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Abstract
In this study, we present a green synthesis method for producing ZnO-doped CeO2 
nanocomposites (ZnO–CeO2 NC) and CeO2 nanoparticles (NPs) using clove (Syzyg-
ium aromaticum) extract. Our main objective is to assess their properties, focusing 
on their photocatalytic and antibacterial activities. Through comprehensive charac-
terization techniques such as powder XRD, UV–vis DRS, and FTIR analyses, we 
thoroughly evaluated the synthesized materials. Notably, both the green-synthesized 
CeO2 (CLV30) NPs and ZnO–CeO2 (CZn) NCs demonstrated exceptional effi-
ciency, degrading methylene blue dye by 89% and 94%, respectively, under visible 
light irradiation. The CZn nanocomposites exhibited remarkable reusability and sta-
bility over four cycles. Additionally, significant antibacterial activity was observed, 
with CLV30 exhibiting moderate effectiveness against Gram-negative Escherichia 
coli (E. coli) (8 mm) and Gram-positive Staphylococcus aureus (S. aureus) (11 mm) 
compared to CZn, which displayed notable inhibitory zones of 24 mm and 35 mm 
against E. coli and S. aureus, respectively. These findings highlight the versatile 
applications of these nanomaterials across various fields.

Keywords  Cerium oxide nanoparticles · Green synthesis · ZnO-doped CeO2 
nanocomposites · Photocatalytic activity · Antibacterial properties · Syzygium 
aromaticum extract

Introduction

Currently, industrial, laboratory, and medical pollutants pose significant threats 
to human health and the environment by directly entering water bodies, disrupt-
ing marine systems, and exacerbating global drinking water scarcity [1, 2]. Water 

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11144-024-02610-4&domain=pdf


1772	 Reaction Kinetics, Mechanisms and Catalysis (2024) 137:1771–1787

1 3

contamination from dyes in industrial wastewater, originating from sectors such 
as textile dyeing, papermaking, food processing, paints, and cosmetics, is a nota-
ble contributor to aqueous pollution [3, 4]. To address this issue, various tech-
niques, including biological microorganisms like bacteria [5], fungi[6], algae [7], 
yeast cells [8] and chemical processes such as chlorination[9], precipitation[10], ion 
exchange[11], photocatalysis[12–14], adsorption [15] are employed for wastewater 
treatment. Among these methods, photocatalytic dye degradation stands out as a 
promising approach for pollutant removal [16]. Nanoscience has played a crucial 
role in offering a practical solution by facilitating the development of a safe, cost-
effective, and biocompatible answer to the problem. The biosynthesis of metal and 
metal oxide nanoparticles (NPs) using plant extracts represents a groundbreaking 
area in nanobiotechnology, grounded in the principles of green chemistry [17, 18].

Cerium oxide (CeO2) succeeded in receiving the attention of many in the fields of 
medicine and industry, due to being capable of converting state Ce3+ into Ce4+ and 
vice versa and containing oxygen holes in its crystal structure [19]. Cerium is a gray 
metal element that belongs to the group of lanthanides. It has consisted of oxide salt 
with a crystallized structure that is face-centered cubic (fcc) with an Fm3m space 
group [20, 21]. The unique physical and chemical properties of CeO2 led to its exer-
tion in many applications throughout various fields, including catalyst [22] photo-
catalysis [23], biomedicine [24], optical devices [25], oxygen sensor [26]. There 
are several methods for the fabrication of CeO2 NPs such as co-precipitation [27], 
thermal-hydrolysis [28], hydrothermal [29], microwave [30], solvothermal [31], and 
sol–gel [32].

The focus has shifted towards an environmentally friendly green synthesis 
approach. In this method, biological agents such as plant extracts, bacteria, fungi, 
algae, and yeasts are employed. Notably, all these agents are biodegradable and do 
not generate toxic compounds during the synthesis process [33, 34]. The choice of 
an appropriate capping agent is recognized as a critical factor influencing the size, 
morphology, and structure of synthesized nanoparticles (NPs). Green nanotechnol-
ogy, utilizing renewable resources, has the potential to decrease energy consump-
tion. Overall, enhancing energy efficiency, minimizing the use of non-renewable 
materials, and lowering greenhouse gas emissions stand out as key advantages of 
adopting a green synthesis approach for nanomaterials [35].

