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Abstract
Kinetic resolution of 1-(4-(trifluoromethyl)phenyl)ethanol (TFMP) enantiomers was 
achieved through lipase-catalyzed transesterification in organic solvents. Lipase PS 
from Pseudomonas cepacia was selected as the best biological catalyst, and vinyl 
acetate was used as the acyl donor for the transesterification in isooctane. The effects 
of temperature, enzyme dosage, substrate ratio and time on the reaction were investi-
gated. Response surface methodology was introduced as the tool for process optimi-
zation and the optimized conditions were obtained. The experimental results under 
the optimized conditions involving the temperature of 46 °C, substrate ratio of 1:12, 
enzyme dosage of 15 mg and time of 104 min, show that TFMP enantiomers were 
resolved with the enantiomeric excess of the remaining substrate (ees) higher than 
99.0% and the conversion (c) of 50.3%, which indicates an efficient kinetic resolu-
tion process.

Keywords Kinetic resolution · Transesterification · Lipase PS · Response surface 
methodology · 1-(4-(Trifluoromethyl)phenyl)ethanol

Introduction

The preparation of homochiral secondary alcohols is of significant importance in 
chemical, pharmaceutical and related fields, because the homochiral secondary alco-
hols provide building blocks for a wide range of biologically active compounds [1]. 
Methods to access homochiral secondary alcohols can be divided into three catego-
ries, synthesis starting from chiral pools, asymmetric synthesis and resolution of the 
racemate [2, 3]. Despite the remarkable progress in asymmetric synthesis, kinetic 
resolution of racemates is still the dominant method for production of homochiral 
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secondary alcohols in industry, where the two enantiomers are resolved based on 
their different reaction kinetics in chiral entity [4]. The chiral entity is the key factor 
in kinetic resolution, it can be provided by a biocatalyst like enzyme and microor-
ganism or a chemocatalyst like chiral acid, chiral base and chiral metal complex [5, 
6]. Much attention has been paid to the chiral synthesis by chemocatalyst, however, 
biocatalyst has already gathered significant interest in kinetic resolution [7–9].

Use of a biocatalyst allows the process to be operated under mild conditions, and 
the inherent high regio- and enantioselectivity improves the atomic economy [10, 
11]. Furthermore, the biocatalyst is biodegradable. Therefore, kinetic resolution 
with a biocatalyst, which better conforms to the concept of modern green chemical 
industry, is particularly advantageous [12, 13]. Among numerous biocatalysts, lipase 
has been found to be interesting in kinetic resolutions for production of optically 
pure compounds [14]. Lipases are hydrolases (E.C.3.1.1.3) and they can catalyze the 
hydrolysis of triglycerides into glycerol and fatty acids [15, 16]. Lipases with excel-
lent catalytic properties have been well studied as catalysts because of their unique 
physicochemical behavior [17–19]. Enzymes are remarkably effective in the versa-
tile reactions, such as hydrolysis [20–22], esterification [19, 23], transesterification 
[24], alcoholysis [25], and C–C bond formation [18]. Enzymes have been recently 
used as a potential biocatalyst in a large number of biotechnological sciences [26], 
more specifically, these include dairy products, detergents [18], pharmaceuticals 
[27, 28], chemicals [29, 30], agriculture products [18], and oil chemistry [30–33]. 
Enzymes act as a good catalyst, therefore, its production and utilization may be a 
better alternative of chemical catalysts.

