03 68.01
16 700 7 0.05 62.15
17 300 7 0.05 99.42
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The prediction of the removal efficiency of MB dye using LP-AC is repre-
sented by a second-degree polynomial Eq. 8. According to the statistical study of 
the variables, terms with p-values less than 0.05 are important and play an essen-
tial role in the model. In this context, A, B, C, AB, AC, BC,  B2, and  C2 are found 
to be significant contributors. However,  A2 is not significant in this model.

To assess the model applicability, the distribution of the model predicted data 
vs actual data points is illustrated in Fig.  S4 (Online Resource 1). It is evident 
that both results are close, with a uniform distribution that forms a straight line. 
This could be an emphasis on the accuracy of the model in predicting results [52].

Surface response analysis

Adsorption of MB dyes on LP-AC is influenced by various experimental param-
eters, including initial dye concentration, solution pH, and Adsorbent dose. These 
parameters can enhance or impede the removal efficiency of dye. To better under-
stand the interaction effect of parameters on the response, 3D surface response 
plots were investigated. Fig. 5a shows the interaction effect of the adsorbent dose 
and pH while holding dye concentration constante at the central point of 500 mg 
 L−1. It could be seen that pH variation has a positive effect on the response where 
increasing the pH values from 2 to 12 increases removal efficiency from 24 to 
86%. That could be a result of the negative charge exhibited by the adsorbent at 

(8)
R% = + 64.16 − 10.45A + 18.53B + 20.22C + 9.51AB − 7.32AC

− 12.94BC + 0.323A2 + 16.06B2 − 5.82C2

Table 4  ANOVA test

R2 = 0.9892,  R2 Adjusted = 0.9753,  R2 Predicted = 0.9289, * significant, – not significant

Source Sum of squares df Mean Square F-value p-value Remark

Model 9327.70 9 1036.41 71.15  < 0.0001 *
A-initial concentration 872.99 1 872.99 59.93 0.0001 *
B-pH 2745.78 1 2745.78 188.50  < 0.0001 *
C-Adsorbent mass 3269.98 1 3269.98 224.48  < 0.0001 *
AB 361.57 1 361.57 24.82 0.0016 *
AC 214.33 1 214.33 14.71 0.0064 *
BC 669.26 1 669.26 45.94 0.0003 *
A2 0.4400 1 0.4400 0.0302 0.8669 –
B2 1085.76 1 1085.76 74.54  < 0.0001 *
C2 142.83 1 142.83 9.81 0.0166 *
Residual 101.97 7 14.57
Lack of fit 35.42 3 11.81 0.7097 0.5948 –
Pure error 66.54 4 16.64
Cor total 9429.67 16
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pH values higher than the  (pHzpc = 2.3) which is favorite for dropping positive 
MB molecules [53].

Fig. 5b suggests that increasing the adsorbent dose from 0.01 to 0.05 g, improves 
the MB uptake, which could be a result of the availability of a large number of 
vacant sites offered by the adsorbent addition [55].

However, the initial dye concentration has a negative effect on the adsorption per-
formance Fig. S5 (Online Resource 1). As it increases from 300 to 700 mg  L−1, the 
removal efficiency decreases from 81 to 43%, which could be explained by the large 
number of MB molecules at high concentration against the limited active sites of the 
adsorbent [54].

Optimization of experimental parameters using the desirability function

The desirability function (DF) plays an essential role in optimizing the experimental 
parameters for maximizing the removal efficiency of MB dye. The scenario chosen 
for this optimization was based on keeping all variable values within range while 
maximizing the response. According to the ramp function graph Fig.  S6 (Online 
Resource 1), achieving a removal efficiency of 100.18% with a desirability of 1% 
corresponds to setting the value of the parameters at an initial dose of 0.049 g, dye 
concentration of 300.87  mg  L−1, pH of 10.07. For the validation of the scenario 
Table  5 represents the predicted and the experimental values of the responses. It 

Fig. 5  3D plot of factors interactions, adsorbent dose and pH (a), adsorbent dose and initial concentra-
tion (b) (at V = 50 mL, stirring = 300 rpm, T = 28 °C)

Table 5  Relative error for the model validation

Optimal values of 
the adsorption

Predicted response % Experimental validation % Error %

[MB] 300.87 mg  L−1 100.18 99.99 0.19
pH 10.07
Adsorbent dose 0.049 g
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could be noticed that the experimental validation of these conditions shows a 
removal efficiency of 99.99%, this value is so close to the value predicted by the 
model. The error calculated using Eq. 9 is estimated as 0.19% this small value is 
acceptable for the validation of the model prediction. The experiments were repeated 
at least two times.

