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Abstract
Herein, we report the synthesis of sulfonic acid functionalized SBA-15 by post-
synthetic functionalization of mesoporous SBA-15. The successful incorporation of 
sulfonic acid moiety into the SBA-15 framework could be confirmed by physico-
chemical characterization. The nature of acidic sites was confirmed using tempera-
ture-programmed desorption of ammonia. A simple synthetic route for the synthesis 
of 2-aryl benzimidazoles and benzothiazoles using SBA-15-SO3H as a green het-
erogeneous catalyst at room temperature was investigated. 100% conversion and an 
isolated yield of 70–85% could be obtained. The green synthetic approach offers 
reaction under ambient conditions, a simple work-up procedure, good to excellent 
yield and easy product isolation along with good recyclability.

Keywords  Heterogeneous catalysis · Sulfonic acid functionalized SBA-15 · 
Benzimidazoles · Benzothiazoles

Introduction

Green chemistry (also known as sustainable chemistry) is an emerging area of cur-
rent research targeting the greening of chemical synthesis in the chemical industry. 
It advocates the invention of environmentally benign chemical processes involv-
ing the consumption of renewable resources and eliminating/reducing the genera-
tion of waste at the source emphasizing atom/circular economy [1–4]. Heteroge-
neous catalysis can go a long way in realizing the goals of sustainable chemistry 
by providing alternate synthetic strategies involving reusable and recyclable solid 
catalysts for fine chemical synthesis [5]. Solid acids form eco-friendly substitutes for 

 *	 Suja Haridas 
	 sujaharidas@cusat.ac.in

1	 Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, 
Kerala, India

2	 Inter‑University Centre for Nanomaterials and Devices, Cochin University of Science 
and Technology, Kochi, Kerala, India

http://orcid.org/0000-0002-4078-3922
http://crossmark.crossref.org/dialog/?doi=10.1007/s11144-023-02464-2&domain=pdf


2278	 Reaction Kinetics, Mechanisms and Catalysis (2023) 136:2277–2294

1 3

commonly used hazardous and corrosive homogeneous liquid acid catalysts such as 
HCl, HNO3, H2SO4, HF etc. [6]. Replacing conventional production with sustain-
able routes alleviates environmental and economic concerns.

N-containing heterocyclics especially benzimidazoles and benzothiazoles have 
gained significant interest on account of their broad spectrum of biological activi-
ties and potential applications [7–20]. The myriad pharmaceutical applications have 
contributed to the considerable research focus on the development of new synthetic 
routes for these compounds. The most common method of synthesis involves the 
condensation of an arylene diamine or 2-aminothiophenol with a carboxylic acid 
[21, 22] or its derivatives [23, 24] under vigorous reaction conditions or under 
microwave irradiation. Another method is the condensation of an aldehyde with 
arylene diamine or 2-aminothiophenol [25–27] and is the extensively followed syn-
thetic approach due to the easy availability of aryl aldehydes. A detailed literature 
survey of the synthetic approaches for benzimidazoles and benzothiazoles reveals 
diverse catalytic systems and methodologies employed for their synthesis [7, 22–45].

The discovery of ordered mesoporous materials (pore size 2–50 nm) has been a 
breakthrough in the field of material chemistry. The versatility of porous silica-based 
organic–inorganic hybrids catalysts is attributed to the structural robustness of the 
inorganic framework and functional characteristics of organic moieties [46]. These 
multi-functional silica-based hybrid catalysts possess diverse types of active sites 
(acid, base, redox) enabling them to facilitate a whole spectrum of organic transfor-
mations [47–51]. SBA-15 is a class of mesoporous silica material having a uniform 
hexagonal array of mesoporous with narrow pore size distribution. The large surface 
area in combination with the tunability of pore size and easy functionalization of 
the silanol groups with acidic, basic and redox moieties renders them widely used 
materials in heterogeneous catalysis. The introduction of SO3H moieties is reported 
to lend strong Brønsted acidity assisting the catalytic activity [52, 53]. Sulfonic acid 
functionalized SBA-15 has been explored extensively for a wide range of catalytic 
conversions [54–64].