The lipase-catalyzed kinetic resolutions are usually through a stereoselective 
reaction of nucleophiles with esters or their derivatives, such as a stereoselective 
transesterification reaction. Lipase has an active center of serine-histidine-aspartate 
catalytic triad [34], which is usually covered by a flexible region of the enzyme mol-
ecule, often called the lid. Interaction with a hydrophobic phase can cause open-
ing of the lid to make the active site accessible [35]. Therefore, a lipase expresses 
higher catalytic activity at an organic–aqueous interface than in aqueous solution 
and the phenomenon is called interfacial activation [36]. The use of a low boil-
ing point organic solvent in lipase-catalyzed transesterification can significantly 
increase the solubility of the substrates in reaction media and facilitate the recovery 
of the product with better overall yield [37, 38]. Furthermore, the use of lipase in 
an organic solvent offer several advantages, for example it minimizes the substrate 
or product inhibition, the possibility of denaturation and it also make the immobi-
lization of enzymes not always required [39]. To promote the equilibrium of the 
acylation reaction shifting to the desired direction and inhibit the reverse reaction, 
the selected acyl donor is required, such as enol esters, whose leaving group is an 
enol that immediately suffer from a tautomeric reaction thereby promoting the reac-
tion tends to be complete [40]. Thus, in the lipase-catalyzed kinetic resolution of 
racemic alcohols, the presence of a suitable lipase and acyl donor in an appropriate 
organic solvent, as well as the optimum temperature, enzyme dosage, substrate ratio 
and reaction time are all the important factors for biosynthesis of an optically pure 
alcohol product [41, 42]. The process optimization is therefore is very necessary in 
investigation of the above process. Response surface method (RSM) is a powerful 
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tool that has been used to evaluate the interactions between multiple process factors 
and simulate the quantitative relation between the response values and the factors, 
which can further be used for process optimization [43].

1-[4-(Trifluoromethyl)phenyl] ethanol (TFMP) is an important intermediate for 
the synthesis of AIDS (acquired immune deficiency syndrome) drugs, and (R)-
TFMP is an important intermediate for the synthesis of AD101 (SCH-350581), a 
chemokine CCR5 antagonist, that blocks the entry of HIV-1 into cells [44–46]. Chen 
et al. [44] achieved the chemical synthesis of (R)-TFMP by asymmetric reduction of 
4-(trifluoromethyl)acetophenone over a chiral chemical catalyst of oxazaborolidine, 
however the expensive chiral catalyst and the potential risk of environmental pol-
lution limit its application prospect. The method is improved through employing a 
recombinant whole cell to catalyze the asymmetric reduction, but the method is still 
restricted by the difficulty in process control [44]. Compared with the above, lipase-
catalyzed kinetic resolution is an attractive method to prepare (R)-TFMP. Lipase-
catalyzed kinetic resolution allows the resolution of TFMP enantiomers with high 
optical purity. The process can be operated under mild conditions and control of the 
process is much convenient.

Herein, we report the kinetic resolution of racemic TFMP through lipase-cata-
lyzed enantioselective transesterification in the organic media. Lipase used this work 
is selected from the commercially available lipases and the effects of important pro-
cess parameters such as temperature, substrate ratio, enzyme dosage and time on the 
resolution efficiency were investigated. RSM is further employed for process optimi-
zation to achieve a high efficiency of kinetic resolution.

Experimental section

Lipase and reagents

All lipases used in this work were commercially available and used in the experi-
ments without further treatment. The origin of the lipases and other related informa-
tion is shown in Table 1.

(R,S)-1-[4-(Trifluoromethyl)phenyl]ethanol (purity > 98% +) and vinyl ace-
tate (purity > 99% +) was purchased from Adamas reagent Co., Ltd. (Shanghai, 
China). The n-hexane and isopropanol used for HPLC detection were chromato-
graphic grade, while the other reagents were analytical grade and were purchased 
from different companies. All reagents were applied to the reaction without further 
treatment.

HPLC analysis

The quantification of TFMP enantiomers was performed by a Waters e2695 high 
performance liquid chromatography (HPLC) consisting of a Waters e2695 separation 
unit, a 2489 UV–visible detector. Daicel Chiralcel IG column (250 mm × 4.6 mm ID, 
Tokyo, Japan) was used. The mobile phase was composed of n-hexane/anhydrous 
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ethanol 99:1 (v/v). The flow rate was maintained at 1 mL  min−1. Injection volume of 
each sample was 10 μL; The column temperature was set at 25 °C. The wavelength 
is 210 nm. The enantiomer excess of the substrate (ees), the total conversion (c), the 
conversions of (R)-enantiomer (cR) and the conversions of (S)-enantiomer (cS) were 
calculated by Eqs. 1, 2, 3 and 4:

Here [R] and [S] are the concentrations of (S)-TFMP and (R)-TFMP in reaction 
mixture, respectively; [R]0, [S]0 is initial amount of (S)-TFMP and (R)-TFMP, 
respectively.

