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Abstract
This work aims to synthesis activated carbon material from potato plant waste 
(abbreviated as PPW) and examine the material’s ability to adsorb a cationic dye, 
namely Rhodamine B (RhB).  ZnCl2 was used in the chemical preparation process 
to produce the activated carbon composite, also known as PPW-ZnO, which was 
achieved by pyrolyzing the precursor for 3  h at 600  °C. Many methods, such as 
Brunauer–Emmett–Teller (BET), scanning electron microscopy, X-ray diffraction, 
Fourier transform infrared, and pH of the point of zero charge  pHPZC, were used 
to characterize the PPW-ZnO composite. The PPW-ZnO bio composite also has a 
porous structure, according to the study’s findings, with a pore size of 6.201 nm 
and a specific surface area  (SBET) of 134.59  m2/g. The RhB dye was adsorbed onto 
the PPW-ZnO bio composite, and after 120 min of agitation, the amount adsorbed 
reached 98.95%. The pseudo-second order model kinetic and Freundlich model iso-
therm were best described the adsorption process.

Keywords Adsorption · Bio-composite · Rhodamine B (RhB) · Isotherms · Kinetic

Introduction

The various forms of pollution constitute a serious risk to our environment and 
consequently to our health, The disposal of these items should be conducted in a 
manner that does not result in any detrimental effects on the environment [1–3]. 
The presence of dyes and pigments in water is a prominent and unwanted pollution 
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among the numerous contaminants, these dyes which are frequently synthesized, 
have intricate aromatic structures that give them exceptional resistance to light, heat, 
and oxidizing agents [4, 5]. Regrettably, their chemical durability also translates to 
their prolonged presence in the natural environment, resulting in limited biological 
degradation [6].

It is now urgently necessary to address the issue of dye and pigment pollution in 
water, which has led to the development of numerous treatment technologies tar-
geted at their elimination [7, 8]. The physicochemical treatment approach of adsorp-
tion onto activated carbon has shown to be one of the most dependable and efficient 
among these technologies [9, 10]. The efficacy of this technology is in its capacity 
to extract these tenacious pollutants from water in a selective manner, hence reduc-
ing the negative consequences of dye and pigment pollution on the environment and 
human health [11]. In this investigation of pollution and its solutions, we examine 
the problems caused by artificial coloring and the critical function activated carbon 
plays in mitigating environmental pollution [12, 13]. Rhodamine B (RhB), a dye 
with basic properties, is widely recognized and utilized as a highly adaptable and 
essential coloring agent across multiple sectors and applications. These include dye-
ing fabrics such as cotton, wool, silk, nylon, paper, and leather [14, 15]. Potatoes 
are one of the important crops in Algeria and are widely grown in southern Algeria, 
especially the Oued Souf region. These many crops leave huge amounts of potato 
plant (stem, leaves, and roots) that are burned or used as food for animals. Reused 
as a raw material in the field of adsorption of pollutants from water is a strong com-
petitor for their availability in large quantities. Because of its small porous structure 
its surface is changed by chemicals to increase the surface area for the adsorption 
process.

Several different chemical activating agents have been studied by numerous 
researchers in recent years to create a high surface area and a porous structure [16], 
including  H3PO4 [17],  H2SO4[18], KOH [19], and  ZnCl2 [20]. Zinc chloride has 
been extensively investigated under various preparation conditions [21–23]. This 
research focuses on modifying the carbon surface to significantly increase surface 
area and create pores, thereby enhancing the material’s capacity to adsorb organic 
pollutants [24, 25]. In contrast, Li Y and Liu X, researchers found that employed the 
impregnation of  ZnCl2 onto the carbon matrix at a high temperature [26], creating a 
bio-composite based on zinc oxide [27]. This process integrates exceptional chemi-
cal and thermal stability into the activated carbon, ensuring optimal efficiency and 
minimizing potential adverse effects of pollutants, such as dyes [28].

The objective of this work was to remove rhodamine B (RhB) from an aque-
ous solution using activated carbon composite (PPW-ZnO), which was made from 
potato plant waste (PPW) from the Oued Souf region of Algeria by chemical activa-
tion with zinc chloride  (ZnCl2), a distinctive porous structure gives, surface area, 
extreme affinity and most important the availability of biomass is mostly free and 
also easy to regenerate, for RhB adsorption compared with different materials such 
as Graphite/CNT Composites [29], Coconut Shell Activated Carbon/CoFe2O4 Com-
posite [30], Powdered Activated Carbon Composite [31]. This study aims to exam-
ine how well the activated carbon composite that has been created may be used to 
extract RhB dye from aqueous solutions. The impacts of several parameters, such as 
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temperature, initial concentration, ionic strength, pH of solution, and contact time, 
were examined. The investigation also examined adsorption kinetics, isotherms, and 
thermodynamic characteristics.