2-Aryl benzimidazole synthesis over mesoporous silica-based materials has 
been reported in the literature [35, 36, 65–73]. Solvent selective formation of di 
and monosubstituted benzimidazoles over mesoporous silica supported ytterbium 
catalyst was demonstrated by Samanta et  al. [65]. Mesoporous silica supported 
samarium and CuO was reported as recyclable heterogeneous catalyst for the syn-
thesis 2-substituted benzothiazole [72]. Cobalt-anchored SBA-15 [66] and Al-
MCM-41 [70] have been tried for benzimidazole synthesis. The coupling reaction of 
2-iodoaniline, potassium sulfide and benzaldehyde over bimetallic Cu-Al supported 
on SBA-15 could produce benzothiazoles in excellent yields [67]. An organometal-
lic type catalyst prepared through surface modification of silica nanoparticles with 
3-chloropropyltriethoxysilane (CPTES) and thiocarbohydrazide (TCH) followed by 
metal–ligand coordination with Ni (II) for benzimidazole synthesis was reported by 
Kalhor et al. [64]. Functionalized MCM-41 [67, 71, 74], hexagonal mesoporous sil-
ica [69] as catalysts for benzimidazole and thiazole synthesis has also been reported. 
Further, sulfonic acid functionalized materials have also been explored for benzimi-
dazole synthesis [75–79]. Only isolated reports are available regarding synthesis of 
2-aryl benzimidazoles over sulfonic acid functionalized SBA-15. However, to the 
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best of our knowledge, synthesis of benzothiazoles over SBA-15-SO3H has not been 
reported yet. Herein, we present the catalytic activity of sulfonic acid functionalized 
mesoporous SBA-15 for the synthesis of 2-arylbenzimidazoles and benzothiazoles. 
A high yield of isolated products could be obtained under optimized reaction condi-
tions in ethanol with considerable scope for catalyst recyclability.

Experimental

Materials and methods

Pluronic 123, Tetraethyl orthosilicate (TEOS) and 3-mercaptopropyltrimethoxysi-
lane (MPTMS) were purchased from Sigma-Aldrich. Sulfuric acid (H2SO4, 95%), 
Hydrochloric acid (HCl, 35%) were purchased from Merck. All other chemicals, 
benzaldehyde, 2-aminothiophenol, o-phenylenediamine, toluene, hydrogen peroxide 
(30 wt%) were supplied by Spectrochem. All reagents and solvents were of analyti-
cal grade and used as such without any further purification.

Synthesis of SBA‑15

SBA-15 was prepared based on a slight modification of the procedure reported by 
Zhao et al. [80]. As reported in our previous work [81], 4.4 g of triblock copolymer 
P123 was dispersed in 30 mL distilled water and stirred for 1.5 h. To the dispersed 
solution, 120 g 2 M HCl was added and the stirring was continued for 2 h. This was 
followed by dropwise addition of 9 g of TEOS under continued stirring for 1 h. The 
resulting solution was aged for 24 h followed by hydrothermal treatment at 100 °C 
for 48 h. The precipitate was then filtered, washed with distilled water, dried over-
night at 70 °C in a hot air oven and calcined at 450 °C for 8 h.

Functionalization of SBA‑15

The functionalization of SBA-15 was done by the post-grafting method. To 0.5 g 
SBA-15, 5  mL MPTMS and 10  mL toluene were added and refluxed for 6  h at 
60 °C. The precipitate was filtered, thoroughly washed with methanol and distilled 
water and dried overnight at 70 °C to get thiol functionalized SBA-15. The oxida-
tion of thiol functionality was achieved by treatment with 5 mL H2O2 and a drop of 
H2SO4. The solid obtained was filtered, washed, and dried to get SBA-15-SO3H.