Lipase‑catalyzed transesterification of TFMP

The experiments were performed in a 25 mL glass tube with a spiral seal. A typi-
cal experimental procedure was as follows: the reactants of TFMP racemate 
(5 mmol  L−1) and vinyl acetate (30 mmol  L−1) were dissolved in 25 mL of isooc-
tane to form the raw material solution. Then, 2 mL of the raw material solution was 
added into the glass tube. The solution was stirred (500 rpm  min−1) and heated by 
a thermostatic stirrer (IKA RCT Basic, Germany). After reaching the temperature 
of 45 °C, 15 mg of lipase was added. After the reaction was completed, the reaction 
mixture was poured out and filtered to obtain the sample HPLC analysis. Lipases, 
acyl donors and organic solvents were selected through screening experiments. 
Effects of conditions including temperature (25–65 °C), enzyme dosage (5–30 mg), 
molar ratio of TFMP to vinyl acetate (1:1–1:48) and reaction time (20–170  min) 
were investigated and optimized. The reaction is illustrated in Fig. 1. In this work, 
the enzyme dosage refers to the mass of various lipases including the powder of lyo-
philized enzyme, the solution of enzyme and the immobilized lipase (including the 
support), all of which are weighed and added into the reaction medium.

Kinetic study

Experiments on lipase-catalyzed transesterification between racemic TFMP and vinyl 
acetate were carried out at different TFMP concentrations and a constant concentration 

(1)ees =
[R] − [S]

[R]o + [S]o
× 100%,

(2)c =

(

1 −
[R] + [S]

[R]0 + [S]0

)

× 100%,

(3)cR =
[R]0 − [R]

[R]0
× 100%,

(4)cS =
[S]0 − [S]

[S]0
× 100%,
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of vinyl acetate (90 mmol  L−1), using lipase PS as the catalyst. The sample was drawn 
at the certain stages of reaction for analysis of the concentration of (R)-TFMP. The 
TFMP concentration–time curves were recorded (control the conversion of (R)-TFMP 
less than 20%) and the initial reaction rate V0 was determined by making the slope of 
the concentration–time curves in the initial reaction stage.

Experimental design and data analysis

Generally, lipase-catalyzed transesterification of TFMP is influenced by a series of fac-
tors, such as lipase, organic solvent, acyl donor, enzyme dosage, substrate molar ratio, 
temperature, and reaction time. On the basis of single factor investigation, Response 
surface methodology (RSM) method and Box-Behnken design were used to optimize 
the process.

The key to response surface optimization is the selection of experimental points. 
Therefore, the reasonable value range of the main influencing factors has been deter-
mined through single factor experiment. Then response surface analysis was used to 
optimize the lipase-catalyzed resolution conditions. Show in Table  2, the four inde-
pendent variables in this work were temperature (A, 25–65  °C), substrate ratio (B, 
1–24), enzyme dosage (C, 5–25 mg) and time (D, 60–160 min).

(5)c = �0 +

k
∑

i=1

�ixi +
∑

i=1

k
∑

j=i+1

�ijxixj +

k
∑

i=1

�iix
2

i
,

(6)ees = b0 +

k
∑

i=1

bixi +
∑

i=1

k
∑

j=i+1

bijxixj +

k
∑

i=1

biix
2

i
,

Fig. 1  Lipase-catalyzed transesterification of TFMP in isooctane

Table 2  Independent variables 
and their ranges

Factors Level

 − 1 0 1

A-temperature (°C) 25 45 65
B-substrate molar ratio 1 12.5 24
C-dosage of enzyme (mg) 5 15 25
D-time (min) 60 110 160
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Here, c and ees represent conversion and enantiomeric excess of the remaining sub-
strate, respectively; α0 and b0 are the constant coefficient; αi and bi, αij and bij, αii 
and bii are the linear coefficient, squared coefficient, and cross-product coefficient, 
respectively; k is the number of factors; xi and xj are the independent variable. All 
the coefficients in Eqs. 5 and 6 were calculated by analysis of variance (ANOVA). 
Design Expert (version 10.0.1) was employed to acquire all coefficient of model and 
optimize the multiple responses.