Hence, Syzygium aromaticum, commonly known as clove, is a medium-sized tree 
(8–12 m) belonging to the Myrtaceae family and native to the Maluku islands in 
east Indonesia [36]. Clove contains up to 18% essential oil, with eugenol compris-
ing approximately 89%, and eugenol acetate and β-caryophyllene making up 5% to 
15% [37]. Eugenol, identified as the predominant compound in clove essential oil, 
exhibits notable antibacterial, antioxidant, and insecticidal properties. Recognized 
by the Food and Drug Administration as a natural food additive generally regarded 
as safe [38], clove serves a dual purpose in food applications. Beyond imparting 
flavor, it acts as a preservative, leveraging its antioxidant and antibacterial attributes. 
Specifically, clove extract, rich in Eugenol, functions as a preservative, safeguarding 
against foodborne pathogens and spoilage [39].

Therefore, the main goals of this investigation were to evaluate the feasibility of 
employing clove extract in the synthesis of both cerium oxide (CeO2) nanoparticles 
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and their zinc-doped counterparts. The aim was to optimize synthesis conditions to 
produce CeO2 nanoparticles and ZnO–CeO2 nanocomposites with enhanced photo-
chemical and biological properties. The investigation encompassed assessing anti-
bacterial activity against two bacterial strains, namely Gram-positive Staphylococ-
cus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). Additionally, 
it aimed to assess the photocatalytic efficacy in degrading methylene blue dye from 
water.

Materials and methods

Materials

All chemical substances employed in this study were acquired with a notably high 
degree of purity. Cerium (IV) sulfate (Ce(SO4)2), Zinc chloride (ZnCl2), and Meth-
ylene blue dye were sourced from Merck, ensuring stringent quality standards. Fresh 
clove powder was procured from a reputable herbal shop in Oran, Algeria. Distilled 
water served as both the solvent and the medium for preparing the dye solution, 
facilitating the precise execution of the adsorption experiment.

Preparation of the clove extract

To obtain the clove extract, 10 g of finely powdered clove was introduced into 100 
mL of distilled water, undergoing a controlled boiling phase at 80 °C for a duration 
of 15 min Subsequent to this thermal treatment, the resultant solution underwent 
filtration, with the clear filtrate carefully collected and stored in a dark vial. For opti-
mal preservation, the vial was then placed in a refrigerated environment at 4 °C.

Synthesis of CeO2 NPs and Zn doped CeO2 NC

In order to synthesize CeO2 NPs, 2 g of Ce(SO4)2 was dissolved in distilled water 
and stirred until achieving a clear yellow solution. Subsequently, clove extract was 
incrementally added in varying volumes according to ratios of 90:10, 80:20, and 
70:30, with the addition carried out dropwise. The color of the Ce(SO4)2 solution 
transitioned from yellow to beige upon complete addition of the clove extract. The 
pH of the solution was adjusted to a value of 9 utilizing 5M NaOH to ensure proper 
alkalinity, the solution assumed a dark brown color. The resulting solutions were 
designated as CLV10, CLV20, and CLV30, and were subjected to continuous stir-
ring for 24 h at room temperature.

For the synthesis of the ZnO–CeO2 NC, 1 g of ZnCl2, constituting 20% by weight 
of Ce(SO4)2, was introduced into the CLV30 solution and labeled as CZn. Subse-
quently, the solutions underwent filtration, and the resultant solids were thoroughly 
washed with distilled water, followed by a final wash with ethanol. The washed sol-
ids were then dried in an oven at 60 °C and subjected to calcination at 600 °C for a 
duration of 1 h.
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Photocatalytic activity study

The photocatalytic performance of the green synthesized CLV30 NPs and CZn NCs 
was evaluated by the degradation of Methylene blue (MB) dye in aqueous solution 
under visible-light irradiation with a 30 W LED lamp. The concentration of the 
stock solution of MB is 10 mg/L. the 10 mg NCs mixed with 20 mL of MB dye 
solution. This mixture was left in the dark for 30 min while being stirred. The dark 
environment aids in the establishment of the adsorption–desorption equilibrium 
phase. The light irradiated NCs solutions were taken out (3 mL in every 30 min) to 
evaluate the absorbance from UV spectroscopy. The samples were centrifuged to 
remove the solid NCs from the dye solution before calculate the absorbance.

The dye degradation efficiency was determined using the equation below [40],

Here A0 and At represent the initial absorbance before Visible-Light irradiation 
and the absorbance of the solution at time t, respectively.

