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Abstract
This study investigated the fabrication of nickel phosphide immobilized on natu-
ral bentonite (NiP/bentonite) as a low-cost catalyst with different metal loadings 
(mEq/g) to produce diisopropyl ether (DIPE) as a potential gasoline additive. The 
catalysts were prepared using a simple wet-impregnation method. The physico-
chemical features of the parent natural bentonite and NiP/bentonite were analyzed 
using FTIR, SEM–EDX, XRD, N2 physisorption, and catalyst acidity using the NH3 
gravimetric method. The dehydration reaction was conducted under mild conditions 
(150 °C for 3 h) using a reflux system. The results suggested that the NiP species did 
not alter the bentonite structure while increasing its acidity and surface area prop-
erties. Using the 8  mEq/g NiP/bentonite catalyst, a DIPE product of 68.52% was 
achieved owing to the highly acidic sites of the catalyst and high stability over three 
cycles. This study highlights the potential of nickel-phosphide-supported natural 
bentonite in the dehydration reaction for DIPE production.
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Introduction

Natural bentonite is the most frequently discovered mineral in Asia, particularly 
in Indonesia. This mineral is a silicate crystal with a layered structure [1]. Nat-
ural bentonite can expand and has a high ion exchange capacity, allowing it to 
absorb large amounts of interlayer cations [2]. This material has been extensively 
employed in many applications such as biolubricants [3], dye removal [4], hydro-
cracking catalysts [5, 6], phosphate removal [7], and Cr removal [8]. Under these 
conditions, the workability of bentonite is insufficient [9]. Because the proper-
ties of natural bentonite can be tuned, it is imperative to make modifications to 
enhance its performance and thus obtain a better product that inherently pro-
motes its utilization for many potential applications [10]. The bentonite modifica-
tion technique aims to improve the physicochemical features. The development 
of bentonite-based materials as catalysts and supported catalysts has proliferated 
because they are inexpensive and readily abundant [11]. In the context of the 
catalyst, textural and acidity features crucially affect the catalytic activity. One 
fabrication approach can be established by dispersing or incorporating the active 
species into the pore and/or the surface bentonite [12].

Presently, various species such as Fe, Ti, Zr, Al [12], Sn, Cr, LDH-based on 
polyoxo-vanadate and molybdate [13], Al/Fe [14], Zr [15], Co [16], Zr–Al [11], 
and Fe–Cr [17], have been explored and combined with bentonite. Recently, 
transition metal phosphide-based catalysts have been explored because of their 
high catalytic activity and selectivity for hydrogen and oxygen evolution reac-
tions [18]. These materials are phosphorus transition metal compounds that com-
bine the physical features of ceramics, including hardness and strength, with the 
electrical properties of metals, such as conductivity. Transition metal phosphides 
have been proposed as favorable catalysts owing to their low cost, abundance, 
and high efficiency [19]. The metal and P sites on the catalyst surface behave 
as proton acceptors and hydride receptor centers and are capable of replacing 
noble metal catalysts such as Pt [20]. The presence of phosphorus, which exerts 
a “ligand” (or electronic) effect and is geometrically situated at the location of 
the metal, has been attributed to the outstanding performance of transition metal 
phosphides [21]. A series of Ni2P, WP, Fe2P, CoP, and MoP have been fabricated 
and employed for the hydrodesulfurization of fuel [22]. Metal phosphide-based 
catalysts have also been utilized in hydrodeoxygenation reactions [19–21, 23–26].