Results and discussion

Screening of lipase

Selection of a suitable lipase is very important for the lipase-catalyzed kinetic reso-
lution. Nine commercially available lipases are tested and the results are shown in 
Table 3. It is found that different lipases exhibit large difference in catalytic activity 
(indicated by the substrate conversion, c) and selectivity (indicated by the enantio-
meric excess of the remaining substrate, ees). Several lipases including lipase AK, 
lipase PS and Novocor ADL have good catalytic activity towards the substrate, the 
high conversion of 42.6% and 43.8% are achieved with lipase AK and lipase PS, 
among which lipase PS shows the best enantioselectivity with ees of 74.8% and c of 
43.8%. Therefore, lipase PS was selected for the further investigation.

Screening of organic solvents

Lipase-catalysis in organic solvents broadens the use of biocatalyst, which is con-
ventionally used in the aqueous media. It is also founded that the catalytic efficiency 
of the lipase is largely influenced by the solvent [47]. In order to select the most suit-
able solvent, the effect of organic solvents was investigated and the results are shown 
in Table 4. It is observed that the activity (indicated by c) was largely influenced by 
organic solvent and the influence largely depended on the polarity organic solvent 
[48–51]. LogP is used to evaluate the solvent polarity in general, and it would be 
increased with increasing the hydrophobicity of the solvent [52]. Lipase PS showed 

Table 3  The resolution 
efficiency of different lipases

Conditions: 5  mmol  L−1 (R,S)-TFMP; 30  mmol  L−1 vinyl acetate; 
15 mg lipase; 2 mL isooctane; T = 45 °C; t = 720 min

Lipase ees (%) c (%)

Lipase AYS 1.3 3.5
Lipase AK 69.0 42.6
Lipase PS 74.8 43.8
Lipozyme CALB 55.8 37.3
Novocor ADL 59.9 42.3
Lipozyme RM IM 33.1 29.5
Lipozyme TL IM 24.2 20.0
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the highest activity and enantioselectivity when n-hexane and isooctane were used 
as solvents. The catalytic activity of lipase PS is reduced with the increase of the 
polarity of the solvent. The possible reason is that the hydration layer on the surface 
of the lipase molecules is necessary for the lipase to maintain its activated confor-
mation [53]. Low polarity of the solvent well protects the hydration layer, but a polar 
solvent will enter and damage the hydration layer [54]. The highest c of 46.6% and 
ees of 81.8% was achieved with isooctane. Therefore, isooctane with logP of 4.3 was 
selected as organic solvent in this work.

Screening of acyl donors

In the lipase-catalyzed transesterification of TFMP racemate, the (R)-TFMP selec-
tively reacts with the acyl donor to form the (R)-TFMP ester with high ee value and 
leaving (S)-TFMP as the enantiomerically pure unreacted enantiomer. The selec-
tion of acyl donor is therefore important. As is shown in Table 5, some acyl donors 
are tested. With the enol esters (vinyl acetate, vinyl propionate, isopropenyl acetate 
and vinyl butyrate), the resolution efficiency is significantly enhanced than that 
with other donors. This is because the leaving group of these donors undergoes a 
keto–enol tautomerization to yield the corresponding carbonyl compound (such as 
acetaldehyde), thereby preventing the reverse reaction and driving the reaction to 
completion. Based on the results in Table 5, vinyl acetate was selected.

