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Abstract
In this work, the activity of Keggin heteropolyacids (i.e., H3PW12O40, H3PMo12O40 
and H4SiW12O40) and their Cesium partially exchanged salts (i.e., Cs2.5H0.5PW12O40, 
Cs2.5H0.5PMo12O40 and Cs3.5H0.5SiW12O40) was assessed in esterification reac-
tions of the levulinic acid with alkyl alcohols. Among the solid catalysts investi-
gated, Cs2.5H0.5PW12O40 was the most active and selective toward alkyl levulinates, 
which are efficient fuel bioadditives. The effects of main reaction variables, such as 
temperature, time, alcohol, and catalyst load were evaluated. The reusability of the 
Cs2.5H0.5PW12O40 catalyst was also evaluated.
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Introduction

Nowadays, the use of biomass-derived resources as renewable raw materials to pro-
duce chemicals and fuels has exponentially grown due to their potential ability to grad-
ually diminish the dependence on fossil products [1, 2]. Platform molecules such as 
5-hydroxymethylfurfural, furfural, and levulinic acid are examples of biorefinery com-
pounds classified by the US Energy Department as “top 10” [3]. They are present in 
carbohydrates or lignocellulosic biomass and can be converted into a series of renew-
able fuels or chemicals [4–6].

Alkyl levulinates have physicochemical properties that allow their use as bioaddi-
tives of diesel fuel and gasoline or being added to the liquid fuel in the range of 0.5 to 
20 vol% [7, 8]. These esters become even more attractive when the precursor alcohol 
has a renewable origin likewise ethyl alcohol [9].

In the conventional esterification routes, alkyl alcohol reacts with a carboxylic acid 
in the presence of a Lewis or Brønsted acid in a homogeneous phase [10–14]. How-
ever, liquid catalysts are hard to be separated from the products, are corrosive, and 
generally are not easily recyclable [15]. To avoid this drawback, acid catalysts can be 
supported on solid matrixes such as zeolites, anchored on ionic liquids, or as sulfonic 
resins [16–20].

Keggin heteropolyacids (HPAs) have been extensively used as catalysts for esterifi-
cation reactions due to their advantages such as water tolerance, high acidity, and the 
possibility to be used as soluble or solid-supported catalysts [21–28]. Keggin heter-
opolyanions are clusters of metal–oxygen, where one XO4 central tetrahedral unit (i.e., 
X = P5+ or Si4+) is surrounded by W6+ or Mo6+ cations in an octahedral environment 
[29, 30].

The protons of Keggin HPAs are mobile and easily ionized in a polar medium, 
allowing a facile replacement by metal cations, generating active catalysts in different 
reactions in the homogenous phase [31–34]. However, Keggin HPAs can be also con-
verted into heterogeneous catalysts, when the cations that replaced their protons have 
large ionic radium [35–39]. This partial replacement allows that the salts have still an 
acidity strength remaining, enough to catalyze esterification reactions under heteroge-
neous conditions, without compromising their catalytic activity. This approach has led 
the cesium HPAs to be used in different reactions such as oxidation, esterification, or 
etherification [40–46].

In this work, the focus was to assess the activity of cesium partially exchanged heter-
opolyacid salts in esterification reactions of levulinic acid, a biomass-derived platform 
molecule with alkyl alcohols. Effects of main reaction variables such as time, tempera-
ture, catalyst load, and type of alcohol were investigated. Among the Keggin HPAs 
evaluated, Cs2.5H0.5PW12O40 was the most active and selective toward alkyl levulinates. 
The reusability of the catalyst was successfully demonstrated.
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Experimental section

Chemicals

All the chemicals and solvents were acquired from commercial sources and used 
without previous treatment. Levulinic acid and all the alkyl alcohols (i.e., methyl, 
ethyl, propyl, butyl, isopropyl alcohols) were Sigma-Aldrich (> 99  wt%). Phos-
phomolybdic, phosphotungstic and silicotungstic acids, and cesium carbonate 
were also Sigma-Aldrich (99 wt%).

Synthesis and characterization of the cesium HPA salts catalysts

The cesium salt catalysts were synthesized in agreement with the literature [40, 
47]. Typically, an amount stoichiometric of Cs2CO3 aqueous solution was added 
dropwise to a solution of the Keggin HPA, aiming to achieve the molar ratio 
desired. The addition of Cs2CO3(aq) precipitated the Cs heteropoly salts as a white 
solid when phosphotungstic or silicotungstic acids were the precursors. When the 
phosphomolybdic acid was used, the cesium heteropoly salt was a green solid. 
HPA. After the water evaporation at 373 K, the Cs HPA salt was dried for 6 h in 
an oven. The characterization of the Cesium HPA salts used in this work was pre-
viously described in two previous works recently published [45, 48].

Identification of main reaction products

The reaction products were identified in a Shimadzu GC-2010 gas chromatog-
rapher coupled with an MS-QP 2010 mass spectrometer (i.e., electronic impact 
70  eV, scanning range of m/z 50–450). Additionally, the products were co-
injected with authentic samples synthesized as described in previous work [49, 
50].