Catalyst characterization

The synthesized catalysts were subjected to structural and morphological charac-
terization. Small angle XRD was recorded on a Bruker AXS D8 Advance powder 
diffractometer using Cu Kα radiation (wavelength 1.54 Å) source. Fourier transform 
infrared spectroscopy (FTIR) spectra were obtained from JASCO model 4100 FTIR 
spectrometer. Thermal stability of the catalytic systems was tested in a Perkin Elmer 
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Diamond TG/DTA analyzer at a heating rate of 10  °C/min under nitrogen atmos-
phere. Morphological characterization was obtained from SEM and TEM analyses. 
The TEM images were recorded using a JEOL JEM 2100 microscope with a resolu-
tion of 0.24 nm operated under the voltage of 200 kV. SEM–EDX analysis was done 
in JEOL JSM-6390LV with magnification 5×to 300,000×. The surface area and 
pore volume characteristics were determined by N2 adsorption/desorption isotherms 
in a Micromeritics Gemini VI version 3.03 analyser after degassing at 200 °C for 
4 h. XPS analysis was conducted on PHI 5000 Versa Probe II, ULVAC-PHI Inc., 
USA equipped with micro-focused (200 μm, 15 kV) monochromatic Al Kα X-ray 
source (hν = 1486.6  eV). Both survey spectra and narrow scans (high-resolution 
spectra) were recorded. Survey scans were recorded with an X-ray source power of 
50W and pass energy of 187.85 eV. High-resolution spectra of the major elements 
were recorded at 46.95 eV pass energy. XPS data were processed using PHI’s Mul-
tipack software.

General procedure for the synthesis of 2‑phenyl benzimidazole/thiazoles

For a typical run, a mixture of o-phenylenediamine (OPD)/2-aminothiophenol 
(1 mmol) (for benzimidazole/benzothiazole) and benzaldehyde (1 mmol) in 10 ml 
solvent was taken in a 50 mL flask and stirred at room temperature in presence of 
catalyst (50 mg) for a definite time interval (Scheme 1). The progress of the reac-
tion was monitored by TLC and the filtrate was subjected to GC–MS analysis in an 
Agilent 7890A system. The product isolation was achieved by pouring the reaction 
mixture into chilled water containing ice. The precipitate formed was then filtered, 
washed, dried and recrystallized from ethanol.

Results and discussion

Characterization of the catalyst

The results of the BET surface area analysis (Table 1) imply the successful incor-
poration of sulfonic acid moieties into the framework. SBA-15 exhibited a surface 
area of 697 m2/g which upon functionalization reduced to 568 m2/g. A slight reduc-
tion in pore volume and pore diameter was also observed in SBA-15-SO3H indicat-
ing the partial filling of the mesopores. This is in line with the previous literature 

Scheme 1   General scheme for the synthesis of 2-aryl benzimidazoles/Benzothiazoles. X = NH or S
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reports [58, 82, 83]. The decrease may also be attributed to the occlusion of pores by 
propyl sulfonic acid groups inhibiting N2 diffusion. [58]. The enhancement in wall 
thickness may be attributed to the incorporation of sulfonic acid moieties onto the 
surface. The N2 adsorption–desorption isotherms (Fig. S1) can be correlated to Type 
IV with H1 hysteresis loop at relative pressures 0.6 to 0.8 which are characteristics 
of mesoporous materials. The retention of the hysteresis loop in SBA-15-SO3H indi-
cates the preservation of the mesoporous framework after functionalization.