Antibacterial activity

The antibacterial activities of the synthesized CLV10, CLV20 and CLV30 NPs and 
CZn NC were tested against Gram-positive Staphylococcus aureus (S. aureus) and 
Gram-negative Escherichia coli (E. coli) bacterial strains using the disc diffusion 
method. The Muller-Hinton broth was used to establish bacterial growth for 24 h 
[41]. Bacteria that had been cultured and isolated were streaked into sterilized petri 
plates (bacterial culture = 10−6 CFU/mL). 10 mg of the synthesized CLVs NPs and 
CZn NC were placed onto 6 mm paper discs. The loaded discs were put in a 37 °C 
incubator overnight. Lastly, the inactivation of bacterial strains was determined by 
measuring the zone of the inhibition on a millimeter’s scale.

Characterization

A variety of analytical techniques were utilized to investigate the morphology, 
chemical composition, and functional groups of CeO2 NPs as well as the ZnO–CeO2 
NC. The Fourier Transform Infrared Spectroscopy (FTIR) spectrum was recorded at 
room temperature using KBr pellet on a JASCO FT/430 spectrophotometer between 
400 and 4000 cm−1 facilitated the examination of functional groups within both 
the CeO2 NPs and the ZnO–CeO2 NC, JASCO V-460 UV–Vis spectrophotometer 
was used to collect the diffuse reflectance spectra (DRS) were captured within the 
wavelength range of 200–800 nm with a resolution of 0.2 nm conducted to inves-
tigate the synthesized nanomaterials optical absorption properties, and The X-ray 
powder diffraction (XRD) spectrum was registered by a BRUKER D8 Apparatus 

D(%) =
A0 − At

A0

× 100
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diffractometer with Cu Kα radiation (0.15418 nm wavelength). Data were collected 
in the 2θ degree range of 2°–80°, with a step size of 0.02◦, the XRD pattern provided 
insights into the crystalline structure of both the CeO2 NPs and the ZnO–CeO2 NC.

Results and discussion

Fourier‑transform infrared spectroscopy analysis

FTIR spectra of CLV10, CLV20 and CLV30 NPs and CZn NC are shown in Fig. 1. 
In literature, the broad absorption in the frequency band 3400 cm−1 are assigned 
to O–H stretching from water or Ce-OH [42]. From our result, the band at 1622 
cm−1 has been attributed to the bending vibration of adsorbed water molecules [43], 
Moreover, the absorption band at about 1000 cm−1 to 1100 cm−1 are belong to the 
characteristic vibration of CeO2. The band between 400 and 700 cm−1 were assigned 
to M–O (M = Zn, Ce) stretching vibrations [22, 44].

X‑ray diffraction patterns

XRD patterns of green synthesized CeO2 NPs and Zn-CeO2 NCs are shown in 
Fig. 2. The pure green synthesized CLV10, CLV20, and CLV30 NPs at 2 theta 
i.e. 28.6°, 33.15°, 47.55°, 56.4°, 59.2°, 69.55°, 76.75° and 79.2° correspond 
to the (hkl) planes of (111), (200),(311),(222),(400),(331) and (420) [45].The 
absence of new peaks confirmed the phase purity of the face centered cubic struc-
ture of the green synthesis CeO2 NPs which exactly matches the JCPDS data 
card no: 03-065-5923. The new peaks 2 theta = 31.78°, 34.44°, 36.27°, 47.53°, 
56.59° and 62.87° correspond to the (hkl) planes of (100), (002), (101), (102), 
(110) and (103), respectively matches the JCPDS data card no: 01-079-2205 
represent the hexagonal crystal of zinc oxide. The average crystallite size of the 

Fig. 1   FTIR spectra of the synthesized CeO2 (CLVs) NPs and ZnO–CeO2 (CZn) NC
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green synthesized CLV10, CLV20, and CLV30 NPs and CZn NC were calculated 
by Scherrer’s formula: D = k�∕� cos � [46]. The obtained average crystallite size 
values are 16 nm, 13 nm, 20 nm and 28 nm respectively, In the realm of green 
synthesis, Mahmoodi et al. [40] reported an average crystallite size of CeO2 NPs 
of 45 nm using zucchini peel extract, suggesting a comparable methodology. 
Additionally, Parvathy et  al. [47] employed Artabotrys hexapetalus leaf extract 
and observed an average crystallite size of 60 nm of CeO2 NPs. Notably, Ahmed 
et al. [48] and Anvarinezhad et al. [49] reported average crystallite sizes of 30 nm 
for CeO2 NPs from Artabotrys hexapetalus leaf extracts and 50 nm for ZnO NPs 
from hydroalcoholic clove extract, providing valuable context and insights into 
similar green synthesis approaches.

