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Abstract
The impact of quercetin concentration (0.1–1.0 wt%) on the thermal stability of Ultra 
high molecular weight polyethylene (UHMWPE), in temperature region 50–600 °C, 
at 5 °C/min is examined by utilizing the thermogravimetric (TGA/DTA) technique. 
The activation energies of these thermograms are determined by utilizing the model 
fitting kinetic method (Coats and Redfern). Through this, 0.4 wt% is found to be the 
optimum quercetin concentration. UHMWPE sample at optimized quercetin con-
centration is further subjected to three other heating rates (10, 15 and 20  °C), in 
same temperature region. The complexities involved in thermal decomposition are 
resolved by using the deconvolution technique, adopting a bi-Gaussian asymmetric 
function. Activation energies of these deconvoluted peaks, obtained through Starink 
and Friedman kinetic models, follow a similar trend. By utilizing activation energy, 
a random nucleation reaction mechanism involved in thermal decomposition is iden-
tified. Finally, the pre-exponential factor, change in entropy (ΔS), change in enthalpy 
(ΔH) and change in Gibbs free energy (ΔG) are determined.
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Introduction

In engineering applications where friction and wear are a major concern, ultra 
high molecular weight polyethylene (UHMWPE) is a highly preferred polymer 
due to its excellent wear resistance, biocompatibility, low friction and chemical 
inertness [1–6]. As a linear semi-crystalline polymer, it has both crystalline and 
amorphous phases. Chains are folded into highly oriented lamellae of thickness 
10–50 nm and length 10–50 μm in the crystalline phase. In the amorphous phase, 
the lamellae are arranged randomly and are connected to each other through tie 
molecules [7]. UHMWPE is widely utilized in a wide range of applications like 
automotive, engineering bearings and as bio-implant materials in artificial joints 
etc. [8–12].

Despite of its unique characteristics, UHMWPE cannot be used in high tem-
perature applications due to its low thermal stability. As per previous researches 
[13, 14], thermal stability can be improved by increasing the tendency of cross-
linking of molecular chains in the polymer. Generally, this is achieved by irradiat-
ing UHMWPE with gamma or electron-beam (EB) radiations [15–18]. Gamma 
radiation dependent cross-linking is highly significant to design synthetic joints 
because it can also sterilize the material and thereby removing bacterial contami-
nation [19]. C–C and C–H bonds in UHMWPE are breakdown by means of ener-
getic gamma/EB radiations and formed alkyl radicals [20]. These radicals react 
with each other and also with unsaturated bonds in the polymer and as a result, 
cross-linking occurs. Due to irradiation, radicals are formed in both the amor-
phous and crystalline phase in the material. In the amorphous phase, free radi-
cals tend to quench within 10 h or induce cross linking, while in the crystalline 
phase, free radicals can remain active up to eight years and migrate into amor-
phous phase causing embrittlement and as a result shows unexpected failure in 
UHMWPE [21, 22].

In order to overcome this problem, post-irradiation thermal treatment (re-
melting or annealing) is utilized to remove free radicals trapped in the crystalline 
phase and precursor to oxidative degradation [23, 24]. However, such thermal 
treatment decreases the crystallinity and ductility of UHMWPE and thus sacri-
fices with the strength, toughness and fatigue, which results in cracking within a 
short period of time after its usage [22]. Another alternative treatment is the addi-
tion of antioxidants in a polymer matrix, which results in a promising alternative 
strategy for scavenging free radicals trapped in the crystalline phase [25].

Antioxidants, mainly hindered phenol, do not completely eliminate oxidative 
degradation, but they substantially inhibit the rate of auto oxidation by interfering 
with the radical propagation reaction [26]. Conventionally, a synthetic antioxidant 
such as 2,6-di-tertiary-butyl-4-methyl phenol (BHT), tertiary-butyl-4-hydroxy-
anisole (BHA), tertiary-butyl-hydroquinone (TBHQ), and 6-ethoxy-1,2-dihydro-
2,4-trimethylquinoline (ethoxyquin, EQ) are used to enhance the thermal stability 
of UHMWPE[27–31]. However, these synthetic antioxidants are toxic in nature 
and have harmful effects on the human body. Therefore, natural antioxidants 
(Gallic acid, Dodecy gallate, Vitamin C and Vitamin E) are recommended due to 
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their non-toxic and negligible harmful effects [32, 33]. Vitamin E (α-tocopherol) 
is proven to be a successful natural antioxidant applied to stabilize UHMWPE by 
donating a proton of phenolic HO ֯ to a macro-radical and itself becoming a much 
less reactive phenoxy radical due to the delocalization of unpaired electron over 
the aromatic ring. Intensive research resulted in the application of α-tocopherol 
for stabilizing UHMWPE, which was used as a joint implant. Even an ASTM 
standard specification suggested UHMWPE blended with Vitamin E for medical 
and other applications [33].