Among the transition metal phosphide catalysts, nickel phosphide catalysts 
have been extensively reported to have high surface areas and high catalytic activ-
ities for many applications, such as HDS, dehydrogenation, hydrodeoxygenation, 
electrocatalytic water splitting, and methane dry reforming [27–29]. de Souza 
et al. [20] have developed the NiP species supported on SiO2, Al2O3, CeO2, TiO2, 
and CeZrO2. Ruangudomsakul et al. [26] reported that the NixPy catalyst provided 
a high green diesel yield in the dehydrogenation of palm oil compared with CoP 
and CuP. Gonçalves et al. [21] revealed that the Ni2P-supported ZrO2 has higher 
HDO activity than Ni2P/SiO2. Wagner et al. [30] developed NiP-supported zeolite 
Y for quinoline hydrodenitrogenation.
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To the best of our knowledge, no research has been done on the preparation of 
nickel phosphide-supported natural bentonite. The combination of these species pro-
vides a positive effect with a highly acidic active site and surface area, as well as 
a low-cost catalyst. Therefore, in the present study, a nickel phosphide-supported 
catalyst was used as a model for the dehydration of 2-propanol to diisopropyl ether. 
Diisopropyl ether (DIPE), as reported in the literature, has the potential to be used 
as a gasoline additive with the potential to reduce GHG emissions and other GHG 
emissions [31]. DIPE has good features that can increase the octane number of gaso-
line fuel and is environmentally friendly [32], compared with other chemicals such 
as MTBE, ETBE, and TAME [33]. In this regard, various catalysts have been uti-
lized for 2-propanol dehydration [34–39], but nickel phosphide-supported natural 
bentonite has not been comprehensively discussed. The DIPE product was evalu-
ated using nickel phosphide-supported bentonite and parent natural bentonite. The 
physicochemical features of the catalyst will be assessed using a series of analyses, 
such as XRD, FTIR, SEM–EDS, N2 adsorption–desorption, and total acidity by the 
gravimetric method. The dehydration product will be investigated using GC–MS.

Experimental

Preparation of nickel phosphide immobilized on bentonite catalysts

In a typical preparation, natural bentonite (200-mesh) from Bayan was first satu-
rated with NaCl solution (≥ 99.5% purity, Merck), as reported in a previous study 
[9]. The as-prepared Na-bentonite (5  g) was subsequently dispersed in a 0.1  M 
NiCl2·6H2O solution (≥ 98.0% purity, Merck) with various volumes and stirred for 
1 h at room temperature. Afterward, 0.5 M (NH4)2HPO4 solution (≥ 99.0% purity, 
Merck) was gradually dripped onto the solution until it reached a predetermined vol-
ume corresponding to nickel phosphate loadings of 2, 4, 6, and 8 mEq/g of catalyst. 
The solution was stirred at room temperature, and the temperature was gradually 
increased until a paste was formed. The paste was dried at 80 °C for 1 day and cal-
cined at 350 °C for 30 min. The as-synthesized nickel phosphate-bentonite (~ 5 g) 
was dissolved in 50 mL of DW and reduced using a certain amount of NaBH4 pow-
der (≥ 96.0%, Merck) under a sonicator for 30 min. The powder was separated and 
dried at 80 °C for 1 day. The 200-mesh dried nickel phosphide-supported bentonite 
is denoted as NiP/bentonite.

Characterization of catalyst

The phases and crystal structures of Na-bentonite and NiP/bentonite were char-
acterized using a Rigaku Mini Flex 600 Powder Diffractometer. The 2θ range 
of measurements from 5° to 80° with a step size of 0.0200° and a count time of 
0.24  s. Shimadzu FTIR 8201 (KBr pellet method) was used to analyze the func-
tional groups of both catalysts, with range of measurements from 4000 to 450 cm−1. 
SEM micrographs of the catalysts were obtained using an SEM JSM 650, and the 
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elemental composition was determined using EDS. The textural properties of the 
catalysts were evaluated using Quantachrome NOVA. Prior to analysis, the catalyst 
was vacuum degassed up to 300 °C for 1 h with a heating rate of 10 °C/min. The 
surface areas of the catalysts were calculated using a multipoint BET procedure. The 
total acidity of the catalysts was determined gravimetrically using NH3 as the probe. 
Before adsorption, the desiccator was vacuumed, saturated, and flowed with NH3 
vapor from the NH4OH solution for 1 day (≥ 25.0% purity, Merck). The as-adsorbed 
NH3 catalyst samples were quantitatively weighed, and the NH3 absorbed catalyst 
(mmol NH3/g catalyst) was calculated according to a previous study [9].