The small angle XRD patterns of the pure SBA-15 (Fig.  1) exhibited three 
well-resolved peaks at 2θ values 0.99°, 1.55° and 1.9° corresponding to the reflec-
tions from (100), (110) and (200) planes. These peaks are the characteristics of 
mesoporous materials with p6mm hexagonal space group [81]. The XRD pattern 
remained essentially unchanged in SBA-15-SO3H emphasising the stability of 
the hexagonally closed-packed mesoporous framework. A reduction in the peak 
intensity after functionalization is evocative of a small disruption in the long-
range order caused by post-grafting treatment and oxidation [55, 56, 59]. Such a 
lowering of intensity has been reported during the incorporation of other species 
also [65]. The reduction in intensity may also be a consequence of the lowering 

Table 1   Physical characterisation of SBA-15 and SBA-15-SO3H

Sample Surface 
area (m2/g)

Pore 
volume 
(cm3/g)

Pore diam-
eter (nm)

Interplanar 
distance d(100) 
(nm)

Unit cell 
parameter (ao) 
(nm)

Wall 
thickness 
(nm)

SBA-15 697 0.28 2.13 8.75 10.10 7.97
SBA-15-SO3H 568 0.23 2.04 8.95 10.28 8.24

Fig. 1   XRD patterns for SBA-15 and SBA-15-SO3H
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of crystallinity during post grafting [57]. It has to be specially mentioned that no 
considerable alterations were observed in the lattice parameters (Table  1) once 
again confirming the retention of the mesoporous framework.

The FTIR spectra of SBA-15, thiol functionalized SBA-15 and sulfonic acid 
functionalized SBA-15 (Fig. 2) exhibited a broad peak around 3450 cm−1 assigned 
to the O–H stretching vibration of the surface silanol groups and adsorbed mois-
ture. The characteristic vibrations of mesoporous silica could be identified: band 
at 960 cm−1 (Si–O bending vibration), 800 cm−1 (symmetric stretching vibrations 
of Si–O–Si) and wide band between 1000 and 1300 cm−1 (asymmetric stretching 
vibrations of Si–O–Si) [81]. The attachment of the mercaptopropyl group on the 
silica surface was identified by the bands at 2940 cm−1 and 2850 cm−1 which are 
due to the asymmetric and symmetric stretching peaks of methylene group. A 
weak peak around 2600 cm−1 is due to the S–H stretching vibrations [84].

The thermal stability of the as-prepared samples was investigated by TG-DTG 
analysis (Fig. S2). The weight loss below 130 °C in both cases may be assigned 
to the removal of physisorbed water. The absence of a significant weight loss in 
150–270 °C region confirms the complete removal of the surfactant during cal-
cination process. In the case of sulfonic acid functionalized SBA-15, the weight 
loss observed beyond 400  °C may be ascribed to the decomposition of the sul-
fonic acid moiety [54, 55].

The textural and morphological characteristics of the samples were obtained 
from SEM–EDX (Fig. S3) and TEM analysis (Fig. S4). TEM images reveal the 
hexagonally aligned mesopores and parallel pore channels which are retained 
after sulfonic acid functionalization [58, 60, 75]. This is in alignment with the 
preservation of mesoscopic structure as evidenced by BET and XRD data. EDX 

Fig. 2   FT-IR spectra of SBA-15, thiol functionalised SBA-15 (SBA-15-SH) and sulfonic acid functional-
ized SBA-15 (SBA-15-SO3H)
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analysis reveals a sulfur content of 1.1 wt% in the functionalized sample confirm-
ing the inclusion of SO3H moiety into SBA-15 framework.

Effective functionalization of SBA-15 could be further confirmed by XPS anal-
ysis (Fig.  3 and S5). The C1s spectra indicate the presence of the propyl group 
while that of S 2p establishes the inclusion of sulfonic acid moiety. The O1s peak 
at 532.3 eV may be assigned to Si–O–Si linkage. The binding energy for Si 2p was 
found to be at 103.7 eV consistent with previous reports [75]. The single peak at a 
binding energy of 169 eV observed for S 2p confirms the + 6 oxidation state of S 
which in turn indicates the complete oxidation of the thiol group [56].

