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Abstract
Oxidation of glucose was investigated over bimetallic oxide catalysts with  H2O2 
at 70–90  °C in ethanol and water under atmospheric pressure. Bimetallic oxides, 
contain Zn, Ce, Al, Mg, Sr and Fe were synthesized with co-precipitation methods. 
Screening of these oxides were proceeded in ethanol and the most effective one was 
tested in a more natural solvent water for 6 h. Effects of crystal structure, calcination, 
metal loading, reaction time and temperature on catalytic activity and product 
selectivities were investigated. Glucose conversion reactions were also performed 
with and without  O2 source as comparison. The most active and selective catalyst 
in ethanol at 70 °C was found as Mg–Al–cal (62% glucose conversion and 10.2% 
formic acid selectivity). Metal loadings (Cu/V) to Mg–Al–cal lowered the catalytic 
activity significantly. Mg–Al–cal, tested in water at 90 °C, provided almost 95% of 
organic acid (formic and acetic acid) selectivity with 38% conversion. Deactivation 
of Mg–Al–cal by product adsorption was also investigated by the addition of formic 
acid in ethanol at 70 °C. In the presence of formic acid, the catalyst exhibited 50% of 
glucose conversion and 78% of total organic acid selectivity (levulinic acid + lactic 
acid + formic acid) without using  O2 source.
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Introduction

Low carbon emission technologies have been attracted much interests at the 
beginning of the 21th century due to the rising carbon footprint by fossil fuel 
reserves [1]. That is why production of key chemicals from bio-derived sources 
is currently challenging [2–7]. Monosaccharides, such as glucose, are promising 
candidates for the production of many valuable chemicals instead of the fossil 
resources. Glucose can be evaluated in hydrogenation for sugar alcohols [8–10], 
in dehydration for furans [11, 12], in retro-aldol condensation for lactic acid and 
aldehydes [13] and in oxidation for organic acids [14, 15]. Among these processes, 
oxidation of glucose is of great interest since organic acids are widely used platform 
chemicals in many industries [16–19].

As an organic acid, formic acid is the main chemical for leather, textile, 
pharmaceutical and agricultural industries [20]. Formic acid is also a promising 
hydrogen source since it can be easily decomposed into  CO2 and  H2 [20–22]. The 
conventional production of formic acid is currently carried out under extreme 
conditions [20]. In addition, acetic acid is also crucial building-block as a monomer 
of vinyl acetate with the annual production of 15 million tons [23]. Unfortunately, 
current production processes for both acids have been emerging high amounts of 
carbon dioxide emissions [24].

Great efforts have been made in the last decades for the synthesis of acetic and 
formic acids via oxidation of sugars [25–28]. Few studies provided high selectivities 
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for the production of these acids [16, 29]. However, they were not achieved via cost 
effective or environmentally friendly ways. Some functional groups in glucose such 
as –OH, facilitates its oxidation to these acids. A selective catalyst should possess 
both base and oxidative sites for oxygen transfer [30, 31]. Many different types 
of catalysts, including homogeneous bases, were tested in glucose oxidation [26]. 
Wang and coworkers [29] carried out glucose oxidation with homogeneous bases 
(LiOH, NaOH, KOH etc.) and  H2O2 under mild conditions (Room temperature 
and atmospheric conditions). Almost complete glucose conversion to formic 
acid was achieved with NaOH. Low temperature and pressure also prevented the 
decomposition of formic acid. Nevertheless, this method requires significant 
amounts of homogeneous base. Gromov et al. [6] investigated direct conversion of 
cellulose to formic acid over Mo and V containing heteropolyacids in a novel study. 
High yields of formic acid (66%) were achieved at 160 °C and 20 bar. In this study, 
yield of the formic acid was related to the  O2 pressure. This high pressure was also 
reported to have positive effects on catalyst activation. On the other hand, economic 
potential of this method limits its industrial application. Au containing catalysts 
have been extensively used in oxidation of cellulose derived substrates to gluconic 
acid [32, 33]. Perfect selectivities (80–100%) were obtained in many detailed studies 
with molecular  O2 as oxidant regardless of the type of the support. Nevertheless, the 
future of such catalysts looks doubtful due to the scarcity of gold.