Catalytic activity test

In the catalytic activity test, 50 mL of 2-propanol (≥ 99.8% purity, Merck) was intro-
duced into the boiling flask, followed by 0.5 g catalysts under the batch reactor. The 
dehydration was conducted at 150 °C for 210 min. The catalyst was then separated, 
and the product was analyzed using a Thermo Scientific GC–MS instrument. To 
investigate the reusability of the catalyst, the spent catalyst in the first cycle was 
washed several times with acetone, dried overnight at 120 °C, and used for the next 
cycle.

Results and discussion

Physicochemical characterization

The crystal structure and phases of the as-synthesized Na-bentonite and NiP/
bentonite were assessed using XRD, as shown in Fig.  1. As shown in Fig.  1a, a 

Fig. 1   XRD pattern (a) Na-bentonite and (b) NiP/bentonite
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characteristic of the montmorillonite phase was observed at 2θ = 6.78°, 21.21°, 
35.23°, and 62° [40]. Quartz phase impurities were also observed at 2θ = 26.43° and 
29.23° [41]. These typical bentonite peaks have been consistently reported in other 
studies [42–44]. A typical nickel phosphide phase, as in other reports [22, 26, 45], is 
likely unobserved in the NiP/bentonite diffractogram (Fig. 1b), which suggests that 
this phase is amorphous [20]. This condition was also reported by González‐castaño 
et al. [27], who reported that a highly crystalline phase of nickel phosphide could be 
achieved during high-temperature calcination. No appreciable change in the diffrac-
togram of Na-bentonite after loading with nickel phosphide indicated that the main 
structure of bentonite was favorably maintained [21].

The IR bands characteristic of functional groups of parent Na-bentonite and 
NiP/bentonite are shown in Fig. 2. The absorption band at 3582 cm−1 (Fig. 2a) was 
related to the stretching vibration of the metal-OH in the octahedral layer of ben-
tonite [46], whereas the adsorbed OH groups or water molecules can be found at 
1625 cm−1 [4, 47]. The absorption band at 1035 cm−1 was assigned to the stretching 
vibration of the Si–O–Si bonds, and the absorption band at 922 cm−1 was attributed 
to the Al–OH vibration [48]. Al–O, Si–O, and Al–O–Si coexisted vibrations were 
observed at ca. 692  cm−1, 432  cm−1, and 761  cm−1, respectively [49]. The FTIR 
spectrum of NiP/bentonite exhibited a distinct absorption band at 1350 cm−1, which 
was attributed to the vibration of phosphate groups from NiP species [50–53]. NiP/
bentonite displayed absorption bands similar to those of the parent bentonite, which 
is consistent with the XRD results.

SEM micrographs of both catalysts are presented in Fig. 3. Na-bentonite has 
sizeable aggregations of irregularly distributed platelets [54]. These platelets have 
a lamellar structure with sharp edges [55, 56] No appreciable surface morpho-
logical changes were observed in the SEM micrograph of NiP/bentonite (Fig. 3b). 

Fig. 2   FTIR spectra (a) Na-bentonite and (b) NiP/bentonite
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A similar finding was reported by Pajarito et al. [48], who revealed no significant 
change in the surface morphology of Zn-bentonite compared with that of the par-
ent bentonite.

EDS analysis (Table 1) showed that the Si/Al ratio was relatively unchanged, 
which suggested that the NiP species loaded towards the bentonite surface did 
not alter the main frameworks of bentonite [5], which is consistent with the XRD 
and FTIR results. Furthermore, P (1.66 wt.%) and Ni (3.23 wt.%) elements co-
existed in the NiP/bentonite, which suggested that the NiP/bentonite catalyst was 
successfully prepared. Table  1 shows that Na-bentonite consists of various ele-
ments, as has been consistently reported in other studies [54]. The pre-existing P 
elements before Na-bentonite modification were possible because they originated 
from nature, although the content of the P element increased after modification. 
Abdou et  al. [57] reported a similar finding when preparing Egyptian bentonite 

Fig. 3   SEM micrographs a Na-bentonite and b NiP/bentonite

Table 1   Elemental analysis of 
catalysts using EDS

Element Atomic (wt.%)

Na-bentonite NiP/bentonite

C 14.42 24.25
O 47.25 42.82
Na 2.02 2.25
Mg 2.42 2.08
Al 8.4 5.62
Si 20.8 13.92
Ca 0.45 0.37
Fe 3.51 2.78
Cl 0.61 0.73
P 0.12 1.66
Ni 0 3.23
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(P2O5 = 0.16%). The EDS results suggest that the NiP species were capable of 
supporting bentonite without changing its main framework.