Quercetin, a natural antioxidant, emerged as a potential candidate for pre-
venting oxidative degradation in different polymeric materials [34]. This 
[2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4one)] is a flavanol type 
flavonoid found in fruits, vegetables, leaves and seeds and can be easily extracted 
through suitable solid phase extraction [35]. Till now, studies related to thermal 
kinetics have not been conducted by considering Quercetin as an antioxidant in 
UHMWPE.

In the present work, the thermal stability of UHMWPE samples blended with 
different concentrations (0.1–1.0 wt%) of Quercetin have been investigated (heating 
rate: 5 °C/min.) through the thermogravimetric (TGA/DTA) technique. The activa-
tion energies of these samples are also determined for different reaction mechanisms 
by adopting model fitting Coats and Redfern kinetic method. Further, thermograms 
of a maximum thermally stable sample are obtained at four different heating rates 
(5, 10, 15, 20  °C/min) and complexities involved during thermal degradation are 
resolved with deconvolution methods. Afterwards activation energies of deconvo-
luted peaks are determined by using both integral (Straink model) and differential 
(Friedman model) kinetic models. The reaction mechanism is identified using inte-
gral master plots and the pre-exponential factor is calculated with the help of acti-
vation energy and identified reaction mechanism. Finally, thermodynamic param-
eters, i.e., change in entropy (∆S), change in enthalpy (∆H) and change in Gibbs free 
energy (∆G) are determined.

Materials and methodology

Material

UHMWPE (Ultra high molecular weight polyethylene) and Quercetin, in powder 
form, are procured from Sigma Aldrich, USA. The quoted molecular weight of 
UHMWPE is 3 ×  106–6 ×  106 g/mol and density is 0.94 g/ml. The purity of Querce-
tin powder is ≥ 95% analyzed through High Performance Liquid Chromatography 
(HPLC).

Sample preparation

Quercetin (Q) with ten different weights ranging from 0.05 to 0.5 g, with interval of 
0.05 g, is added in ethanol to prepare 1 wt% solution [36]. The solution (pale yellow 
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colour) is poured into UHMWPE powder to prepare ten different samples (UHM-
WPE-Q) with different concentrations (0.1–1.0 wt%). For proper homogenization of 
ethanolic-quercetin solution in UHMWPE matrix, stirring was done with the help of 
magnetic stirrer for 30 min. Then, mixture was dried in an oven at 50 °C to evaporate 
ethanol. Afterwards, dried UHMWPE-Q powder was kept in a desiccator loaded with 
anhydrous blue silica gel to further dry ethanol and moisture content, if any [37].

Moulding of sample

The dried UHMWPE-Q powder is compacted, in a cylindrical designed mould, at room 
temperature (25 °C) and 5 MPa pressure. Then, these samples are melted at an elevated 
temperature (140 °C) and compressed at 15 MPa pressure. Finally, UHMWPE-Q sam-
ples are gradually cooled with a dwelling time of 10 min and cylindrical shaped (diam-
eter: 12 mm; height 40 mm) samples are prepared.

These UHMWPE-Q samples, with different quercetin concentrations, are cut into 
small pieces (~ 0.5 mm thickness; ~ 5 mg weight) for thermogravimetric analysis.

Thermogravimetric analysis (TGA) techniques

These samples are placed one by one in an alumina crucible and subjected to thermo-
gravimetric analysis (Hitachi STA 7200 TGA analyzer). Thermograms (mass loss as 
a function of temperature) are recorded at 5 °C/min heating rate in temperature range 
50–600 °C, in nitrogen environment at 100 ml/min gas flow rate. These thermograms 
are analyzed, through ORIGIN software, to identify the maximum thermally stable 
sample. This identified sample is further subjected to the thermogravimetric analysis 
at four different heating rates (5, 10, 15 and 20 °C/min) and mass loss as a function of 
temperature is recorded.