Bimetallic oxides, in spinel and layered double hydroxides (LDH) form, exhibited 
promising performances on oxidation in earlier researches [16, 34–36]. Choundary 
et  al. [37] synthesized different metal containing LDHs (Co–Al, Co–Cr, Ni–Al, 
Zn–Al, Mg–Fe, Mn–Fe etc.) to be tested in benzyl alcohol oxidation. Oxidation 
over Co–Cr–LDH provided ~ 90% selectivity to target product benzaldehyde at 
60% conversion at 70 °C using  H2O2 as an oxidant. Findings were associated with 
the bifunctional property of the Co-Cr-LDH: base sites activated the reactant and 
oxidant where transition sites were responsible for redox/oxidation mechanism. Zou 
et  al. [38] tested Zn–Co LDH catalyst in benzyl alcohol oxidation at 65  °C using 
TBHP (tert-butyl hydroperoxide) and reported 72% conversion providing 90% of 
benzaldehyde selectivity. They also achieved the highest catalytic activity value with 
this catalyst (14.5 mmol/gcat.h) in benzyl alcohol oxidation.

The present research focused on screening of the different synthesized bimetallic 
catalysts (Sr–Fe, Mg–Al, Zn–Ce etc.) in glucose oxidation to organic acids. It was 
aimed to find an active catalyst providing organic acids in a high selectivity in a 
green and natural solvent. Screening of the catalysts were carried out at 70 °C with 
 H2O2 under atmospheric conditions in ethanol. The most active catalyst was tested 
in water (more environmentally friendly solvent) at 70–90 °C.

Experimental section

Materials

Glucose, magnesium nitrate hexahydrate (≥ 99%), aluminum nitrate nanohydrate 
(≥ 99%), strontium nitrate (≥ 99%), copper(II) chloride dehydrate, zinc(II) chloride 
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dehydrate, sodium orthovanadate and sodium hydroxide (97%) were purchased from 
Merck KGaA (Darmstadt, Germany). Cerium(III) chloride heptahydrate (99.9%) 
was purchased from Sigma-Aldrich. Sodium carbonate anhydrous (99%) and 
hydrogen peroxide (35%) were supplied by Isolab Chemicals (Wertheim, Germany).

Catalyst preparation

Metal(I)–metal(II) hydrotalcites were prepared by a co-precipitation method. Briefly, 
solution A was prepared by dissolving the two different metal salts in water. Solution 
B was 1 M NaOH aqueous solution. These two solutions were simultaneously added 
into aqueous sodium carbonate  (Na2CO3) solution by dropwise at 58  °C and pH 
11–12. After consumption of the metal solutions, the mixture was stirred for 1  h 
and left to be matured for 18 h. The resulting precipitates were filtered, washed with 
diluted water and dried at 80 °C for 18 h under vacuum. Obtained powder was then 
kept at 200  °C for 12 h. Some bimetallic oxides were calcined at 450  °C for 5 h 
with a heating rate of 3 °C/min. Prepared bimetallic oxides were labeled as: A–B; A 
refers to + 2 oxidation stage metals where B refers to + 3 oxidation stage metals. The 
calcined ones were labeled as A–B–cal.

Copper impregnation (5%) onto Mg–Al–cal catalyst were also performed with 
wet impregnation. Briefly, Mg–Al–cal was dispersed in water for 30  min under 
ultrasonication. The determined amount of  CuCl2.2H2O was dissolved in water. The 
resulting solution was added to the previous Mg–Al–cal suspension by dropwise at 
room temperature. The mixture was stirred for 1 h. This Cu loaded material were 
reduced by the addition of  NaBH4 in an iced bath. This mixture was then stirred for 
1 h and left for aging. Obtained precipitate was filtered and dried at 150 °C for 10 h. 
The obtained catalyst was labeled as Cu/Mg–Al–cal–R.

Vanadium loading (5 wt%) to Mg–Al–cal was achieved by incipient wetness 
impregnation. The powder was directly calcined at 450 °C for 5 h. It was labeled as 
V/Mg–Al–cal.