Fig. 2   Powder X-ray diffraction patterns of synthesized CLVs NPs and CZn NC
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UV–vis DRS spectroscopy analysis

The ultraviolet–visible (UV–vis) diffuse reflectance spectra of CLV30 and CZn pho-
tocatalysts are presented in Fig. 3a, with CZn exhibiting a shift towards the visible 
region at the 380 nm band compared to CLV30. Band gap energy (Eg) was deter-
mined utilizing the formula E = 1240∕�Absorp.Edge and (αhν)2/n [50, 51].

Optical characterization was performed using a UV–vis absorption spectropho-
tometer across the 200–800 nm wavelength range. Results indicate potential applica-
tions of both composite and pure materials in the visible light region.

The band gap energy of a semiconductor can be computed using Eq. 1:

Here α represents the absorption coefficient, h denotes Planck’s constant, ν stands 
for light frequency, Eg signifies band gap energy, and A is the proportionality con-
stant. The exponent n is determined by the type of optical transition (n = 1 for direct 
transition and n = 4 for indirect transition). The plots of (αhν)2/n versus photon 
energy (hν) were employed to estimate the band-gap energy (Eg) of the samples 
[52].

Analysis of (αhν)2/n versus (hν) plots yielded band gap values of 2.78 eV for 
CLV30 and 2.8 eV for CZn photocatalysts, as depicted in Fig. 3b. Notably, the CZn 
photocatalyst exhibited a slightly larger band gap energy compared to CLV30 (2.78 
eV).

Photocatalytic activity

In the course of the photocatalytic experiments, UV–vis absorption analysis was 
employed to examine the degradation of methylene blue dye (10 mg/L) by the pre-
pared materials. Before initiating the photocatalytic tests, attaining adsorption–des-
orption equilibrium was crucial. This required agitating the pre-synthesized cata-
lysts with the targeted pollutant under dark conditions for specific predetermined 

(1)�hv = A
(

h� − Eg

)n∕2

Fig. 3   a UV–vis absorbance spectra, and b band gap energy of the synthesized CLV30 NPs and CZn NC
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durations. These durations were adjusted according to the nature of the pollutant 
under investigation.

Different quantities of catalysts were utilized, including 5 mg, 10 mg, 15 mg, and 
20 mg, in order to determine the optimal weights. As depicted in Fig. 4, the optimal 
weight for both catalysts CLV30 and CZn was found to be 10 mg.

The performance of the materials in the photocatalytic degradation of MB dye 
was evaluated, as depicted in Fig.  5a. CZn NC exhibited the highest photocata-
lytic efficiency, achieving a remarkable 94% degradation of MB dye. This out-
come surpassed the performance of the CLV30 nanoparticle, which attained an 
89% degradation after 5 h of visible light irradiation. Notably, the experiment was 
conducted three times to ensure the repeatability of the results. Additionally, it is 
noteworthy that both CLV30 and CZn demonstrated low adsorption affinity for 
MB dye, with percentages of 2.77% and 9.71%, respectively. The kinetics of MB 

Fig. 4   Effect of catalyst quantity on MB dye degradation under 30 W LED lamp with 10 mg/L dye con-
centration

Fig. 5   a Photocatalytic degradation curves for MB dye of CLV30 and CZn under visible light; b Absorp-
tion spectra of MB dye in the presence of CZn during degradation process; c Reusability assessment of 
CZn for the photodegradation of MB dye Experimental conditions include an initial MB concentration 
of 10 mg/L, a catalyst dosage of 50 mg, a solution volume of 100 mL, and illumination by a 30W LED 
lamp
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dye’s photodegradation kinetics in the presence of CLV30 and CZn was conducted 
through the utilization of the nonlinear least squares approach, employing the equa-
tion: A = X ∗ e(−k∗t) + E [53]. In this context, X signifies the amplitude, k denotes 
the pseudo-first order rate constant, and E represents the endpoint. The comprehen-
sive presentation of the relevant data is provided in Table 1. The present MB dye 
degradation studies were compared with the recent literature and summarized in 
Table 2 [54–57].