Theoretical kinetic approach

Kinetic models

Thermograms obtained through TGA/DTA technique are analyzed for kinetic studies 
[38]. For thermal degradation, the rate of reaction is described as:

where k(T) is the reaction rate constant, f (�) is the differential form of an ideal reac-
tion model, T  is the absolute temperature in Kelvin, t is the time duration of the 
reaction (in min) and � is the degree of conversion, which can be written as:

(1)
d�

dt
= k(T)f (�)

(2)� =
mo − mt

mo − m∞
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where  m
0
 is the initial mass, mt is the mass at time t , m∞ is the final mass of the 

sample.
The rate constant k(T) can be expressed by Arrhenius equation:

A
(
min−1

)
 , Ea(kJ∕mol) and R(8.314J∕Kmol) are the pre-exponential factor, acti-

vation energy and gas constant, respectively.
By substituting the value of k(T) in Eq. (1), one can write:

For non-isothermal TGA experiment, at linear heating rate � = dT∕dt , the final 
equation for the rate of reaction can be obtained by modifying Eq. (4) as:

By considering the above expression (5) as a base, different kinetic models are 
formulated [39–45]. These models follow different temperature integral approxima-
tions for the evaluation of kinetic parameters.

In the present study, Coats and Redfern (CR) [39] kinetic model is adopted to 
determine the activation energy of the considered samples. They utilized asymptotic 
series expansion [46, 47] and developed the following relation:

where g(�) is the integral form of an ideal reaction model. With the help of this 
model, the reaction mechanism is identified by plotting the different values of g(�) at 
different degree of conversion (�)(Table 1).

Deconvolution kinetic method

The second stage of thermal decomposition of UHMWPE (Figs. 2 and 3), with dif-
ferent quercetin concentrations, is very complex. To resolve this complexity, decon-
volution kinetic method is adopted. In the present study, the deconvolution is per-
formed by using the Bi-Gaussian asymmetric function:

where y
0
 is baseline, H is maximum height, x is the independent variable, xc is the 

central value; w
1
 and w

2
 are the width of left and right side of the Gaussian peak.

The activation energy corresponding to each deconvoluted peak is determined for 
the second stage using ICTAC recommended iso-conversional [48] kinetic models. 

(3)k(T) = Ae−Ea∕RT

(4)
d�

dt
= Ae−Ea∕RT f (�)

(5)
d�

dT
=

A

�
e−Ea∕RT f (�)

(6)ln

(
g(�)

T2

)
= ln

(
AR

�Ea

)
+ ln

(
1 −

2RT

Ea

)
−

Ea

RT

(7)y =

⎛⎜⎜⎝
y
0
+ He

−0.5
�

x−xc

w1

�2

for x < xc

y
0
+ He

−0.5
�

x−xc

w2

�2

for x ≥ xc

⎞⎟⎟⎠
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These are Starink (SR) integral kinetic model [44] and Friedman (FR) differential 
kinetic model [45]. Starink model is written as:

and Friedman kinetic model is written as:

By using these models, activation energies are determined from the slopes obtained 
through the plots ln

(
�∕T1.92

)
 vs. 1000∕T (Eq. 8) and ln(�d�∕dt) vs. 1000∕T (Eq. 9), 

respectively.

(8)ln

(
�

T1.92

)
= ln

(
AR

Ea

)
+ ln

(
df (�)

d�

)
− 1.0008

Ea

RT

(9)ln
(
�
d�

dT

)
= lnA + lnf (�) −

Ea

RT

Table 1  Reaction mechanisms 
involved in thermal 
decomposition processes in 
solids

Reaction Mechanism g(�)

nth order reactions
First order (F1) −ln(1 − �)

Second order (F2) −1 + (1 − �)−1

Third order (F3) 0.5
[
−1 + (1 − �)−2

]
Diffusion mechanisms
1D diffusion (D1) �2

2D diffusion (D2) � + (1 − �)ln(1 − �)