Table 4  Effects of organic 
solvents

Conditions: 5  mmol  L−1 (R,S)-TFMP; 30  mmol  L−1 vinyl acetate; 
15 mg lipase PS; 2 mL organic solvent; T = 45 °C; t = 720 min

Organic solvent logP ees (%) c (%)

Isooctane 4.37 81.8 46.6
n-hexane 3.76 74.4 47.6
Toluene 2.5 8.04 24.94
Iso-propyl ether 1.90 10.55 11.37
1,2-Dichlororthane 1.46 3.47 4.94
MTBE 1.40 2.11 5.84
Dichloromethane 0.60 14.92 13.93

Table 5  Effects of acyl donors

Conditions: 5  mmol  L−1 (R,S)-TFMP; 30  mmol  L−1 acyl donor; 
15 mg lipase PS; 2 mL isooctane; T = 45 °C; t = 720 min

Organic solvent cR (%) cs (%) ees (%) c (%)

Vinyl acetate 90.20 0.22 82.04 45.19
Ethyl acetate 48.81 1.00 31.84 24.90
Vinyl propionate 86.08 1.18 75.31 43.63
Isopropenyl acetate 89.72 2.90 80.85 46.31
Vinyl butyrate 87.70 0.01 78.10 43.85
Isobutyl acetate 39.42 0.76 24.19 20.09
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Effect of temperature

Since enzyme is a protein in chemical nature, temperature has a significant influ-
ence on the catalytic activity of the lipase [55, 56]. The effects of temperature 
on catalytic activity and enantioselectivity of lipase PS in the present lipase-cat-
alyzed transesterification reaction system were studied in the range from 25 to 
65 °C. As can be seen from Fig. 2, with the increase of temperature, the c and ees 
increase steadily. The conversion reaches its maximum at 45 °C and can maintain 
the maximum in the range from 45 to 60 °C, indicating that lipase PS has good 
thermal stability.

Effect of enzyme dosage

The enzyme dosage is also an important factor affecting the lipase-catalyzed resolu-
tion efficiency. As shown in Fig. 3, when the amount of enzyme increases from 5 
to 15 mg, both c and ees gradually increase to the optimal value, where c of about 
50.0% and ees higher than 99.0% are achieved. The powder of lipase PS was well 
dispersed in the reaction system. Furthermore, the substrates are well dissolved in 
the organic solvent reaction system. Therefore, diffusion limitations for the reaction 
system in this work is minimized. However, with the further increase of enzyme 
dosage, it can be observed that c and ees have been stable near the optimal value 
without change. This phenomenon can be explained by the fact that the dispersion 
of the powder of lipase PS becomes difficult and the contact between the enzyme 
and the substrate is not significantly increased when the enzyme dosage is high than 
15  mg, thus the further increase in enzyme dosage don’t improve the conversion. 
The other possible reason is that the enzyme may experience protein aggregation 
and it made the catalytic center less accessible [57]

Fig. 2  Effect of temperature on the resolution of TFMP enantiomers. Conditions: 5  mmol  L−1 (R,S)-
TFMP; 60 mmol  L−1 vinyl acetate; 15 mg lipase PS; 2 mL isooctane; t = 720 min
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Effect of substrate ratio

Substrate ratio (molar ratio of vinyl acetate to TFMP) is also an important factor 
affecting the resolution efficiency. As is shown in Fig. 4, when the substrate ratio 
increased from 1:1 to 1:12, the c and ees increase rapidly to a high value. When 
the substrate ratio is further increase from 1:12, both c and ees reach a platform 
and remain basically unchanged. The possible reason is that when the addition of 
vinyl acetate is small, a large amount of catalytic active sites is not occupied and 
the increasing in addition of vinyl acetate can accelerate the reaction rate and pro-
mote a forward shift of the reaction equilibrium [58, 59]. Therefore, the c and ees are 

Fig. 3  Effect of enzyme dosage on the resolution of TFMP enantiomers. Conditions: 5 mmol  L−1 (R,S)-
TFMP; 60 mmol  L−1 vinyl acetate; 2 mL isooctane; T = 45 °C; t = 720 min

Fig. 4  Effect of substrate ratio on the resolution of TFMP enantiomers. Conditions: 5 mmol  L−1 (R,S)-
TFMP; 15 mg lipase PS; 2 mL isooctane; T = 45 °C; t = 720 min
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rapidly increased. When a large amount of vinyl acetate is added, the available cata-
lytic active sites are saturated and the further increase in the addition of vinyl can’t 
improve the conversion.