Materials and Methods

Preparation of PPW‑ZnO bio composite

Potato plant waste (PPW) was obtained from Algeria’s Oued Souf region as an 
absorbent. After cleaning any surface contaminants with distilled water, the PPW 
were dried for 24 h at 110  °C using a steel blender to grind them to a fine pow-
der. Next, 5 g of powder was impregnated with 45 ml of  ZnCl2 (0.5M) and stirred 
for 1 h. The mixture was then dried for 7  h at 105  °C and carbonized for 3  h at 
600 °C. After obtaining the activated carbon composite (PPW-ZnO), it was cleaned 
to remove all chloride using distilled water, brought to a neutral pH, and dried for 
24 h at 105 °C [32]. The following steps in Fig. S1 illustrate the preparation of acti-
vated carbon composite PPW-ZnO.

Dye solution preparation

Rhodamine B (RhB), or CI = 45,170, is a chemical compound with the molecular 
formula  C28H31ClN2O3 and a 479.02 g/mol molar mass. It is sourced from the com-
pany Biochem Chemopharma. Additionally, RhB has a maximum absorption wave-
length (λmax) of 554 nm. Stock dye solutions with a concentration of 500 mg/L were 
made by dissolving 0.5 g of dye in 1 L of distilled water [33].

Batch adsorption experiments

Adsorption studies using an adsorbent dosage of 1  g/L (PPW-ZnO) were con-
ducted in 100 mL of RhB solution. Subsequently, a syringe filter with a pore size of 
0.22 μm was employed to separate the PPW-ZnO and solution samples. A spectro-
photometer called the photoLab DR 6000 UV–VIS was used to measure a residual 
concentration of RhB at wavelength of 554 nm. The parameter under investigation is 
as follows:

The following operating parameters were used to study the kinetics of RhB 
removal for PPW-ZnO: ambient temperature, 1 g/L of PPW-ZnO dose, and 20 mg/L 
of RhB concentration. Adding 1 mol/L of HCl or 1 mol/L of NaOH to the experi-
mental solutions, pH 2–12, was tested for an equilibrium time of 120 min and a 
20 mg/L beginning concentration.

Temperature effects at 20, 30, and 50  °C with initial concentrations of RhB 
20 mg/L. The following formulas were used to determine the quantity of adsorbed 
dye per gramme of PPW-ZnO at equilibrium, or qe (mg/g), the amount of adsorp-
tion at time t, or qt (mg/g), and the removal percentage, or % removal [34, 35]:
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here  C0,  Ce and Ct are the initial, equilibrium concentrations of dye and the concen-
tration of dye solution at time t (mg/L). V is the volume of dye solution (L) and W is 
the weight of adsorbent used (g).

Three standard kinetic models and three adsorption isotherms were used in this 
work to study the adsorption mechanisms, the pseudo-firs order (PFO), pseudo-second 
order (PSO), Elovich, and intra-particle diffusion fractional order models are indicated 
as Eqs. 4, 5, 6, and 7, as shown in Table 1, Eqs. 8, 9, and 10 apply to the Langmuir, 
Freundlich, and Temkin isotherms. The non-linear regression analysis of the following 
models was examined using the capabilities available in the Origin software. Corre-
lation  (R2) and chi-square (χ2) values to calculate and represent the fitted model that 
describes the process of RhB dye adsorption onto the PPW-ZnO.

here  qe,mean (mg/g) is the average of  qe experimental values, The best suitable equa-
tion is for the highest  R2 and the smaller χ2 values [36].

PPW‑ZnO reusability and regeneration

Reducing waste generated and operating costs are the main objectives of the laden 
activated carbon reusing process. For many adsorption cycles (reuse), desorption, 
and regeneration testing, 500 ml of RhB dye solution 20 mg/L was mixed with 0.5 g 
of PPW-ZnO bio composite in this investigation. When the percentage of RhB dye 
removal declined to less than 50%, the adsorbent was washed using a 0.1M HCl solu-
tion for 2 h. In order to employ the adsorbent in a new adsorption experiment (regen-
eration), it was then cleaned with distilled water and dried [43].