3D diffusion (Jander equation) (D3) [
1 − (1 − �)1∕3

]2
3D diffusion (Ginstling-Brounshtein equa-

tion) (D4)
1 − (2∕3)� − (1 − �)2∕3

Phase boundary reactions
Cylinder symmetry (R2) 1 − (1 − �)1∕2

Spherical symmetry (R3) 1 − (1 − �)1∕3

Nucleation mechanisms
Power law (P2) �1∕2

Power law (P3) �1∕3

Power law (P4) �1∕4

Power law (P2/3) �3∕2

Avrami-Erofeev (A2) [−ln(1 − �)]1∕2

Avrami-Erofeev (A3) [−ln(1 − �)]1∕3

Avrami-Erofeev (A4) [−ln(1 − �)]1∕4
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Result and discussion

Thermal decomposition behavior of UHMWPE

Fig.  1 presents the thermogravimetric (TG), its derivative (DTG) and second 
derivative (SDTG) curves of UHMWPE, which is compressed at optimized com-
pression parameters (Temperature: 140 °C and Pressure: 15 MPa). Thermogram 
is recorded in temperature region 50–600 °C at 5  °C/min heating rate, in nitro-
gen environment. As per Fig. 1, UHMWPE shows three thermal decomposition 
stages. No noticeable mass loss is observed in Stage-I, which lies in the tem-
perature region 50–208 °C. In the second stage (~ 208–539 °C), the mass gain is 
observed at ~ 233 °C temperature. Here, alkyl radicals  (R•) combine with oxygen, 
present in the amorphous phase and form peroxy radicals  (ROO•) [49–51].These 
peroxy radicals abstract hydrogen from adjacent hydrocarbon chains and convert 
into hydro-peroxide (ROOH) by forming alkyl radicals. These alkyl radicals fur-
ther continue oxidative degradation. The O–O bond of peroxy-radical and hydro-
peroxide is relatively thermally unstable and breakdown into  RO• and OH, result-
ing in mass loss first slowly and then abruptly by forming low molecular weight 
carboxylic acid, alcohols, ketones, esters, water, olefins, paraffins etc. [52–54]. 
Around 468  °C, Diels–Alder Reaction favours the formation of cyclic products 
and as a result, unexpected mass gain is observed up to 539 °C. Second stage is 
highly active and variety of complex reactions are formed during thermal deg-
radation, as clearly observed in SDTG curve (Fig. 1). In Stage-III, after 539 °C, 
sample is complete volatized and no loss in mass is observed.
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Fig. 1  Thermogravimetric (TG), its derivative (DTG) and Second Derivative (SDTG) curves of pure 
UHMWPE, at 5 °C/min heating rate
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Optimization of quercetin concentration in UHMWPE through thermal stability

To observe the impact of quercetin concentrations on thermal stability of UHM-
WPE, recorded thermograms (at 5  °C/min heating rate) are presented in Fig.  2 
and Fig. S1a, b. These thermograms show similar thermal decompositions stages 
as observed in pure UHMWPE (Fig. 2). However, the maximum decomposition 
temperature (Tmax) is different at different quercetin concentrations (Table  2). 
Firstly, thermal stability increases with an increase in quercetin concentration up 
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 UHMWPE - Q(0.4 wt%)

Fig. 2  TG/mass-loss curves of UHMWPE with different Quercetin (Q) concentration (0.0, 0.1, 0.2, 0.3, 
0.4 wt%)

Table 2  Maximum 
decomposition temperature (
Tmax

)
 of Stage-II at different 

Quercetin concentrations

Quercetin concentration (wt%) Tmax (°C)

0.0 431
0.1 432
0.2 433
0.3 435
0.4 438
0.5 436
0.6 435
0.7 434
0.8 430
0.9 428
1.0 427
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to 0.4 wt% (Fig. 2); then it decreases with an increase of concentration from 0.5 
to 0.7 wt% (Fig. S1a) and finally, it decreases even below the pure UHMWPE 
(Fig. S1b). The enhancement in thermal stability up to 0.4 wt% may be due to 
scavenging of formed free radicals of UHMWPE by abstracting hydrogen from 
the hydroxyl group of quercetin, leave phenoxy radicals of quercetin that can be 
further stabilized by delocalization of their electrons and forms various stable 
aromatic compounds of low molecular weight. However, an increase in quercetin 
concentration (0.5–0.7 wt%) lowers its efficiency as radical scavenger. This might 
be due to the reaction of quercetin directly with the oxygen present in UHMWPE. 
Here, in concentration 0.1–0.7 wt%, quercetin acts as antioxidant in UHMWPE. 
At higher concentration (0.8–1.0 wt%), quercetin transformed into pro-oxidant by 
forming various oxidative products [55], resulting in even lower thermal stability 
of pure UHMWPE. The above discussion reveals that quercetin act as antioxidant 
at lower concentration only and observed maximum thermal stability of UHM-
WPE at 0.4 wt%.