Characterization of catalysts

The crystal phases and X-ray diffraction (XRD) patterns of the catalysts were 
analyzed with the Rigaku Smartlab instrument. The patterns were scanned 
between 2θ = 5–90° angles where the scanning speed was 3°/s. A wavelength of 
λ = 0.15418 nm and a power of 45 kV/40 mA of Cu  Kα beam source was used. FT-IR 
measurements of the catalysts were performed with Perkin-Elmer Paragon 1000 
model Fourier Transform Infrared Spectroscopy (FT-IR/ATR). Measurements were 
taken with a powder sample between 400 and 4000   cm−1. Nitrogen physisorption 
analyzes were performed with the Quantachrome Autosorb IQ2 model instrument. 
All samples were degassed at 120  °C for 8  h prior to adsorption. The multipoint 
adsorption data were obtained at 77  K and relative pressure of 760  mmHg. The 
surface area, pore structures, and pore volumes of the catalysts were determined by 
the BET method.
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Catalyst screening tests

Glucose oxidation tests were performed in glass reactor equipped with condenser at 
70 °C for 6 h in ethanol and water. Hydrogen peroxide solution (35%) was used as an 
oxidant in the catalyst system. Briefly, 1.6 wt % of glucose was loaded into the reactor 
where catalyst/glucose ratio was 1/2. The mixture was stirred at 750 rpm in an oil bath 
with a magnetic stirrer. Excess  O2 gas was allowed to be left from the reactor during 
the reaction. Following the completion of reaction, reactor was cooled immediately 
in an ice bath and each sample was filtered with a 0.45 µm PVDF syringe filter and 
diluted for HPLC analysis.

Parametric studies

The effects of calcination (450 °C) were investigated with the most active catalysts. The 
reaction temperature (60, 70, 80 and 90 °C) was also studied with the most efficient 
catalyst in water medium.

Product analysis

The diluted samples were analyzed by Thermo Ultimate 3000 model high pressure 
liquid chromatography (HPLC) equipped with ICSep Coregel 87H3 (300 × 7.8  mm) 
organic acid column, UV–Visible (UV–Vis) and refractive index (RI) detectors. The 
injection volume was 20 µl. Dilute sulfuric acid (8 mM) was used as the mobile phase. 
The flow rate was 0.6 ml/min, where the column temperature was 60 °C and the RID 
temperature was 45  °C. Organic acids (gluconic acid, oxalic acid and levulinic acid 
etc.), aldehydes and furans were determined by UV–Vis detector while sugar (glucose 
and fructose) concentrations by RID detector.

Glucose conversion (X), product carbon-yield (Y) and carbon-selectivity (S) were 
calculated using the following equations.

X (% ) =
Moles of Glucosein − Moles of Glucoseout

Moles ofGlucosein

× 100

Y (% ) =
Moles of the Product × Number of Carbon in the Product

Moles ofGlucosein × 6
× 100

S (% ) =
Moles of the Product × Number of Carbon in the Product

Moles ofGlucose Reacted × 6
× 100
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Results and discussion

Characterization of the synthesized catalysts

XRD patterns of the synthesized and dried metal oxides are given in Fig. 1. Sr–Fe 
exhibited almost pure  SrCO3 crystals without trivalent metals [39, 40]. This may 
be attributed to well dispersion of Fe ions in the structure or presence of very small 
 Fe3O4 crystals (< 5 nm) which XRD could not detected. Mg–Al pattern indicated 
magnesium–aluminum layered double hydroxide (LDH) structure with just little 
 MgAl2O4 crystals (spinel form). Higher extent of ZnO and lower extent of  CeO2 
crystals were observed in Zn–Ce. Probably, larger ionic radius of Ce atom prevented 
the formation of bimetallic crystals. XRD patterns of the synthesized and calcined 
bimetallic oxides are given in Fig.  2. Calcination of Mg–Al converted its crystal 
structure from LDH to spinel form. Less amount of MgO crystals were observed 
in this catalyst. Crystallinity of Zn–Ce was improved by calcination and new CeO 
crystals were formed. The calcined Sr–Fe preserved its structure, at the meantime 
the crystallinity was increased significantly.