(1)qe =
(C0 − Ce)V

w
(mg∕g)

(2)qt =
(C0 − Ct)V

w
(mg∕g)

(3)%R =
(C0 − Ce)

C0

× 100

(11)R2 = 1 −

∑
�

qe,exp − qe,cal
�2

∑
�

qe,exp − qe,mean
�2

(12)�
2 = 1 −

∑
�

qe,exp − qe,cal
�2

qe,cal
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Results and discussion

Characteristics of PPW‑ZnO

BET analysis

The surface area is one of the most crucial adsorbent qualities, Using Micromeritics 
ASAP 2020 Plus. The PPW-ZnO surface area was determined to be 134.59  m2/g, as 
depicted by the  N2 adsorption–desorption isotherm in Fig. 1. The generated sample 
was 6.201 nm pore size, further demonstrated mesoporous on the surface of acti-
vated carbon.

Mesopores are present in the bio composite because, as Fig. 1 shows, the type II 
adsorption–desorption isotherm PPW-ZnO has a very small pore volume across the 
whole size distribution with H3-type hysteresis loops [44].

SEM/EDX of PPW‑ZnO

SEM analysis is given in Fig. 2, utilizing the Thermoscientific Prisma E instrument. 
The morphology of the PPW-ZnO exhibited the presence of craters on the surface, 
before adsorption as a result of the activation process [45]. These craters played a 
role in enhancing the surface area following activation. According to this research 
(as shown in Fig.  2a), it is evident that the presence of zinc species during sam-
ple preparation results in “craters” with rough walls and surfaces that have varying 
pore sizes, diameters, and empty spaces. Fig. 2b displays the surface morphology of 

Fig. 1  The isotherm of  N2 PPW-ZnO bio composite adsorption–desorption



1195

1 3

Reaction Kinetics, Mechanisms and Catalysis (2024) 137:1189–1207 

PPW-ZnO after the adsorption process, showing the existence of contaminants on 
the surface and the partial filling of craters. Conversely, EDX analysis was used to 
evaluate the pre- and post-adsorption chemical composition of PPW-ZnO. The EDX 
profile and elemental mapping analysis found that carbon, oxygen, and zinc are the 
main components of PPW-ZnO, and the distribution of pore sizes on the PPW-ZnO 
surface verified the presence of mesopores in the bio composite (as illustrated in 
Fig. S2).

FT‑IR spectra analysis of PPW‑ZnO

Fig.  3 shows the FTIR spectrum of PPW-ZnO before and after adsorption, using 
the PerkinElmer spectrum. O–H stretching vibrations on the adsorbent surface 

Fig. 2  SEM micrographs of PPW-ZnO adsorbent: a Before adsorption and b after adsorption

Fig. 3  FTIR spectra: a Before and b After RhB adsorption on PPW-ZnO
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were responsible for the wide band formed by the intermolecular hydrogen banding 
between 3286 and 3635  cm−1 [46], as shown in Fig. 3a where the infrared spectra 
showed variations in the strengths of adsorption peaks, corresponding to the exist-
ence of many functional groups. The detection of carbon dioxide  (CO2) in the air is 
indicated by a small peak at 2335  cm−1[46]. The significant peak observed at 1576 
 cm−1 indicates C=C stretching vibrations or carboxylic bonds [47]. Polysaccharides, 
such as cellulose and hemicelluloses, demonstrate an asymmetric stretching vibra-
tion of the C–O bond, which can be attributed to a band at 1072  cm−1[48]. Moreo-
ver, a peak at 611   cm−1 suggests the occurrence of vibrations associated with the 
C–H bond [49], whereas the narrowing of the peak shows the emergence of Zn–O at 
505  cm−1[50].

Fig. 3b illustrates a reduction in peak intensity following the adsorption of RhB, 
indicating evidence of adsorption on the PPW-ZnO surface, decreased the O–H 
banding indicate the existence of hydrogen bonding between the PPW-ZnO and RhB 
molecules. Additionally, the presence of new minor peaks at 1212   cm−1 and 780 
 cm−1 provides further evidence of the distinct vibrational patterns exhibited by dye 
molecules attached to the loaded PPW-ZnO surface [51], as well as the shift of the 
peak from 1576  cm−1 to 1596  cm−1, which might be ascribed to the π–π interaction.