Catalytic tests

Tests catalytic were carried out in a sealed glass tube (25 mL). Typically, levulinic 
acid (2.0  mmol) was dissolved in an alkyl alcohol solution (8  mL) under mag-
netic stirring, and heated to 393 K in an oil bath. The addition of the acid catalyst 
(1.2 mol%) started the reaction.

The reaction progress was followed for 6 h, analyzing aliquots in GC equipment 
(Shimadzu 2010, FID), fitted with a Rtx®-Wax, capillary column (30  m length, 
0.25 mm i.d., 0.25 mm film thickness) the aliquots periodically collected. The tem-
perature program of GC analyses was as follows: 80 °C (3 min), heating rate (10 °C/
min) until 240  °C. Injector and detector temperatures were 250  °C and 280  °C, 
respectively.
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Results and discussion

Catalytic tests

Initially, the effect of the Keggin anion on the activity of Cesium salt catalyst was 
evaluated using ethyl alcohol as model alcohol following conditions described in 
the literature [49, 50]. In according with the literature, Cesium salts containing 
0.5 mol of H+ ions/mol of catalyst have been the most efficient catalysts in differ-
ent reactions [45, 48]. Therefore, all the Cesium HPA salts evaluated were tested 
with this load of H+ ions. Runs in the presence of the pristine heteropolyacid 
catalyst were also performed aiming for a comparison (Fig. 1).

It is important to highlight that all the catalysts were used at the same load of 
H+ ions. Another important point is that all the Keggin heteropolyacids are soluble 
in the reaction, whereas the insoluble Cesium salts. The soluble HPAs-catalyzed 
reactions achieved a minimum conversion of 97%. Although the Cesium silico-or 
phosphotungstic salts have a little bite less efficient than their precursor acids, 
this is still a satisfactory result since they are insoluble. The Cs2.5H0.5PMo12O40 
salt achieved the lowest conversion (80%). Although the Cs3.5H0.5SiW12O40 salt 
has achieved a high conversion, it has a higher cesium content per mol of catalyst, 
therefore, the Cs2.5H0.5PW12O40 salt was selected to evaluate the other effects of 
reaction variables. The best performance of Cs2.5H0.5PW12O40 compared to their 
partner salts was assigned to the combination of its high surface area with strong 
strength of acidity, having been also observed in etherification reactions [45].

Fig. 1 shows that the selectivity of products formed in the esterification of lev-
ulinic acid with ethyl alcohol was less impacted by the nature of the catalyst. Ethyl 
levulinate (EL) was always the main product, while α-angelica lactone (αAL) and 
pseudo ethyl levulinate (PEL) were the secondary products (Scheme 1).
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Fig. 1   Effect of Keggin anion on conversion and selectivity of esterification reactions of levulinic acid 
with ethyl alcohol. Reaction conditions: levulinic acid (2 mmol), ethyl alcohol (8 mL), dodecane (inter-
nal standard), catalyst (0.6 mol% of H+ ions), temperature (393 K), time (6 h)
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Cesium phosphotungstate salts containing a variable load of H+ ions were evalu-
ated and the main results are shown in Table 1.

In the range of concentration evaluated, the catalytic behavior of cesium 
exchanged partially salts were very close either in terms of conversion or selectivity 
toward ethyl levulinate. Although completely substituted with cesium, Cs3PW12O40 
achieved still significant conversion and selectivity (Fig.  2). It suggests that this 
salt presents a strength of Bronsted acidity. Matachowski et al. assessed the acidity 
properties of a series of cesium phosphotungstate salts and assigned this remaining 

Scheme  1   Main products of levulinic acid esterification reaction with ethyl alcohol in the presence 
HPAs or their Cesium exchanged partially salts

Table 1   Conversion and 
selectivity of esterification 
reactions of levulinic acid in the 
presence of phosphotungstic 
acid and their cesium salts

Reaction conditions: levulinic acid (2 mmol), ethyl alcohol (8 mL), 
dodecane (internal standard), catalyst (1.2  mol%), temperature 
(393 K), time (6 h)

Exp. Catalyst Conversion/% EL selec-
tivity/%

1 H3PW12O40 97 97
2 Cs0.5H2.5PW12O40 96 96
3 Cs1.0H2.0PW12O40 96 95
4 Cs1.5H1.5PW12O40 95 94
5 Cs2.0H1.0PW12O40 94 95
6 Cs2.5H0.5PW12O40 94 97
7 Cs3PW12O40 85 87
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acidity to the hydrolysis of phosphotungstate by the hydration water molecule, which 
gives H+ ions [51]. This hypothesis was previously presented by Korosteleva et al. 
[52]. This can be the reason for the very similar activity of these salts (Table 1).