To ascertain that maximum thermal stability of UHWMPE at 0.4 wt% querce-
tin only, activation energy at different quercetin concentration for different reac-
tion mechanisms are obtained (Table 3) by utilizing Coats and Redfern Kinetic 
model. The table also revealed that values of activation energy are maximum at 
0.4 wt% as compared to other concentrations.

Table 3  Activation energies (kJ/mol) at different quercetin concentrations, for different reaction mecha-
nisms, obtained through Coats and Redfern model

Reaction 
mechanism

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F1 462 507 514 519 652 516 515 511 456 446 440
F2 607 669 673 682 870 682 680 672 579 564 560
F3 789 863 866 872 1136 871 869 868 727 707 691
D1 721 788 793 799 989 796 790 769 667 650 644
D2 781 860 863 873 1085 872 888 834 722 683 672
D3 854 947 958 976 1202 972 965 945 788 747 742
D4 802 879 882 889 1125 890 881 865 745 713 704
R2 401 441 453 460 561 455 450 448 398 397 390
R3 413 462 472 479 591 473 471 467 405 402 392
P2 167 180 201 223 231 228 221 229 147 127 121
P3 102 111 142 159 165 155 147 163 95 93 93
P4 78 79 86 92 105 90 87 82 71 63 61
P2/3 538 586 589 594 736 598 592 578 514 493 489
A2 140 218 232 243 315 241 238 232 132 127 123
A3 101 153 157 158 201 152 147 149 95 89 83
A4 213 246 267 278 298 272 266 263 208 201 196
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Thermal kinetic parameters of UHMWPE at optimized quercetin concentration

In order to explore different thermal kinetic parameters, thermograms of UHMWPE 
with quercetin (0.4 wt% concentration) are obtained at four different heating rates 
(5, 10, 15, 20  °C/min.) and are presented in Fig.  3. It is observed that these TG 
curves are of similar trend and shows three decomposition stages in which Stage-II 
is highly active and complex. In addition, TG curves also shifted towards higher 
temperature side with an increase in heating rate. Similar trends are also observed in 
plots (Fig. S2a, b) of the degree of conversion (�) and change of degree of conver-
sion (d�∕dt) as a function of temperature. This may be due to the delay participa-
tion of radicals, in thermal decomposition, resulting in thermal lag, which leads to 
a change in thermal kinetic parameters. Further, peaks (Fig. S2b) also reveal the 
complexities involved in thermal reactions in Stage-II.

Deconvolution kinetic method

The complexities involved in thermal reactions (Stage-II) are resolved through 
deconvolution method. Adopting this, peaks are deconvoluted by applying the Bi-
Gaussian asymmetric function (Eq. 7). At 5 °C/min heating rate, two peaks at two 
different temperatures (432 and 444  °C) are obtained (Fig.  4). Similar trends are 
also observed (two peaks at two different temperatures) for other heating rates after 
deconvolution (Fig. S3a–c). These peaks are presented separately in Fig. 5a, b. Fur-
ther, degree of conversion (�) values are generated and presented as a function of 
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Fig. 3  TG/mass-loss curves of UHMWPE + Quercetin (0.4 wt%) at four different heating rates (5, 10, 15 
and 20 °C/min)
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temperature at different heating rates (Fig. S4a, b). Figs. 5 and S4) reveals that peaks 
are shifted towards higher temperatures, which substantiates the thermal lagging.

Estimation of activation energy

To estimate activation energies for Peak 1 and Peak 2, linear fitted plots are gen-
erated at different conversion values (Fig. S4a, b) by adopting Starink (Fig. 6a, b) 
and Friedman (Fig. S5a, b) models. The obtained linear fitted parameters (slope, 
standard error (S.E.), R2 value) and activation energy are given in Tables 4 and 5. 
It is observed that the values of activation energies based on Starink model are less 
as compared to Friedman model. Further, the activation energy value of Peak 1 
decrease with increase in degree of conversion (�) value while for Peak 2 it increases 
for both integral and differential models.