Effect of time

Time is also an important factor for the lipase-catalyzed kinetic resolution. It is 
proposed to terminate the reaction at an appropriate time, where the fast-reaction 
enantiomer is just completely transformed, while the slow-reaction enantiomer has 
only the minimum amount of transformation. As can be seen from Fig. 5, ees and c 
increase gradually with the time first and then the growth becomes very slow after 
80 min of reaction. When the reaction time was 110 min, ees and c reached the max-
imum and keep nearly unchanged with the further increase of time.

Kinetic study

Kinetic study was carried out through the method mentioned above. A constant 
concentration of vinyl acetate was set (much higher than TFMP) and the reaction 
was terminated at the initial stage of the reaction to evaluate the initial reaction rate, 
therefore, it can be approximately considered that the concentration of vinyl acetate 
remained constant during the reaction and the reaction was a single-substrate reac-
tion. Fig.  6 shows the plots of V0 versus [(R)-TFMP]0, in which the experimental 
results (presented as scattered symbols) are compared graphically with the calcu-
lated values (presented as solid line). The experimental data was fitted to Michae-
lis–Menten equation through the non-linear least squares fitting method [60]. It is 
found that the calculated values agree well with the experimental results. The kinetic 
parameters Km and Vmax were estimated (Table 6) through the non-linear regression 

Fig. 5  Effect of time on the resolution of TFMP enantiomers. Conditions: 5  mmol  L−1 (R,S)-TFMP; 
60 mmol  L−1 vinyl acetate; 15 mg lipase PS; 2 mL isooctane; T = 45 °C
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analysis with a R2 value of 0.98. The parameters Km and Vmax are comparable with 
the results in the literature [61, 62].

Regression model and statistical analysis

The single-factor experiments show that four factors, namely temperature, substrate 
ratio, enzyme dosage and time, largely influence the resolution efficiency. However, 
it is hard to obtain the optimized conditions on the basis of the single-factor experi-
ments. To further optimized the conditions, Box–Behnken experiment was designed 
with enantiomer excess and conversion as response values. Design-Expert software 
was used to conduct response surface regression analysis on the experimental data 
(Table 7), and the quadratic multinomial regression model of enantiomer excess and 
conversion and all investigated variables was obtained as follows:

The ANOVA for the model is shown in Tables 8. It is found that F of ees regres-
sion model is 81.1 with P < 0.0001, F of c regression model is 46.74 with P < 0.0001, 

(7)

ees (%) = 100 + 13.06A + 28.85B + 13.7C + 8.31D − 0.35AB − 13.35AC − 9.87AD

+12.1BC − 0.15BD − 5.7CD − 4.49A
2 − 38.03B

2 − 12.55C
2 − 3.07D

2

(8)

c(%) =50 + 2.75A + 7.28B + 1.94C + 1.66D − 2.85AB − 3.52AC − 2.97AD

+ 0.45BC − 0.5BD − 1.5CD + 0.95A
2 − 8.32B

2 − 1.51C
2 + 0.19D

2

Fig. 6  The plot of V0 versus [(R)-TFMP]0. Solid line: calculated V0; symbols: experimental data of V0

Table 6  Apparent kinetic 
parameters

Lipases Km (mol  L−1) Vmax (mol  L−1  s−1)

Free lipase PS 0.11 6.41 ×  10–5
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indicating that the significance of the two models is very high. At the same time, 
correlation coefficient  R2 of ees equation is evaluated as 0.9878, indicating that this 
model can be used to explain 98.78% of the change in response values, and correla-
tion coefficient  R2 of c equation is evaluated as 0.9791, indicating that this model 
can be used to explain 97.91% of the change in response values, indicating that the 
two test models are in good fit and the model has high reliability.