FT-IR spectrums of dried Mg–Al, calcined Mg–Al, calcined and reacted 
Mg–Al catalysts are given in Fig. 3. Absorption bands at 3400–3500   cm−1 was 
due to the physisorption between located interphase and metal–O–H. The sharp 
absorption bands at 2980   cm−1 were attributed to the  CO3

−2–H2O stretching 
vibrations [41] by the hydrogen bonding of carbonate ions in Mg–Al structure 
[42]. The band between 1350 and 1380   cm−1 was also attributed to the  CO3

−2 

Mg/Al-NO3-LDH
MgAl2O4 (spinel)
SrCO3

ZnO

CeO2

Fe3O4

(003)

(012)
(009)

(006)

(113)(110)
(015)

(111)

(220)
(112)

(121)
(002) (221)

(132)
(113)

(242) (400)

Fig. 1  XRD patterns of synthesized dried bimetallic oxides
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ions which was reduced slightly after calcination. However, there were still effec-
tive  CO3

−2 groups in the structure even calcination process. Spinel structure pre-
vented the leaving of  CO3

−2 groups at high temperatures up to 500 °C. The used 
Mg–Al–450 catalyst indicated extra bands at 1621 and 1317  cm–1 which referred 

CeO2

ZnO
MgO (periclase)
MgAl2O4 (spinel) 
SrCO3

Fig. 2  XRD patterns of synthesized calcined bimetallic oxides

Fig. 3  FT-IR spectrums of synthesized bimetallic oxides
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to as carbonyl groups, emerged via the adsorption of products during reaction 
[43].

Textural properties of the synthesized catalysts are given in Table 1. The highest 
surface area was obtained with Mg-Ce, which was followed, by Mg–Al and Sr–Fe. 
Zn–Ce having very low surface area exhibited macroporous structure. None of the 
catalysts showed micropore area. The highest pore volume and large mesopores 
were obtained over Mg–Al catalyst that could provide the molecules to be easily 
adsorbed to the active centers.

Catalyst testing

The time dependent glucose conversions of the synthesized dried metal oxides are 
given in Fig. 4. Glucose conversion increased with the reaction time over all of the 
catalysts up to 4  h. Among the bimetallic oxides, the highest glucose conversion 
was achieved with Sr–Fe catalyst (approx. 30%). Sr–Fe provided high activity pos-
sibly depending on the presence of  SrCO3 crystals and its mesoporous structure. The 
alkali  SrCO3 crystal may have promoted the oxidation of glucose with Fe atoms; 
since the monometallic SrO without Fe, (prepared and tested in glucose oxidation 
-not given-) did not provide remarkable activity. The second highest conversion 
value was obtained with Zn–Ce. However, the conversion on this catalyst indicated 
a logarithmic trend up to 4 h then approached almost a constant value. The same 
trend was obtained over Mg–Al. At the end of the fourth hour, glucose conversion 
was obtained as 22.6% (approximately) and slightly dropped up to 6  h. This was 
due to the completion of  H2O2 in 4–5 h over these catalysts. Afterwards, the cata-
lyst took an action in reversible isomerization between glucose and fructose, fruc-
tose converted back to glucose. Some catalytic sites also may have been passivated 
by product adsorption in ethanol medium. IR results (Fig.  3) proved this product 
adsorption on to the catalyst surface. An increase in the conversion was observed 
very slow over Mg–Ce. Presumably, the peroxide decomposed as  O2, oxidizing the 
catalyst before it could oxidize the reactant, or quickly left without being able to 
oxidize it. CaO as a base catalyst was reported many times in literature promoting 
carbohydrate oxidation [26, 44, 45]. Accordingly, to examine the effect of base sites 
on glucose conversion, glucose oxidation reaction was also performed with CaO as 
comparison and 38% glucose conversion was provided.

Formic acid yields of the synthesized metal oxides are given in Fig. 5. The high-
est formic acid yield was obtained with Sr–Fe as ~ 5%. The yield of formic acid over 

Table 1  Textural properties 
of the synthesized bimetallic 
oxides

Catalysts BET surface 
area  (m2/g)

B.J.H. pore 
diameter 
(nm)

Pore 
volume 
 (cm3/g)

External 
surface area 
 (m2/g)

Sr–Fe 44.6 10.9 0.12 44.6
Mg–Al 56.9 45.1 0.64 56.9
Mg–Ce 78.1 20.6 0.41 78.1
Zn–Ce 12.0 59.2 0.18 12.0
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Fig. 4  Time dependent glucose conversions over metal oxides (Solvent: ethanol, Temperature: 70  °C, 
Time: 6 h, Catalyst/Glucose: 1/2, 1.6% Glucose, 250%  H2O2 Solution)

Fig. 5  Time dependent formic acid yield over metal oxides (Solvent: ethanol, Temperature: 70 °C, Time: 
6 h, Catalyst/Glucose: 1/2, 1.6% Glucose, 250%  H2O2 Solution)
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CaO, which provided the highest activity, remained just around 2%. Mg–Al also did 
not form formic acid in the current form.