The UV–vis absorption spectra captured during the photocatalytic degradation 
process of MB dye are depicted in Fig. 5b. Over the course of the reaction, there 
is a gradual decline in the absorption intensity of MB, indicative of its progressive 
decomposition and the complete removal of the chromophore group within the MB 
dye molecule [58]. Notably, throughout the experiment, the characteristic peak cor-
responding to the MB dye remains unchanged in position, albeit with a diminishing 
intensity, suggesting the absence of any additional chromophoric by-products [59]. 
Furthermore, the absence of any new peaks emerging in the UV–vis spectra at the 
conclusion of the experiments underscores the complete degradation of MB without 
the formation of intermediates [60].

The suggested mechanism for the photocatalytic disintegration of MB when sub-
jected to visible light irradiation within the current framework can be outlined as 
follows: When exposed to visible light, the energy of photons surpasses the band 
gaps of both the CLV30 and CZn semiconductor catalysts, leading to the genera-
tion of electron–hole pairs (Eq.  2). These pairs serve as potent reducing and oxi-
dizing agents, respectively. Subsequently, the interaction between oxygen molecules 
adsorbed on the catalyst surface and the excited electrons in the conduction band 
yields superoxide radical anions (⋅O2

−) (Eq. 3), which undergo protonation to yield 
hydroperoxyl radicals (⋅HO2) (Eq. 4). These radicals further convert into hydrogen 

Table 1   Photocatalytic degradation kinetic parameters of MB dye obtained via non-linear least squares 
fitting for CLV30 NPs and CZn NCs at room temperature

Catalyst K (min−1) Standard error R2

CLV30 0.0063 0.0004 0.9940
CZn 0.0065 0.0002 0.9989

Table 2   Comparison of 
the present photocatalytic 
degradation of MB dye with the 
reported literature

Catalyst Reaction 
time (h)

Degradation % Ref

Co doped CeO2 6 96 [54]
Cu doped CeO2 6 97 [55]
Ce doped ZnO 5 65.8 [56]
CoFe2O4/BiOBr 6 68 [57]
CLV30 5 89 This study
CZn 5 94 This study
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peroxide (H2O2) and hydroxyl radicals (⋅OH) (Eq. 5). The resultant hydroxyl radi-
cals (⋅OH) (Eq. 6) initiate the degradation of the organic dye MB into water (H2O) 
and carbon dioxide (CO2) (Eq.  7). Additionally, water or hydroxide ions on the 
surface of CZn photocatalysts react with the holes in the valence band to produce 
hydroxyl radicals (·OH), thereby contributing to the degradation process of the dye. 
Ultimately, the organic contaminants undergo decomposition into CO2, H2O, or deg-
radation products [61–64].

The following equations provide a clear understanding of the photocatalytic 
mechanism:

The evaluation of the stability and reusability of the catalysts are important indi-
cators to estimate the performance of photocatalysts. The stability of the synthesized 
ZnO–CeO2 NC was studied by four recycling experiments under visible light irra-
diation, which are shown in Fig. 5c. After each run, the ZnO–CeO2 NC was washed 
and dried at 80 °C for 1 h. Fig. 4c shows the photocatalytic efficiency of MB dye 
was constant and achieved 88% degradation of the dye solution after its 4th cycle. 
There was a slight decrement in the efficiency of the photodegradation. Therefore, 
it can be suggested that the ZnO–CeO2 NC is stable and potential scalability under 
sunlight irradiation and has the ability to be reused up to 4th cycle.

Antibacterial activity

The antibacterial efficacy of the synthesized CLV10, CLV20, and CLV30 NPs and 
the CZn NC was assessed through antibacterial activity tests. The results revealed 
significant inhibitory effects on the growth of both Gram-negative Escherichia 
coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). These find-
ings, depicted in Fig. 6, underscore the materials’ effectiveness in combating bac-
terial strains prevalent in such settings. Table 3 provides zone of inhibition values 
(in millimeters) for CLV10, CLV20, CLV30, and CZn, emphasizing their distinct 
antibacterial activities against the tested bacterial strains. In particular, the CLV10, 
CLV20, and CLV30 NPs exhibited varying degrees of efficacy against both E. Coli 
and S. aureus. CLV10 demonstrated a zone of inhibition measuring 7 mm and 10 

(2)CZn + light(hv) → CZn(e−
CB
) + CZn(h+

VB
)

(3)CZn
(

e−
CB

)