In addition, the P-value can be used to check the significance of each coefficient. 
By comparing the P values of each factor. In this case, A, B, C, D, AC, AD, BC, 
CD,  A2,  B2,  C2 were significance for model ees. A, B, C, D, AC, AD, BC,  B2,  C2 
were significant for model c, and the order of significance was B > A = C > D. The 

Table 7  Box–Behnken Design Matrix of the independent variables with their corresponding response

Run Temperature 
(°C)

Substrate 
(×  10–3 mmol)

Enzyme dosage 
(mg)

Reaction time 
(h)

c (%) ees (%)

1 25 1 15 110 12.4 28.5
2 65 1 15 110 44.1 41.2
3 25 24 15 110 69.7 50.6
4 65 24 15 110 100.0 51.9
5 45 12.55 5 60 55.5 45.2
6 45 12.5 25 60 93.0 50.5
7 45 12.5 5 160 85.3 50.7
8 45 12.5 25 160 100.0 50.0
9 45 12.5 15 60 59.6 45.1
10 65 12.5 15 60 100.0 54.4
11 25 12.5 15 160 99.1 54.6
12 65 12.5 15 160 100.0 52.0
13 45 1 5 110 17.5 32.0
14 45 24 5 110 46.4 43.4
15 45 1 25 110 22.7 36.8
16 45 24 25 110 100.0 50.0
17 25 12.5 5 110 46.6 40.2
18 65 12.5 5 110 100.0 53.4
19 25 12.5 25 110 100.0 50.0
20 65 12.5 25 110 100.0 50.0
21 45 1 15 60 24.9 31.1
22 45 24 15 60 88.6 47.1
23 45 1 15 160 36.9 36.0
24 45 24 15 160 100.0 50.0
25 45 12.5 15 110 100.0 50.0
26 45 12.5 15 110 100.0 50.0
27 45 12.5 15 110 100.0 50.0
28 45 12.5 15 110 100.0 50.0
29 45 12.5 15 110 100.0 50.0
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following discusses the multi-factors interactions of the important factors based on 
the regression model.

Influence of substrate ratio and temperature

Fig. 7 shows the cross-impact of substrate ratio and temperature. From Fig. 7a, at a 
fixed substrate ratio, ees gradually increases with increasing temperature, however 
the increasing is not very significant. At lower substrate ratios (< 1:12), the effect of 
temperature on ees is smaller, e.g., when the substrate ratio is 1:1, ees changes from 
12.4% to about 40% with increasing temperature. However, with the substrate ratio 
increases, the ees increases significantly and then decreases slowly. From Fig. 7b, 
the adjustment of substrate ratio can lead to an obvious change in c. It is observed 
that the enhanced ees and c can be achieved when the temperature is about 45 °C 
and substrate ratio is about 1:12.5.

Influence of time and substrate ratio

Fig. 8 shows the interaction of time and substrate ratio on the performance of lipase-
catalyzed resolution at a fixed temperature of 45 °C. When the time increases from 

Fig. 7  Influence of substrate ratio and temperature on ees (a) and c (b). Conditions: (R,S)-TFMP, 5 mmol 
 L−1; lipase PS, 15 mg; t = 110 min; isooctane, 2 mL

Table 9  Predicted and observed 
values for the response variables 
based on optimal conditions

Conditions: 5  mmol   L−1 (R,S)-TFMP; 60  mmol   L−1 vinyl acetate; 
15 mg lipase PS; 2 mL isooctane; T = 46 °C; t = 104 min

Response vari-
able

Predicted 
value (%)

Experimental 
value (%)

Relative aver-
age deviation 
(%)

ees 100 99.6 0.2
c 50 49.5 1.1
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60 to 160 min, c and ees show a slight increase, showing an upward trend, while 
when the substrate ratio is increase from 1:1 to 1:24, c and ees increase significantly 
at first and then decrease slightly, the maximum value is reached around the sub-
strate ratio of about 1:12.5. It shows that the increase of the substrate ratio has a 
strong effect on c and ees. The time of 110 min is proposed to achieve the optimized 
c and ees.