The detailed product distributions over all of the catalysts are given in Table 2. 
CaO was very active for the glucose conversion (38%) but it provided the only 3.7% 
lactic acid and 2.1% formic acid yields. Mg–Al was not effective for the production 
of formic acid; also, lactic acid yield was only around 2.7%. Considering the product 
distributions and low product yields of catalysts, it is revealed that neither catalyst 
exhibited high selectivity to any product. Probably, most of the glucose converted 
to  CO2 [46]. Therefore, some selected catalysts Mg–Al, Sr–Fe and Zn–Ce were 
calcined in order to improve their catalytic activities and product selectivities.

Glucose conversions of the calcined catalysts are given in Fig. 6. The results sug-
gest that calcination significantly improved the catalytic activity of Mg–Al catalyst 
from 18.8 to 62.0%. Sr–Fe and Zn–Ce catalyst showed similar activities and tended 
to remain stable at around 20% levels. Probably,  CO3 groups in the structure of these 
catalysts were removed during calcination and activity dropped. However,  CO3 
groups in Mg–Al were protected by the spinel structure, which was mentioned in 
characterization (FT-IR) part. Although the calcination recreates new reactive cent-
ers and enables them to show higher activity, in some conditions, it causes the active 
centers to be trapped inside the pores. This obstructs the accessibility of these cent-
ers for reactants. Also, the crystal size of the calcined catalysts may increase due to 
sintering, which eliminates the possibility of good contact between the reactant and 
the active surfaces [47].

The formic acid yields over the calcined catalysts are given in Fig. S1. The 
highest formic acid yield was obtained with Mg–Al–cal as 10.2%. Formic acid 
yield obtained with Sr–Fe–cal, and Zn–Ce–cal catalysts remained below 5%. 
According to the results, the most effective catalyst, in terms of the formic acid 
yields, was determined as calcined Mg–Al. Mg and Al, among synthesized 10 
different bimetallic oxides, formed a synergistic combination in the spinel structure 
and became effective after calcination for the production of formic acid. In order 
to check the oxidation possibility of ethanol during reaction, an ethanol oxidation 
test was carried out with Mg–Al–cal at the same conditions in the absence of the 
glucose. Formation of any aldehydes or oxidation products were not detected in 
HPLC–UV analysis. This check was proved that Mg–Al–cal catalyzes the glucose 
only.

The product distributions of the calcined catalysts are given in Table  3. 
Mg–Al–cal also favored the retro–aldol condensation pathway as well as formic acid 
formation in alcohol medium and 6.8% of lactic acid was formed as a by-product 
[48]. Zn–Ce–cal and Sr–Fe–cal catalysts showed similar activities. On these 
catalysts, the glucose was converted to formic (3%) and acetic acids (2.8%).

Effects of Cu and V loading to Mg–Al–cal on glucose conversion and product 
selectivities were also investigated. The time dependent glucose conversions are 
given in Fig. 7. Metal loadings reduced the catalytic activity significantly. Interest-
ingly, the Cu loaded-reduced catalyst did not provide remarkable activity up to 4 h, 
then increased rapidly to 45% in 2 h. CuO, having effective oxidative potential, was 
reported to have promoted the oxidation of carbohydrates previously [49–51].
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Effects of metal loading on formic acid yields are given in Fig. S2. Mg–Al–cal 
and Cu/Mg–Al–cal–R exhibited similar formic acid yields at 6 h. The formic acid 
yield on Cu/Mg–Al–cal–R was very low at 4 h; however, it exhibited a signifi-
cant jump at 6 h. Only 3.9% of formic acid could be obtained with V/Mg–Al–cal 
catalyst. Since Mg–Al–cal does not have a very high surface area, the loaded 
vanadium may have narrowed the active centers or may have not been distributed 
homogenously.

The product distributions of Cu and V loaded Mg–Al–cal catalysts are given 
in Table  4. When the glucose conversion on Cu/Mg–Al–cal–R was 45%, acetic 
and formic acid yields were 25.5% and 10.4%, respectively. This means that Cu/
Mg–Al–cal–R catalyst provided a high selectivity (~ 57%) to acetic acid and also 
very high selectivity (~ 85%) to total organic acids. On the other hand, the formic 
and lactic acid yields over V/Mg–Al–cal were just obtained as 3.9 and 2.5%, 
respectively.