X – ray diffraction analysis (XRD) of PPW‑ZnO

XRD analysis is shown in Fig. 4 to illustrate the crystalline properties of the PPW-
ZnO bio composite, both before and after adsorption, using the D8 Advance Bruker 
instrument. The occurrence of a prominent peak at specific angles (2θ values of 
31.58°, 34.34°, 36.12°, 47.44°, 56.30°, 62.70°, 67.78°) can be attributed to the ZnO 
JCPDS (00-036-1451). In an aqueous environment with a neutral pH, an activating 
agent forms Zn (OH)2 species. This reaction takes place at a temperature of 600 
°C and ultimately creates a heterojunction between ZnO and activated carbon, as 

Fig. 4  XRD patterns of PPW-ZnO before and after adsorption
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indicated by the findings of previous researchers [52, 53]. Additionally, a series of 
successive peaks of calcium carbonate  (CaCO3) were detected at specific angles 2θ 
of 20.65°, 25.38°, 33.01°, 44.68°, and 51.78°, as documented in the JCPDS (01-071-
2392) database. Conversely, Graphite exhibited peaks at 2θ angles of 26.86° and 
42.65° [54], as recorded in the ICDD (00-041-1487) database. Furthermore, zinc 
carbide was indicated at 2θ angles of 28.39° and 30.38°, as reported in the COD 
(96-411-9774) database [55]. Nevertheless, the characteristic peaks exhibited a 
decrease in intensity after the adsorption process. The results confirm the successful 
adsorption of RhB onto PPW-ZnO adsorbent. In contrast, it is seen that the peaks 
of zinc oxide persist during the process of adsorption, suggesting the presence of a 
heterojunction between zinc oxide and activated carbon. Weak bonds are generated 
between carbon and zinc, rendering them unstable in an aqueous medium.

The optimization of process parameters for the elimination of RhB

The impact of contact duration and the kinetics adsorption

Fig. 5 illustrates the temporal variation in the adsorption of RhB onto PPW-ZnO. 
The RhB adsorption capacity of PPW-ZnO exhibited a rapid increase, reach-
ing 11.76 mg/g within 10 min, followed by a gradual approach towards equilib-
rium over 180 min. This is due to the many adsorption sites which are capable 

Fig. 5  Kinetics of RhB adsorption  (C0 = 20 mg/L, m
V
 = 1 g/L, T = 20 ± 1 °C and neutral pH)
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of received the RhB. The intensity of the competition increased as additional 
sites became occupied by pollutants, leading to a reduced rate of adsorption dur-
ing the later stage. The equilibrium state of adsorption, was achieved after 120 
min, resulting in an adsorption capacity of 19.79 mg/g and a removal efficiency 
of 98.95%. The presence of surface craters, abundant mesopores, contributes to 
excellent adhesion of pollutants to the surface of activated carbon [56]. The anal-
ysis revealed that the pseudo-second order model exhibit the highest degree of 
conformity with the experimental data, as evidenced by their superior value of  R2 
and small value of χ2 [57], the results are shown in Table 2.

The experimental results show three different steps in the adsorption process 
(Fig. S3). The initial phase entails the transfer of the RhB molecule from the 
outer surface of the adsorbent to the pores within its internal framework. The 
second stage is the transfer of the RhB molecule from the adsorbent’s exterior 
surface to the pores inside its internal structure, also called intraparticle diffusion 
[58].

Table 2  Parameter values 
obtained by modelling the 
kinetic data

Model Parameter Unit Value/standard error

PFO q
e

mg/g 19.41 ± 0.24
K1 L/min 0.063 ± 0.005
R
2 – 0.967

χ2 – 2.16
PSO q

e
mg/g 21.12 ± 0.19

K2 g/mg min 0.005 ± 3 ×  10–4

R
2 – 0.992

χ2 – 0.50
Elovich � mg/g min 20.91 ± 7.6

� g/ mg 0.345 ± 0.02
R
2 – 0.983

χ2 – 1.09
Intraparticle diffusion
 First step KIP1 (mg/g.min0.5) 1.46 ± 0.07

C1 (mg/g) 7.19 ± 0.41
R
2
1

– 0.99

χ2 – 0.28
 Second step KIP2 (mg/g.min0.5) 0.34 ± 0.03

C2 (mg/g) 16.12 ± 0.3
R
2
2

– 0.97

χ2 – 0.008
 Third step KIP3 (mg/g.min0.5) 0.004 ± 0.003

C3 (mg/g) 19.83 ± 0.04
R
2
3

– 0.24

χ2 – 2.7 ×  10–4
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Ultimately, the third phase centers on the specific process of adsorption, wherein the 
RhB molecule adheres to the inside surface of the adsorbent material [59]. Based on 
the experimental findings, it can be observed that the line representing the third stage 
demonstrates a notably reduced slope. This phenomenon may be attributable to the 
drop on the limited availability of active sites. As the researchers found, the observa-
tions above indicate that the adsorption process is nearing a state of equilibrium [60].