Catalytic activity

Synthesis of 2‑aryl benzimidazole

The selection of a proper solvent is a crucial step in organic synthesis. A preliminary 
scanning of the solvent effect was done at room temperature for a time interval of 
24 h (Fig. S6). Less polar and aprotic solvents like dichloroethane, tetrahydrofuran 
and toluene were found to be unsuitable for the reaction whereas polar solvents like 
ethanol, acetonitrile gave the highest yield of product. Ethanol being a green solvent 

Fig. 3   Core level XPS spectra of SBA-15-SO3H
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was selected for further studies. In order to assess the catalytic performance, paral-
lel runs were conducted over unfunctionalized SBA and also para-toluene sulfonic 
acid (PTSA). Without catalyst, the product yield was negligible while pristine SBA-
15 gave a yield of around 40%. The activity of SBA-15 could be assigned to the 
silanol groups contributing towards acidity. For PTSA and SBA-15-SO3H, the yields 
obtained were 78% and 85%. The higher activity of SBA-SO3H relative to the PTSA 
may be attributed to the enhanced surface area and exposed active sites provided 
by the SBA-15 support. Such an enhancement in activity upon heterogenization is 
reported in the literature [85–87]. To have a more quantitative perspective of the 
enhancement in activity in terms of the sulfonic acid functionalities, an estimation 
of sulfonic acid groups was carried out (Table S1). Higher activity of SBA-15-SO3H 
despite its lesser amount of sulfonic acid moieties may be a consequence of easy 
access of the reactants to the active sites as compared to PTSA.

The scope and efficiency of the protocol were tested using substituted aldehydes 
containing both electron releasing and withdrawing groups and a series of 2-aryl 
benzimidazole derivatives were synthesized. The product formation was confirmed 
by GCMS analysis (representative chromatograms are provided in Fig. S7) and the 
isolated product yields are reported in Table  2. In all cases, corresponding 2-aryl 
benzimidazoles were obtained in 70 to 80% yield indicating that substituent func-
tionality did not have a pronounced impact. The recyclability of the catalyst was also 
tested and reuse up to five successive runs was observed without significant loss in 
activity (Fig. 4).

Synthesis of 2‑aryl benzothiazole

As in the previous case, the reaction between 2-aminothiophenol and benzaldehyde 
was carried out with 1:1 molar ratio over 0.05 g catalyst using a series of solvents 
for a duration of 3 h (Fig. S8). As in the case of benzimidazoles, nonpolar solvents 
gave poor yields. Acetonitrile was found to be the best solvent giving a yield of 90% 
while ethanol gave a yield of around 84%. So further reactions were carried out in 
acetonitrile. The progress of the reaction with time was monitored using acetonitrile 
as solvent. The product yield increased with time up to 3 h and thereafter no signifi-
cant change could be observed (Fig. S9).

The scope of the methodology was screened by using a series of substituted alde-
hydes and the result is tabulated (Table 3). The product formation was confirmed by 
GCMS analysis and representative chromatograms are included in (Fig. S7). Irre-
spective of the nature of the substituent a yield in the range 78 to 85% was obtained 
indicating the generality of the synthetic route. The catalyst could be reused without 
a significant loss in activity up to five successive runs (Fig. 5).

Before probing into the mechanistic aspects driving the reaction, the acidity 
of the neat and functionalized catalysts was evaluated temperature programmed 
desorption of ammonia. The samples were saturated with ammonia gas at room 
temperature and then subjected to a progressive temperature rise. The catego-
rization of acid sites into weak, moderate and strong depends on the tempera-
ture range at which ammonia is desorbed [88, 89]. Weakly adsorbed ammonia 
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Table 2   Synthesis of 2-aryl benzimidazoles

Entry Aldehyde Benzimidazole Yield (%)
(isolated)