Through these results, the highest glucose conversion and formic acid selectivity 
were obtained with Mg–Al–cal. Therefore, Mg–Al–cal catalyst was tested in glu-
cose oxidation in water environment at different temperatures (60, 70, 80 and 90 °C) 
for 6 h. Obtained results are given in Fig. 8. Glucose conversion increased with the 
increase in temperature and the highest glucose conversion was found as ~ 40% at 
90  °C. The lowest glucose conversion at 6 h was obtained as 22.5% at 60  °C. At 
90 °C, drop in conversion was observed after 4 h which was due to the reversible 
isomerization between glucose and fructose as mentioned before.

Fig. 6  Glucose conversions over calcined bimetallic oxides (Solvent: ethanol, Temperature: 70 °C, Time: 
6 h, Catalyst/Glucose: 1/2, 1.6% Glucose, 250%  H2O2 Solution)
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The product selectivities of the Mg–Al–cal at different temperatures are also 
given in Fig. 8. As the temperature increased, the total organic acid selectivity 
increased. At 90 °C, about 98% organic acid selectivity was obtained in water. 
This proved that the catalyst also showed higher selectivities to organic acids in 
an aqueous environment. It is also revealed that acetic acid was formed at higher 
temperatures, but at low temperature (60 °C) lactic acid was formed via conden-
sation route.

Mg–Al–cal catalyst was also tested in the presence of formic acid in ethanol 
medium to investigate catalyst deactivation by product adsorption. The time-
dependent glucose conversions and product yields are given in Fig. 9. Without 
formic acid addition, glucose conversion was obtained as 62%, while in the pres-
ence of formic acid, it was reduced to 51%. This was due to the passivation of 
some active sites by product adsorption as previously indicated in Fig.  3. On 
the other hand, formic acid and ethanol medium caused a change in the reaction 
pathway. Interestingly, high amount of levulinic acid produced through glucose 
dehydration. In the literature, glucose is isomerized to fructose on the base cent-
ers, which is followed by the dehydration of fructose to levulinic acid over acid 
sites. Herein, formic acid acted as homogeneous acid catalyst and formed lev-
ulinic acid with Mg–Al–cal. This shows that Mg–Al-cal catalyst can be a good 
alternative for different reaction pathways in different mediums.

Fig. 7  Glucose conversions over functionalized Mg–Al–cal (Solvent: ethanol, Temperature: 70 °C, Time: 
6 h, Catalyst/Glucose: 1/2, 1.6% glucose loading, 250%  H2O2 solution)
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Fig. 8  Glucose conversion and product selectivities over Mg–Al–cal at different reaction temperatures 
in water (Solvent: water. Time: 6 h, Catalyst/Glucose: 1/2, 1.6% glucose, 250%  H2O2 solution). (Color 
figure online)

Fig. 9  Glucose conversion and product yields of the experiment performed by adding formic acid to Mg–
Al–cal (Solvent: ethanol, Time: 6 h, Catalyst/Glucose: 1/2, 1.6% glucose). (Color figure online)
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Conclusions

Glucose oxidation to formic and acetic acids was successfully achieved over spinel 
and LDH form bimetallic oxides. Mg–Al was found completely in LDH and spinel 
structure. The Mg–Al–cal, the most effective catalyst in EtOH, exhibited 60% of 
glucose conversion where the formic acid selectivity was 10.2%. Bi-functional 
properties (base sites and redox sites) of this catalyst facilitated the  H2O2 
decomposition and oxidation of glucose. Promising performances as well as high 
formic and acetic acid selectivities via oxidation (95% total organic acid selectivity 
at 38% glucose conversion) were obtained with Mg–Al–cal in water at 90 °C. This 
catalyst also exhibited impressive total organic acid (TOA) selectivity in dehydration 
route at 4 h. Deactivation studies (by product adsorption) were investigated with the 
addition of formic acid to the reaction medium in ethanol and deactivation  was not 
observed in 6  h. In this medium, Mg–Al–cal provided 78% total TOA selectivity 
(levulinic acid + lactic acid + formic acid) in ethanol at very low  temperature 
(70 °C) under atmospheric pressure.
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