Determination of specific reaction mechanism

The reaction mechanism involved in thermal decomposition of the considered sam-
ple (UHMWPE + quercetin (0.4 wt%)) is determined through integral master plots 
method. As per this method, thermal decomposition reaction can be expressed [56] 
as:

(10)g(�) =
AEa

�R
P(u)

Fig. 4  Deconvoluted peaks in Stage-II of UHMWPE + Quercetin (0.4 wt%) at 5 °C/min heating rate



2826 Reaction Kinetics, Mechanisms and Catalysis (2023) 136:2815–2834

1 3

where g(�) is the integral function at different degree of conversion (�),u = Ea∕RT  
and P(u) is the temperate integral that can be expressed as:

To determine reaction mechanism, the above expression can be expressed as

(11)P(u) ≈
e(−1.0008u−0.312)

u0.92

Fig. 5  d�∕dt as a function of Temperature in Stage-II of UHMWPE + Quercetin (0.4 wt%) for a Peak 1 
and b Peak 2, at different heating rates
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By utilizing Starink model-based activation energy, experimental values are 
generated and presented as a function of the degree of conversion (�) at differ-
ent heating rates (Figs. 7, 8, S6 and S7). Further, master plots are generated for 
different reaction mechanisms (Table  1) and introduced in these figures. The 

(12)
g(�)

g(0.5)
=

P(u)

P(0.5)

Fig. 6  Linear fitted curves at different conversion values obtained through Starink model for a Peak 1 
and b Peak 2



2828 Reaction Kinetics, Mechanisms and Catalysis (2023) 136:2815–2834

1 3

comparison between experimental values and master plots reveals that Peak 1 
and Peak 2 favours A2 and A3 (random nucleation) reaction mechanisms, respec-
tively. These reaction mechanisms may be due to semi-crystalline nature of 
UHMWPE, which restricts the mobility of free radicals in amorphous phases and 
facilitate random nucleation [57].

Estimation of pre‑exponential factor and thermodynamic parameters

For determination of pre-exponential factors (A), Eq. (10) is rewritten by replacing 
g(�) with A2 reaction mechanism for Peak 1 (Eq. 13) and A3 reaction mechanism 
for Peak 2 (Eq. 14) as

and

(13)[−ln(1 − �)]1∕2 =
AEa

�R
P(u)

Table 4  Linear fitting parameters obtained through Starink model for Peak 1 and Peak 2

Peak 1 Peak 2

α Slope S.E R2 Ea(kJ/mol) Slope S.E R2 Ea(kJ/mol)

0.1 − 37.574 0.484 0.999 312 − 12.896 0.494 0.995 107
0.2 − 27.326 1.058 0.995 227 − 13.098 0.617 0.993 109
0.3 − 23.289 1.191 0.992 193 − 12.223 0.899 0.983 102
0.4 − 21.052 0.389 0.999 175 − 12.921 1.002 0.982 107
0.5 − 19.643 0.497 0.998 163 − 13.331 1.180 0.976 111
0.6 − 18.283 0.695 0.995 152 − 13.992 1.215 0.977 116
0.7 − 18.196 0.480 0.997 151 − 15.059 1.472 0.971 125
0.8 − 17.404 1.331 0.982 145 − 15.623 1.432 0.975 130

Table 5  Linear fitting parameters obtained from Friedman model for Peak 1 and Peak 2

Peak 1 Peak 2

α Slope S.E R2 Ea(kJ/mol) Slope S.E R2 Ea(kJ/mol)

0.1 − 52.093 0.822 0.999 433 − 13.944 0.289 0.998 116
0.2 − 36.978 3.719 0.952 307 − 10.795 1.918 0.910 90
0.3 − 24.034 1.197 0.992 200 − 12.666 1.322 0.967 105
0.4 − 20.120 0.296 0.999 167 − 14.783 1.171 0.981 123
0.5 − 17.776 0.357 0.999 148 − 14.886 1.098 0.983 124
0.6 − 17.190 0.872 0.992 143 − 15.251 2.366 0.931 127
0.7 − 17.504 1.421 0.980 146 − 17.316 3.230 0.902 144
0.8 − 17.084 1.035 0.989 142 − 18.903 1.246 0.987 157
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Fig. 7  Comparison between experimental values (represented with symbols) and theoretical master 
curves obtained for different nucleation mechanisms, for Peak 1