The impact of ion strength

When the concentration of  Na+ was increased from 0.1 to 1  M, the adsorption 
capacity of PPW-ZnO for RhB did not change significantly (Fig. S4). Instead, there 
was a slight drop in adsorption capacity between 19.79 and 19.70 mg/g, indicating 
that  Na+ had very little effect on RhB adsorption. This discrepancy arises because 
sodium ions  Na+ and RhB molecules exhibit dissimilar adsorption sites, preclud-
ing any form of competitive adsorption. The PPW-ZnO composite demonstrated 
excellent adsorption properties when subjected to diverse contaminants in complex 
wastewater compositions, including interfering ions [61].

The impact of pH on solution properties

In the pH range of 2–12, PPW-ZnO shows good RhB adsorption capacity (Fig. 6). 
This specific phenomenon exemplifies the notion that the inclusion of PPW-ZnO 
in a particular setting can significantly augment its effectiveness as an adsorbent, 
particularly in the realm of dye elimination from wastewater in circumstances char-
acterized by severe levels of acidity or alkalinity.

The adsorption capacity of PPW-ZnO for RhB between from 19.78 mg/g to 19.7 
mg/g due to elevating the solution pH from 2 to 12. The impact of pH solution on 
the adsorption efficacy of PPW-ZnO on RhB was shown to be statistically insignifi-
cant [56–62], suggesting that electrostatic interaction is unlikely to be the primary 
determinant of the adsorption mechanism, and indicate may be the presence of pore 
filling mechanism [63].

The pH-dependent zero charge point  (pHPZC) of PPW-ZnO was determined in an 
aqueous solution containing NaCl at a concentration of 0.01 M. In this experimen-
tal procedure, 1 g per liter of PPW-ZnO was introduced into a 100 ml solution of 
NaCl. The pH of the solution was varied between 2 and 12, and the suspension was 
stirred for 24 h to allow for incubation. According to the findings from the experi-
ments, PPW-ZnO demonstrated a pH point of zero charge  (pHPZC) at a value of 6.8. 
This suggests that the surface of PPW-ZnO exhibits a positive charge when the pH 
is below 6.8 and a negative charge when the pH is above the point of zero charge 
(PZC) [64].

Adsorption isotherm and initial concentration

The adsorption of RhB dye onto PPW-ZnO was investigated in this work at a fixed 
solid/liquid ratio (1 g/L) and multiple starting dye concentrations (ranging from 5 to 
200 mg/L, Fig. S5).
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This model also offers insights into the equilibrium behavior, including the capac-
ity and mechanism of the adsorption process (Fig. 7). In addition, the three chosen 
models explained the data on adsorption equilibrium. The results suggest that the 
Freundlich model exhibit more suitability in characterizing the adsorption isotherm 
(the higher value of  R2) and the adsorption process occurred on multiple layers [57], 
as evidenced by the data presented in the Table 3.

Thermodynamic study

The temperature factor is one of the factors that gives another insight and a clearer 
understanding of the adsorption process of PPW-ZnO on RhB solution. A solu-
tion of rhodamine at concentration 20 mg/L, was studied at three different levels of 
temperature (298 K, 303 K, and 323 K). The study showed that as the temperature 
increases, we obtained a decrease in the adsorption capacity of RhB on the PPW-
ZnO surface (Fig. S6), and this can be explained, as stated in scientific research, that 
the binding forces between PPW-ZnO and the RhB may be susceptible to disruption 
[65].

This process entails the determination of several parameters to obtain a thermody-
namic study, including (ΔG°), (ΔH°), (ΔS°) represent the Gibbs free energy change, 

Fig. 6  Effect of pH solution on the RhB adsorption  (Co = 20 mg/L, T = 20 ± 1 °C, t = 120 min, m
V
 = 1 g/L 

and initial pH 2–12)
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enthalpy change and entropy change [66]. These meters can be calculated using the 
formulae presented in:

(13)ΔG
◦

= −RTlnK
◦

e

Fig. 7  Isotherms of RhB on PPW-ZnO adsorption  (Co = 5–200 mg/L, T = 20 ± 1 °C, t = 120 min, m
V
 = 1 

g/L and neutral pH)

Table 3  Parameter values 
obtained by modelling the 
isotherm data

Model Unit Value/standard error

Langmuir
  Q0

max mg/g 140.34 ± 22.45
  KL L/mg 0.035 ± 0.014
  R2 – 0.93
 χ2 – 109.22

Freundlich
 n – 2.38 ± 0.035
  KF (mg/g)/(mg/L)1/n 16.26 ± 2.2
  R2 – 0.98
 χ2 – 24.49

Temkin
 B – 16.20 ± 2.9
  Kg L/mg 3.29 ± 2.5
  R2 – 0.88
 χ2 – 175.23
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R expressed in J/mol K the ideal gas constant, temperature T in kelvin (K) and  Kd° 
the thermodynamic equilibrium constant.