Influence of enzyme dosage and substrate ratio

As is shown in Fig. 9, with the increase of substrate ratio, ees and c show a trend of 
increase first and then decreases a little. The results are consistent with that observed 
in Fig.  9. On the other hand, ees and c are slightly enhanced by the increase of 
enzyme dosage. When the enzyme dosage is higher than 15 mg, the increase of c 
and ees with the enzyme dosage is slight. This indicates that continuing to increase 
the enzyme dosage has less effect on increasing c and ees values, so the amount of 
enzyme is kept at about 15 mg.

Influence of time and enzyme dosage

Fig. 10 shows the interaction of enzyme dosage and time on the resolution efficiency 
at a fixed temperature of 45 °C and substrate ratio of 12.5:1. It is observed that when 
the time is between 60 and 160 min and the enzyme dosage is between 5 and 25 mg, 
c and ees showed a trend of gradual increase with the increase of time and enzyme 
dosage. The optimal c and ees can be achieved in region where time is higher than 
110 min and the enzyme dosage is higher than 15 mg.

Fig. 8  Influence of time and substrate ratio on ees (a) and c (b). Conditions: (R,S)-TFMP, 5 mmol  L−1; 
lipase PS, 15 mg; T = 45 °C; isooctane, 2 mL
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Application and validation of the model

Based on the regression model, the optimal conditions for kinetic resolution of 
TFMP enantiomers by lipase-catalyzed transesterification are obtained as follows: 
temperature of 46 °C, substrate ratio of 1:12, enzyme dosage of 15 mg, time of 
104 min. Under these conditions, the ees higher than 99.0% and c of about 50.0% 
are expected to be obtained. The chromatograms of TFMP are shown in Fig. 11a, 
b respectively. As shown in Table 9, three parallel verification experiments were 
carried out under the optimal conditions, and the measured ees higher than 99.5% 
and c of 50.3% are achieved (reported with the average value), which proves the 
validity of the model.

Fig. 9  Influence of enzyme dosage and substrate ratio on ees (a) and c (b). Conditions: (R,S)-TFMP, 
5 mmol  L−1; T = 45 °C; t = 110 min; isooctane, 2 mL

Fig. 10  Influence of time and enzyme dosage on ees (a) and c (b). Conditions: (R,S)-TFMP, 5 mmol  L−1; 
vinyl acetate, 62.5 mmol  L−1; T = 45 °C; isooctane, 2 mL
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Although good results for the kinetic resolution of TFMP enantiomers with 
lipase PS are achieved, the powder of lipase PS is hardly able to be reused, 
because the powder is only partially recovered from the reaction system and the 
expressed activity of the recycled powder is considerably reduced. In order to fur-
ther improve the industrial application ability of lipase PS, more attention should 
be paid to the research of enzyme immobilization.

Conclusion

Kinetic resolution of TFMP enantiomers through lipase-catalyzed transesterifica-
tion in an organic solvent was performed. Lipase PS was selected as the biocata-
lyst and isooctane was selected as the organic solvent. Single-factor experiments 
were performed to identify the important factors that influence the resolution 
efficiency. The results showed that ees and c mainly depended on substrate ratio, 
temperature, enzyme dosage and time. the RSM with Box-Behnken experimen-
tal designation was employed for further investigation and optimization of the 
reaction conditions. Results showed that the regression models for ees and c are 
significant and the optimized conditions were obtained. Under the optimized con-
ditions including temperature of 46  °C, substrate ratio of 1:12, enzyme dosage 
of 15 mg and time of 104 min, TFMP enantiomers were efficiently resolved with 
ees higher than 99.0% and c of 50.3%. The resolution system has good industrial 
application potential.

Acknowledgements This work was supported by the National Natural Science Foundation of China 
(Grant No. 21978077), Postgraduate Scientific Research Innovation Project of Hunan Province 
(CX20211194).

Fig. 11  Chromatograms of (R, S)-TFMP and remaining substrate by HPLC. a Sample of TFMP race-
mate, b Sample of the remaining substrate
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