Fig. 8  Comparison between experimental values (represented with symbols) and theoretical master 
curves obtained for different nucleation mechanisms, for Peak 2
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By plotting linear fitted curves between [−ln(1 − �)]1∕2 and 
(
Ea∕�R

)
P(u)  for 

Peak 1 and [−ln(1 − �)]1∕3 and 
(
Ea∕�R

)
P(u) for Peak 2, pre-exponential factors at 

different heating rate are determined and given in Tables 6 and 7.
For thermodynamic parameters [58, 59] viz. entropy change (ΔS) , enthalpy 

change (ΔH) , and Gibbs free energy change (ΔG) , the following equations are 
utilized:

and

where e , � , kb and h are Neper number (2.7183), transition number (Equal to unity 
for monomolecular reaction), Boltzmann’s constant (1.38 ×  10–23  Js−1) and Planck’s 
constant (6.626 ×  10–34  Js−1), respectively. By utilizing maximum decomposition 
temperature 

(
Tmax

)
 in these equations, values of considered thermodynamic param-

eters are determined (Tables 6 and 7). It is observed from these tables that ΔS values 
are negative and values of ΔG and ΔH are positive for both the peaks. This reveals 
that the thermal decomposition of UHMWPE + Quercetin (0.4 wt%) is endergonic, 
non-spontaneous and unfavourable.

(14)[−ln(1 − �)]1∕3 =
AEa

�R
P(u)

(15)ΔS = Rln

(
Ah

e�kbTmax

)

(16)ΔH = Ea − RTmax

(17)ΔG = ΔH − TmaxΔS

Table 6  Pre-exponential factor and thermodynamic parameters of Peak 1 at different heating rates

Heating rate 
(°C/min)

Tmax (°C) A (1/min) ΔS (J/mol/K) ΔH (kJ/mol) ΔG (kJ/mol)

5 428 2.90 ×  108 − 98.33 131.47 200.40
10 442 3.15 ×  108 − 97.80 130.30 200.23
15 452 3.33 ×  108 − 97.46 129.47 200.13
20 460 3.47 ×  108 − 97.21 128.81 200.06

Table 7  Pre− exponential factor and thermodynamic parameters of Peak 2 at different heating rates

Heating rate 
(°C/min)

Tmax (°C) A (1/min) ΔS (J/mol/K) ΔH (kJ/mol) ΔG (kJ/mol)

5 442 1.69 ×  107 − 122.12 53.93 141.25
10 475 1.79 ×  107 − 122.02 51.19 142.46
15 485 2.25 ×  107 − 120.23 50.35 141.49
20 498 2.34 ×  107 − 120.05 49.27 141.83
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Conclusions

The thermal decomposition of UHMWPE shows three decomposition stages and 
Stage-II (~ 208–539 °C) is highly complex and active. Mixing of quercetin in UHM-
WPE matrix doesn’t alter the decomposition stages. However, the temperature 
regions of decomposition stages are varied. At low (up to 0.7 wt%) concentration, 
quercetin acts as an antioxidant in UHMWPE matrix whereas it behaves as a pro-
oxidant at higher concentration (0.8–1.0 wt%). Further, at 0.4 wt% quercetin con-
centration thermal stability of UHMWPE is maximum. Complexities involved in 
Stage-II are resolved through deconvolution by splitting into two peaks. Obtained 
activation energies, through integral (Starink) and differential (Friedman) kinetic 
models, at different heating rates are higher for Peak 1 than Peak 2. Here, random 
nucleation reaction mechanism favours the thermal decomposition. Additionally, 
negative value of change in entropy (ΔS) and positive value of change in enthalpy 
(ΔH) and change in Gibbs free (ΔG) energy indicates that thermal decomposition of 
UHMWPE is non-spontaneous and endergonic. The study brings new prospects for 
optimizing minimal quercetin concentration to provide maximum thermal stability 
to UHMWPE for higher temperature applications.
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