+ O2 → CZn + ⋅O−
2

(4)⋅O−
2
+ H2O → HO⋅

2
+ H+

(5)HO⋅

2
+ H2O → OH⋅ + H2O2

(6)H2O2 → 2⋅OH

(7)OH⋅ +MB → degradation products + CO2 + H2O
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mm against E. Coli and S. aureus, respectively. CLV20 displayed slightly enhanced 
inhibitory activity with values of 8 mm and 10 mm against the respective bacte-
ria. Furthermore, CLV30 exhibited increased potency, with zone of inhibition 

Fig. 6   Assessment of the antimicrobial activity of CLV10, CLV20, and CLV30 nanoparticles (NPs), 
along with CZn nanocomposite (NC), against E. coli and S. aureus, depicted by the inhibition zone diam-
eters observed at a dosage of 10 mg

Table 3   Zone of inhibition for 
CLV10, CLV20 and CLV30 
NPs and CZn against E. coli and 
S. aureus 

Materials Zone of inhibition (mm) 
for bacteria

E. coli S. aureus

CeO2 CLV10 7 10
CLV20 8 10
CLV30 8 11

ZnO–CeO2 CZn 24 35
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measurements of 8 mm for E. Coli and 11 mm for S. aureus. The CZn NC exhib-
ited notable antibacterial performance, presenting substantial inhibitory zones of 24 
mm and 35 mm against E. Coli and S. aureus, respectively. This substantial increase 
in the inhibitory effect compared to the CeO2 NPs underscores the enhanced anti-
bacterial potential conferred by the incorporation of zinc into the CeO2 NPs. The 
green-synthesized CeO2 NPs and ZnO–CeO2 NC, positively charged, interacted 
with negatively charged bacterial strains. This interface-induced electrostatic attrac-
tions, resulting in disruptions to the bacterial cell wall. The compromised cell wall 
facilitated the entry of nanomaterials into the cellular interior, initiating the genera-
tion of reactive oxygen species. This intrusion into the cell interior altered DNA and 
protein synthesis, along with electron chain functions, ultimately impeding nutrient 
transport and promoting cellular deactivation [65–67].

The results indicate that both CeO2 NPs and the ZnO–CeO2 NC exhibit poten-
tial as antibacterial agents when compared to previously documented findings in 
Table 3. Notably, the ZnO–CeO2 NC demonstrates particularly robust antibacterial 
activity. The observed differences in efficacy among the CeO2 NPs underscore the 
influence of synthesis parameters on antibacterial performance. In summary, these 
findings offer valuable insights into the prospective application of these nanoma-
terials for addressing bacterial infections, particularly in aquatic environments 
(Table 4).

Conclusion

In summary, our study achieved successful synthesis of CeO2 NPs and ZnO-doped 
CeO2 NC through a straightforward, resilient, and environmentally friendly method. 
The clove extract functioned as a capping agent, effectively reducing the average 
crystallite size of CeO2 NPs to 20nm and ZnO–CeO2 NC to 28nm, as indicated 
by the Scherrer equation derived from XRD plot results. Antibacterial evaluations 
revealed reasonable activity for CeO2 NPs (CLV10, CLV20, and CLV30), with zone 
of inhibition values ranging from 7 to 11 mm against both E. coli and S. aureus. 

Table 4   Comparative 
assessment of the antibacterial 
efficacy of CeO2 NPs and ZnO–
CeO2 NC against E. coli and S. 
aureus in comparison with other 
studies

Materials Diameter of zone of inhi-
bition (mm) of strain

References

E. coli S. aureus

CeO2 4 5.33 [42]
CeO2 12 – [4]
ZnO–CeO2–Yb2O 14 13 [68]
Cu0.05–Al0.15–LDHs 19 15 [41]
CeO2 15 22 [69]
CeO2 (CLV10, CLV20 

and CLV30)
7,8,8 10,10,11 Present work

ZnO–CeO2(CZn) 24 35
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Notably, doping CeO2 (CLV30) with Zinc to form ZnO–CeO2 NC significantly 
enhanced antibacterial efficacy, resulting in extraordinary zone of inhibition values 
of 35 mm and 24 mm against Gram-positive Staphylococcus aureus and Gram-neg-
ative Escherichia coli, respectively. Furthermore, ZnO–CeO2 NC exhibited remark-
able photocatalytic activity, achieving 94% degradation of methylene blue, coupled 
with stability and reusability over four cycles. These results underscore the potential 
of our synthesized nanomaterials for applications in antibacterial and photocatalytic 
processes.
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