The time reaction is a key aspect of this reaction; both conversion and EL selec-
tivity were growing along the reaction, achieving the highest value at 6 h of reaction. 
The pseudo ethyl levulinate (PEL) was significantly formed within the first reaction 
interval (1.5 h). This product is obtained from α-ALac, which is formed from the 
cyclization followed by water molecule realising of levulinic acid (Scheme 1). Both 
five-membered ring products can be intermediate to give LE.

To evaluate the effect of catalyst load, the reactions were carried out with a vari-
able amount of Cs2.5H0.5PW12O40 for 6 h. Fig. 3 shows the main results. After 6 h of 
reaction in the absence of catalyst, PEL was the major product. Although omitted 
herein, we have followed the selectivity of this reaction and verified that when LA 
is reacted with an excess of ethyl alcohol at 393 K, this is the major product since 
the reaction’s beginning, which was gradually converted to LE with the reaction pro-
gress. However, as can be seen in Fig. 3, after 6 h PEL is still the main product.

Besides increasing the conversion, the addition of the catalyst remarkably 
changes the reaction selectivity. Even at a minimum amount, the presence of the 
Cs2.5H0.5PW12O40 salt shifts the selectivity toward EL, evidence that it is essential 
to obtain the ester. A catalyst load higher than 0.6 mol% of H+ ions did not increase 
conversion or selectivity.

The impact of temperature was evaluated using the most favorable reaction 
conditions (0.6 mol% of H+ ions, 6 h reaction, Fig. 4). Conversion and selectivity 
were favoured by the increase in the reaction temperature. At higher temperatures, 
a greater number of reactant molecules can achieve the energy enough to over-
come the activation energy of this reaction, increasing consequently its conversion. 

Fig. 2   Kinetic monitoring of Cs2.5H0.5PW12O40-catalyzed levulinic acid esterification with ethyl alcohol. 
Reaction conditions: levulinic acid (2 mmol), ethyl alcohol (8 mL), dodecane (internal standard), catalyst 
(1.2 mol%), temperature (393 K)
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Fig. 3   Impact of catalyst load on the levulinic acid esterification with ethyl alcohol in the presence of 
the Cs2.5H0.5PW12O40 salt. Reaction conditions: levulinic acid (2 mmol), ethyl alcohol (8 mL), dodecane 
(internal standard), catalyst (1.2 mol%), temperature (393 K)

Fig. 4   Impact of catalyst load on the levulinic acid esterification with ethyl alcohol in the presence of the 
Cs2.5H0.5PW12O40 salt
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Moreover, since esterification reactions involve water molecules elimination this is 
an expected effect. The character endothermic of this reaction was previously dem-
onstrated [45].

The activity of Cs2.5H0.5PW12O40 salt was also evaluated in the esterification of 
LA with other alkyl alcohols (Fig. 5). The size of the carbon chain had a minimum 
effect on the reaction conversion. Regardless of the alcohol (i.e., C1–C4), alkyl lev-
ulinate (AL) was always the main product.

Conversely, the hysteric hindrance on the carbon bound to the hydroxyl group 
was crucial to the reaction conversion; the secondary alcohols were the less reactive. 
In all the reactions, alkyl levulinate selectivity was higher than 90%.

The reusability of the Cs2.5H0.5PW12O40 catalyst was assessed (Fig. 6). After the 
end of the reaction, the suspension containing the solid catalyst was centrifugated, 
and the solid catalyst was washed with ethyl alcohol, dried in an oven, weighted and 
reused.

The conversion and selectivity of reactions remained almost constant after suc-
cessive cycles of reuse of the Cs2.5H0.5PW12O40 catalyst. In all runs, the recovery 
rate was greater than 90%.

Conclusions

In this work, the activity of Cesium exchanged partially Keggin HPA salts was eval-
uated in the reactions of levulinic acid esterification with alkyl alcohols. Among the 
cesium salts of different HPAs containing 0.5 mol of H+ ions, the Cs2.5H0.5PW12O40 

Fig. 5   Cs2.5H0.5PW12O40-catalyzed levulinic acid esterification with alkyl alcohols. Reaction conditions: 
levulinic acid (2 mmol), alkyl alcohol (8 mL), dodecane (internal standard), catalyst (1.2 mol%), tem-
perature (393 K), time (6 h).
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was the most active and selective catalyst. Investigations on the effect of H+ load 
per mol of phosphotungstate catalyst revealed that only the totally substituted 
salt (i.e., Cs3.0PW12O40) presented a conversion lower than 90%. The effect of 
Cs2.5H0.5PW12O40 load was also evaluated; 0.6 mol% of H+ ions was the lowest load 
that led to the highest conversion. The reactions achieved a satisfactory conversion 
only when carried at temperatures greater than 393 K and within a period equal to or 
higher than 6 h. When evaluated in esterification reactions of levulinic acid with pri-
mary alcohols (C1–C4 carbon atoms), the Cs2.5H0.5PW12O40 salt was also an efficient 
catalyst. However, the secondary alcohols were less reactive. The Cs2.5H0.5PW12O40 
catalyst was successfully recovered and reused on levulinic acid esterification with 
ethyl alcohol without loss of activity.
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