Isotherm study

The isotherm study was conducted using the nonlinear forms of the most commonly 
employed Langmuir, Freundlich, and Temkin isotherms [56]. Fig. 6 shows the variation 

(9)Error% =
||||

Experimentale value − Predicted value

Exprimentale value

||||
∗ 100

Fig. 6  Isotherm models of Langmuir, Frendlich, and Temkin (at adsorbent mass = 0.049 g, V = 50 mL, 
t = 2 h, stirring = 300 rpm, T = 28 °C, pH 10.07)

Table 6  Isotherm parameters 
of Langmuir, Freundlich, and 
Temkin

Adsorption isotherm Parameters Values ± SE

Langmuir qm (mg  g−1) 584.32 ± 46.81
KL (L  mg−1) 2.61 ± 1.37
R2 0.934
RL 3.82 ×  10–4 ± 1.37

Freundlich Kf ((mg  g−1) (L  mg−1)1/n) 244.117 ± 23.29
1/n 0.192 ± 0.02
R2 0.984

Temkin KT (L  mg−1) 68.327 ± 28.20
bT (J  mol−1) 37.008 ± 4.106
R2 0.990
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of the adsorbed amount as a function of the equilibrium dye concentration varied in the 
range (100 to 1000 mg  L−1), the rest of the experimental conditions were fixed at the 
optimal values previously determined in the RSM study. The equilibrium parameters of 
the model fitting are calculated in Table 6.

To evaluate the best fitted model, the isotherms were compared using  R2 values. 
Both Temkin and Freundlich have higher coefficients than the Langmuir isotherm. 
Temkin isotherm shows the best agreement with the experimental data with  R2 = 0.980 
indicating the heterogeneity in the adsorbent site energy. The positive value obtained 
for the adsorption heat calculated from the Temkin isotherm  (bT > 1) revealed that the 
adsorption process is exothermic [57, 58]. Langmuir isotherm represents a maximum 
adsorption capacity of  qm = 584.32  mg   g−1. The obtained adsorption capacity indi-
cated that the produced activated carbon shows a high performance compared to those 
obtained from different activated carbons for MB removal derived from Garcinia man-
gostana  qm = 163.6 mg  g−1 [27], pistachio shells  qm = 129 mg  g−1 [59], corn cob resi-
due  qm = 183.3 mg  g−1 [60], Calicotome villosa  qm = 169.78 mg  g−1 [61]. Furthermore, 
the  RL value less than the unit indicates a favorable adsorption process. Additionally, 
Freundlich constant 1/n < 1 indicated that MB adsorption on LP activated carbon is a 
favorable process.

Kinetic study

The kinetic mechanism of the adsorption of MB dye on activated carbon was investi-
gated using the two basic models of Pseudo first order and Pseudo second order using 
the following equations:

Pseudo first order

Pseudo second order

(10)qt = qe
(
1 − e−K1⋅t

)

Fig. 7  kinetic plots of pseudo first order (a), and pseudo second order (b) (at adsorbent mass = 0.049 g, 
V = 50 mL, t = 2 h, stirring = 300 rpm, T = 28 °C, pH 10.07)
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Here  qe and  qt are the dye amount at equilibrium and instant t,  K1 (L  min−1) is the 
pseudo first order constant,  K2 (g  mg−1  min−1) is the pseudo-second order constant 
respectively.

Non-linear fitting of the adsorbed amount in function of initial dye concentration is 
illustrated in Fig. 7. It appears that the equilibrium is achieved in the first 5 min for low 
concentrations, whereas it necessitates a longer time for high concentrations, typically 
around 20 min. kinetic parameters derived from the non-linear fitting are illustrated in 
Table 7. Upon comparing the correlation coefficients, it is evident that the PSO model 
shows significantly higher values with  R2 > 0.997, in contrast to the PFO model with 
 R2 > 0.990.

Furthermore, the normalized standard deviation of the adsorbed amount Δq% 
calculated from Eq. 12 indicated that the PSO model is in better agreement with the 
experimental data, as indicated by the lowest value of Δq = 0.636% compared to the 
high value obtained from the PFO model Δq = 1.71%, suggesting that chemisorp-
tion interactions govern the kinetic rate of the process [62]. These results are in line 
with those found in a previous study on the adsorption of MB dye on phosphoric-
activated carbon [63–65].