1 OHC
NH

N

85

2 OHC CH3

NH

N
CH3

80

3 OHC OCH3

NH

N
OCH3 79

4 OHC OH
NH

N
OH 77

5 OHC F

NH

N
F

82

6
OHC Cl

NH

N
Cl 81

7 OHC Br
NH

N
Br 78

8 OHC I
NH

N
I

74

9 OHC COOCH3

NH

N
COOCH3

82

10
OHC

NH

N

HO HO

70
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is easily desorbed at relatively low temperatures (below 150 °C). Desorption in 
the interval 150–300 °C may be assigned to moderate acid sites while high tem-
perature desorption indicates strong acidity. The signal obtained in the present 
case (Fig. 6) reveals the presence of weak acid sites in SBA-15 which contributes 
towards its mild activity. Incorporation of sulfonic acid groups imparts strong 
acidic character boosting its activity.

Based on the literature reports [90], a plausible mechanism for SBA-15-SO3H 
catalyzed formation of 2-aryl benzimidazole or benzothiazole may be sketched 
(Scheme  2). Sulfonic acid group can facilitate the protonation of the carbonyl 
oxygen of the aromatic aldehyde. The consequent enhancement in the electrophi-
licity of the carbonyl carbon improves the ability of aromatic aldehyde to form 
a Schiff base intermediate by reacting with amino group of o-phenylenediamine 
or 2-aminothiophenol. The second NH2 group of o-phenylenediamine or the SH 
group of 2-amino thiophenol then donates a lone pair of electron to the interme-
diate resulting in the formation of a five-membered ring via intramolecular ring 
closing. The deprotonation of positively charged N or S by the negatively charged 
catalyst species regenerates the catalyst. On air oxidation, the intermediate thus 
formed yields the corresponding 2-aryl benzimidazole or benzothiazole. A com-
parative evaluation of the activity of our catalytic system with available litera-
ture reports for the synthesis of 2-aryl benzimidazoles and thiazoles is provided 
(Table S2).

Time: 24  h, room temperature, o-phenylene diamine and aldehyde -1  mmol, catalyst: 0.05  g, solvent: 
ethanol

Table 2   (continued)

Fig. 4   Recyclability study of the catalysts for the synthesis of 2-aryl benzimidazole. Time: 24 h, room 
temperature, benzaldehyde and o-phenylene diamine:1 mmol, catalyst: 0.05 g, solvent: ethanol
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Table 3   Synthesis of 2-aryl benzothiazoles using substituted aldehydes

Entry Aldehyde Benzothiazole Yield (%)

1
OHC

N

S

89

2 OHC Br

S

N
Br 80

3
OHC Cl

S

N
Cl 86

4
OHC F

S

N
F

84

5
OHC I

S

N
I 79

6 OHC OH

S

N
OH 86

7 OHC OCH3 S

N
OCH3 87

8 OHC NO2

S

N
NO2 83

9
OHC CN

S

N
CN 82

10

OHC COOCH3

S

N
COOCH3 79

11
OHC

S

N

HO HO

84
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Table 3   (continued)
Time: 3 h, room temperature, 2-aminothiophenol and aldehyde: 1 mmol, catalyst: 0.05 g solvent: acetoni-
trile

Fig. 5   Reusability study of the catalysts for the synthesis of 2-Aryl benzothiazole. Time: 3 h, Room tem-
perature, 2-aminothiophenol and benzaldehyde: 1 mmol, catalyst: 0.05, g solvent: acetonitrile

Fig. 6   Temperature Programmed Desorption of ammonia profiles for SBA-15 and SBA-15-SO3H
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Conclusion

To summarize, we present here a simple synthetic route for the 2-aryl benzimidazoles 
and benzothiazoles catalyzed by sulfonic acid functionalized SBA-15 under ambient 
conditions. The catalyst was found to be highly stable and could be reused up to five 
successive runs without a significant loss in activity. The product isolation was quite 
simple avoiding any tedious work up strategy.
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