The N2 adsorption–desorption curves of all catalysts are shown in Fig. 4. It can be 
seen that all catalysts had a type IV isotherm based on IUPAC categorization, which 
mainly indicated that the catalysts were mesoporous [58, 59]. de Oliveira et al. [55] 
stated that the disjunction of the adsorption–desorption curve at a relative pressure 
(ca. 0.4) is attributed to the appearance of small mesopores on the adsorbate. Mon-
olayer nitrogen adsorption on the mesoporous wall occurred when P/Po was below 
0.4, and capillary condensation occurred in mesopores with P/Po in the range of 
0.4–0.8, which was revealed by a sharp increase and hysteresis in the adsorption iso-
therm. Multilayer adsorption can be observed on the outer surface of the particles at 
higher P/Po [58]. The hysteresis in Fig. 4 is recognized as type H4, which suggests 
a slit-shaped porous solid [14]. A previous study reported similar observations for 
other clay-based materials [3].

The textural features of the catalysts are presented in Table 2. It can be seen 
that the as-prepared NiP/bentonite surface area, diameter, and volume of pores 
were much higher than those of Na-bentonite. The surface area of catalysts 
increased as the metal loading increased. The increase in the corresponding tex-
tural features suggests that impregnation with NiP species promoted an increase 
in porosity and surface area. The increase in the BET surface areas of pillared 
natural bentonite samples may be attributed to the increase in pore volume and 
enlarged total pore volume owing to the presence of NiP species [60]. Another 
study also reported the same trend [61, 62]. Compared with a previous study [9], 
NiP/bentonite had a higher surface area than MoP-bentonite (63.69 m2/g), which 
promoted more reactant to be adsorbed on the surface and affected the dehydra-
tion process over the catalyst’s active site. However, prolonged metal loading 
(10 mEq/g) decreased the surface area of the catalyst as well as the pore diameter, 

Fig. 4   N2 adsorption–desorption isotherms of (a) Na-bentonite and (b) NiP/bentonite
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suggesting the pore blockage by the NiP species. According to Table 4, catalyst 
with NiP metal loading of 8  mEq/g exhibited the most optimum textural fea-
tures that provided the catalytic reaction of 2-propanol conversion towards DIPE 
product.

Table  3 presents the total acidity of Na-bentonite and NiP/bentonite with 
varying NiP loadings. This approach measures the weight of the catalyst before 
adsorption and post-adsorption of NH3 vapor, where the amount of NH3 gas 
absorbed by the catalyst is proportional to the number of acid sites on the catalyst 
[63]. As shown in Table 3, Na-bentonite has a total acidity of 1.45 mmol NH3/g, 
which is lower than that of the corresponding NiP/bentonite catalyst. The alu-
minosilicate structure of the parent bentonite is primarily responsible for its low 
overall acidity [6]. The total acidity of Na-bentonite gradually increased as the 
NiP loading increased, presumably due to the availability of Lewis acid sites from 
Ni and Brønsted acid sites from the phosphor species. The higher the Lewis and 
Brønsted sites, the higher the total acidity of the catalyst [64, 65]. The highest 
total acidity (4.63 mmol NH3/g) was attained by NiP loading of 8 mEq/g. Further 
NiP loading (10 mEq/g) decreased the total acidity, presumably due to agglomer-
ation, which reduced the active sites of the catalyst [66]. Wijaya et al. [67] stated 
that the number and distribution of active site groups on the surface that reached 
the maximum value caused the adsorbed base probe molecule to decrease.