Thermodynamic study

To investigate the effect of temperature on the adsorption of MB dye on the acti-
vated carbon, the temperature effect was carried out in a range of (303, 313, 323, 
and 333 K) using dye concentration of 300 mg  L−1, adsorbent mass of 0.045 g, pH 
of 10.07. Thermodynamic parameters of Gibbs free energy ΔG, enthalpy ΔH, and 
entropy ΔS were calculated using the following equations:

(11)qt =
(
K2q

2
e
⋅ t
)/(

1 + K2qe ⋅ t
)

(12)
Δq% = 100 ×

�
∑n

i=1

�
qeexp−qecal

qecal

�2

n − 1

Table 7  Kinetic parameters of MB adsorption on LP-AC

C0 (mg  L−1) Pseudo first order Pseudo second order

K1  (min−1) R2 Standard error K2 (g  mg−1  min−1) R2 Standard error

100 1.265 0.999 0.003 0.725 1.000 0.0010
300 1.214 0.999 0.034 0.095 0.999 0.0012
500 0.454 0.993 0.009 0.002 0.999 0.0056
700 0.436 0.990 0.004 0.002 0.997 0.0021
1000 0.546 0.995 0.008 0.003 0.998 0.0002
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Here  qe is the dye adsorbed amount at the equilibrium, Ce is the equilibrium con-
centration,  Kd (L  g−1) is the equilibrium constant, R is the molar gas constant 
(8.314 J  mol−1  K−1) and T is the temperature in kelvin.

The thermodynamic parameters summarized in Table 8 showed negative val-
ues for both enthalpy ΔH and entropy ΔS, indicating that the adsorption process 
is exothermic in nature and involves a degree of randomness in the arrangement 
of the adsorbate at the adsorbent interface. The spontaneity of MB adsorption 
on LP-AC was indicated by a negative value of ΔG Trapped between 0 and 
− 20 kJ  mol−1, indicating that MB adsorption is a physical process. The decreases 
in ΔG as temperature increases indicated that temperature inhibits the adsorption 
of MB molecules on LP-AC [66].

Regeneration study

The regeneration of spend activated carbon is an important feature for the eco-
nomical scale application, that the reuse ability for many cycles enhances its cost 
effectiveness making it an attractive option for the industrial application. The 
durability of the produced activated carbon was investigated through the treat-
ment of the spend carbon with 1 M HCl solution followed by subsequent wash-
ings with hot distilled water. Adsorption tests were carried using adsorbent mass 
of 0.045 g in 50 ml of MB solution, then the solution was stirred for 2 h. Fig. S7 
(Online Resource 1) demonstrates that LP-AC maintains its performance for four 
cycles where removal efficiency decreased from 99 to 93%. However, in the fifth 
cycle removal efficiency decreased to 90%, that could be attributed to the incom-
plete desorption of dye molecules from the surface which saturate the adsorbent 

(13)Kd =
qe

ce

(14)ΔG
◦

= −RT ln Kd

(15)lnKd =
ΔS

◦

R
−

ΔH
◦

RT

Table 8  Thermodynamic parameters of MB adsorption

Temperature K Kd (L  g−1) ± SE ΔH (kJ  mol−1) ± SE ΔS (J  mol−1  K−1) ± SE ΔG (kJ  mol−1) ± SE

303 18.23 ± 0.023 − 18.50 ± 0.008 36.59 ± 0.005 − 7.41 ± 0.005
313 17 ± 0.014 − 7.04 ± 0.012
323 10.52 ± 0.003 − 6.68 ± 0.003
333 10.26 ± 0.008 − 6.31 ± 0.003
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active sites [56]. The applied treatment effectively restores the active sites of the 
carbon, thereby rendering it reusable multiple times.

Conclusion

Activated carbon derived from low-cost precursor of L. leucocephala pods dem-
onstrates high performance in the removal of methylene blue textile dye, achiev-
ing a remarkable removal rate of 99.99%. RSM optimization using the Box–Ben-
ken design revealed that an initial dye concentration of 300.87 mg   L−1, adsorbent 
dose of 0.049 g, and solution pH of 10.07 are the optimal values that maximize dye 
removal efficiency. The thermodynamic study showed that the adsorption of MB dye 
on LP-AC has an exothermic nature with a negative enthalpy. FTIR analysis showed 
that LP-AC exhibits various surface functional groups such as hydroxyl groups, 
which enhance the adsorption efficiency of MB. Regeneration study revealed that 
the prepared carbon exhibits an economic aspect that it could be used for multiple 
cycles rendering a good performance.
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