The values of several thermodynamic parameters are presented in Table  4. The 
recorded negative enthalpy (ΔH°) values for the adsorption of Rh B onto PPW-ZnO 
suggest that the sorption mechanism has an exothermic nature [67]. The presence of 
negative values Less than 0 for the standard Gibbs energy (ΔG°) suggests that the 
adsorption reaction is of a spontaneous [68]. Additionally, the negative values of the 
standard entropy change (ΔS°) indicate a reduction in disorder, this leads to a more 
orderly arrangement of dye molecules on the adsorption sites.

The process of regenerating PPW‑ZnO

In the first cycle as shown in Fig. 8, the PPW-ZnO exhibits a significant abundance 
of active sites readily available for adsorption. Simultaneously, the activated carbon’s 
pores remain unoccupied, facilitating the dye’s adsorption. In the second and third 
cycles of the PPW-ZnO system, it is observed that certain active sites become occupied 
by RhB molecules. The decrease in efficacy can be attributed to the partial obstruction 
of the pores and potential alterations in the surface chemistry of the charcoal. Inter-
estingly, an increase in adsorption capacity was seen during the fourth cycle of the 
regeneration process. This phenomenon is atypical and implies a modification in the 
properties of the activated carbon. Several potential explanations could be considered: 
The elimination of previously adsorbed chemicals that obstruct active sites may be 
attributed to alterations in the regeneration process [69]. Modifying the activated car-
bon’s structure can enhance the accessibility of active sites or generate novel adsorption 
sites alterations in the activated carbon surface’s chemical composition to an enhanced 
attraction towards the RhB dye. Table 5 compares our investigation with the published 
literature, and it is evident that the PPW-ZnO considered competitive with various 
adsorbents in its efficiency on adsorption of RhB.

Conclusion

A novel bio-composite PPW-ZnO adsorbent, which is prepared by immersing in  ZnCl2 
solution, that showed forms of ZnO, it also changed the surface area and shape of the 
exterior of the bio composite to prepare for effective adsorption between PPW-ZnO 
and RhB. The results showed a high adsorption capacity RhB and a strong attraction 

(14)lnK
◦

d
= −

ΔH◦

RT
+

ΔS◦

R

Table 4  Thermodynamics parameters of PPW-ZnO

Bio composite ΔG° (kJ/mol) ΔH° (kJ/mol) ΔS° (kJ/mol K)

293 K 303 K 323 K

PPW-ZnO − 0.54 − 0.48 − 0.094 − 6.011 ± 0.38 − 0.018 ± 0.001
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between PPW-ZnO and RhB. As well as the hydrogen banding, π-π interaction and 
pore filling mechanism play an important role in the adsorption process. This is remark-
able that it is not affected by the change of the pH RhB solution to the solution and the 
presence of other ions like  Na+, which makes it a strong competitor to other types of 
adsorbents. The adsorption capability of RhB exhibits a decrease as the temperature 
increases. The pseudo-second order kinetic model and the Freundlich isotherm can best 
describe the adsorption process of the RhB.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11144- 024- 02567-4.

Fig. 8  Adsorption cycles of PPW-ZnO and the regeneration cycle of the bio composite  (Co = 20 mg/L, 
T = 20 ± 1 °C, t = 120 min, = m

V
1 g/L and neutral pH)

Table 5  The adsorption 
efficiency of RhB on various 
literature studies

Adsorbent %Removal References

PPW-ZnO 98.95 This work
Oil-based drill cutting ash (M3-OBDCA) 81.3 [70]
Cassava slag biochar 96 [71]
Kaolinite 95 [72]
Biochar derived from tapioca peel 81.8 [73]
Chamaecyparis lawsoniana fruit 85.42 [74]

https://doi.org/10.1007/s11144-024-02567-4
https://doi.org/10.1007/s11144-024-02567-4
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