Table 2   Textural features of Na-bentonite and NiP/bentonite

Catalyst Surface area (m2/g) Pore diameter (Å) Pore 
volume 
(cm3/g)

Na-bentonite 51 52.31 0.063
NiP/bentonite 2 mEq/g 55 54.12 0.075
NiP/bentonite 4 mEq/g 56 54.64 0.094
NiP/bentonite 6 mEq/g 61 60.24 0.079
NiP/bentonite 8 mEq/g 67 66.68 0.113
NiP/bentonite 10 mEq/g 65 64.21 0.102

Table 3   Acidity features of 
Na-bentonite and NiP/bentonite

Catalyst Total acidity 
(mmol/g)

Na-bentonite 1.45
NiP-bentonite 2 mEq/g 2.78
NiP-bentonite 4 mEq/g 3.15
NiP-bentonite 6 mEq/g 3.57
NiP-bentonite 8 mEq/g 4.63
NiP-bentonite 10 mEq/g 3.63
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Catalytic activity test

Na-bentonite and NiP/bentonite were tested for their catalytic activity in the dehy-
dration of 2-propanol to DIPE using a fixed-bed reactor. The dehydration reaction is 
appreciably contingent on metal properties and metal loading [68]. Fig. 5 shows the 
effect of Na-bentonite and NiP/bentonite with various loadings on the DIPE product. 
The low acidic sites of Na-bentonite could not provide sufficient catalytic activity 
for DIPE production. In comparison, when the NiP species were loaded into ben-
tonite, the DIPE product reached 64.43% at 2 mEq/g NiP loading. Prolonged NiP 
loading directly increased the DIPE product to 68.52%, achieved by 8 mEq/g NiP 
loading, presumably due to the presence of a highly acidic active site of the catalyst 
[36]. Meanwhile, a high NiP loading (10  mEq/g) decreased the DIPE product to 
65.22%. These results were consistent with the total acidity feature acidity, which 
suggests that the DIPE product was mainly accelerated by the acidity of the catalyst 
[69]. The NiP/bentonite catalyst showed a higher DIPE product than MoP-bentonite 
(64.5%) [9].

The stability performance of NiP-bentonite (8 mEq/g) on the DIPE product was 
evaluated after three reaction cycles (Table 4). The spent catalyst was regenerated 
by washing and drying. The DIPE product was relatively stable within three cycles, 
presumably due to the strong interaction between the NiP active sites on the ben-
tonite. However, prolonged regeneration of the catalyst probably causes the loss of 
active sites because of the washing process, thereby decreasing the performance of 
the catalyst [70].

The acidity value of the reused catalyst was further evaluated to confirm the 
relation between the acidity value of the catalyst with the decreased catalytic activ-
ity after three consecutive runs. The first reused catalyst decreased catalyst acidity 

Fig. 5   DIPE production using Na-bentonite and NiP/bentonite with various NiP loading
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from 4.63  mmol/g (fresh catalyst) to 4.59  mmol/g and tended to decrease up to 
4.56 mmol/g after two consecutive runs. Moreover, the catalyst at three times reused 
showed a decrease in the acidity value to 4.49  mmol/g. The regeneration process 
could decrease catalyst acidity, implying less catalyst active site. Consequently, the 
catalyst performance also decreased.

Conclusion

In summary, this study evaluated the potential of nickel-phosphide-supported ben-
tonite prepared using the wet impregnation method as an acidic catalyst for DIPE 
production through 2-propanol dehydration. The NiP species significantly increased 
the total acidity and surface area of Na-bentonite, which promoted the dehydra-
tion of 2-propanol to DIPE. XRD, FTIR, and SEM–EDX analyses revealed that the 
loading of NiP onto bentonite did not alter the main framework of the bentonite. A 
2-propanol dehydration study showed that the NiP loading on bentonite affected the 
DIPE yield. The highest DIPE product, up to 68.52%, was achieved with NiP-ben-
tonite at 8 mEq/g. This study provided a potential application of metal phosphide-
supported natural bentonite for the dehydration reaction.
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