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Abstract
In this study, it is aimed to investigate catalytic decomposition of hydrogen perox-
ide for oxygen generation for a fuel-cell based air independent hydrogen produc-
tion system in underwater applications for our following studies.  O2 and water were 
generated after  H2O2 was decomposed catalytically. Here,  H2O2 acts as an oxidizer 
and pure  O2 is fed on to a fuel cell and the water is used for hydrolysis reaction 
of sodium borohydride for clean  H2 production. Due to these reasons,  H2O2 was 
selected as an oxygen source concurrently.  H2O2 is an environmentally friendly 
chemical because of its decomposition by-product is only water. The prepared Nb 
based KIT-6 silica catalysts showed high catalytic activities for the  H2O2 decompo-
sition. These catalysts were characterized by SEM, SEM–EDX, FT-IR, ICP-OES, 
TEM,  N2 adsorption–desorption and XRD analyses.

Keywords Niobium · KIT-6 · H2O2 decomposition · O2 production · 
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Introduction

The large specific surface area of KIT-6 is favorable for the dispersion of active 
metals. This property provides more active sites for the catalytic reaction to KIT-6 
based catalysts [1–3]. KIT-6 has three-dimensional pore structure and due to its pore 
blockage resistance property KIT-6 is an excellent candidate for catalytic applica-
tions [4]. Mesoporous KIT-6 silicas have uniform channels, large pore size, high 
specific area and high thermal stability with its three-dimensional cubic la3d struc-
ture [5]. KIT-6, a mesoporous  SiO2 combining the la3d structure to MCM-41 with 
larger pore diameters and has attracted attention in recent years due to its optimal 
properties which enhance metal dispersion and accessibility of reactants [6, 7]. 
Metal dispersion is to adopt new supports like mesostructured silica MCM-41 [8], 
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SBA-15 [9], KIT-6 [1] etc. with appropriate good thermal and mechanical resist-
ance, large surface area and the well ability to disperse metal active phases to attrac-
tive reaction catalysts [10]. Catalyst with high metal dispersion and good durability, 
many preventive measures have been taken in the catalyst preparation. In this work, 
Nb was introduced into KIT-6 catalyst. This study was focused on the physicochem-
ical influence of Nb-based catalysts supported on KIT-6 and their catalytic activity 
in  H2O2 decomposition. As consequence, they show a relatively high activity for this 
reaction. Metal into the framework of KIT-6 to achieve stronger solid acid catalyst 
for organic reactions such as esterification, sucrose hydrolysis, oxidation, epoxida-
tion etc. [11]. In this work, unlike the literature  H2O2 decomposition reaction was 
investigated with Nb ions into the mesoporous KIT-6 framework under hydrother-
mal route. To the knowledge, this is the first time to use the mesoporous silica KIT-6 
for this reaction system.

Hydrogen peroxide  (H2O2) is an environmentally friendly chemical because its 
only decomposition by-product is water [12–15]. It is a clean oxidant and generally 
selected as an oxidizer source [16–21]. It is used by many sectors due to its easy 
access and safe use possibilities [22–24]. It is generally used in waste water treat-
ment or chemical industry [25–27]. However, rare study has focused on its decom-
position reaction for  O2 and water generation used in  H2 production. The  H2O2 
decomposition reaction given below [28]:

The overall reaction is:

This catalytic decomposition process can be performed in not only homogeneous 
system but also heterogeneous system [29–32]. In recent years, there are some stud-
ies that used active metal catalysts for this reaction [32–36]. This reaction also has 
for long been used for redox catalytic activity of metals [37, 38].

In this study, a catalytic  H2O2 decomposition reaction was used for generating 
oxygen and water. Nb monometallic catalysts were synthesized for the hydrogen 
peroxide decomposition reaction. It was shown that Nb had efficient potential for 
this reaction. In the following studies it is aimed that the pure oxygen is used as an 
oxidizer for fuel cell system. The by-product water is stored and used for hydrol-
ysis of sodium borohydride for clean  H2 production [39–42]. It is thought that at 
these days,  O2 may also plays an important and excellent role. Mesoporous silicas 
as MCM, SBA, MSU, KIT-6 etc. types have great potentials for many catalytic 
reactions [8, 9, 43–47]. They are generally used as a catalyst support for chemical 
reactions and also used for drug delivery, radiotherapy, separation or adsorption 
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processes [48–51]. This work has focused on Nb based catalysts due to their effec-
tive performance in comparison with other active metals [52–54]. The scope of the 
present study is to demonstrate the suitable and effective metal based catalyst for 
catalytic  H2O2 decomposition reaction.

Nb based KIT-6 catalysts with different metal loadings were prepared by hydro-
thermal method [55]. The catalysts were characterized by X-ray diffraction (XRD), 
 N2 adsorption–desorption, Transmission electron microscopy (TEM), Fourier trans-
form infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), energy 
dispersive X-ray spectroscopy (EDX), inductively coupled plasma-optical emission 
spectrometry (ICP-OES) analysis. The catalytic performance of the prepared cata-
lysts was evaluated via  H2O2 catalytic decomposition reaction. Nb based KIT-6 cat-
alysts showed good catalytic performance and especially superior catalytic activity 
than other supported materials. Catalytic activity for  H2O2 decomposition with Nb 
has not been reported as far as we know.

Experimental

Catalyst preparation

Nb based KIT-6 catalysts with different metal contents were prepared by the typi-
cal procedure [55]. Nb containing KIT-6 mesoporous la3d structure materials with 
metal loading 1.5, 3.4, 6.1 and 10.9 wt% were synthesized using Pluronic P123 
(Carbosynth) tri-block copolymer and n-butanol (Merck). 5.0  g of P123 was dis-
solved in 161 ml of 0.5 M hydrochloric acid (Merck) at 35 °C. After dissolution was 
completed, 5.0 g of n-butanol was added and the resulting mixture was stirred for 
1 h at 35 °C. Metal source Niobium (V) chloride (Acros) and the required amounts 
of TEOS (Abcr) were added to the mixture to obtain the desired molar ratio of 1.5, 
3.4, 6.1 and 10.9 wt% and the mixture was stirred for 24  h. Finally, the reaction 
mixture was poored in a 250 ml Teflon autoclave for hydrothermal treatment (24 h at 
100 °C). The final solid was seperated and dried at 100 °C overnight. The directing 
agent was removed by calcination in dry air at 550 °C for 5 h.

Characterization of catalysts

Surface morphology of Nb loaded KIT-6 catalysts were measured by TEM; JEOL 
1220 JEM and SEM using Quanta 400F Field Emission device. FT-IR spectra of 
all the samples were recorded on Cary 630 Fourier transform infrared spectrom-
eter, equipped with a single reflection diamond attenuated total reflectance (ATR) 
accessory between 400 and 4000   cm−1 employing diluted samples. The textural 
parameters (specific surface areas, porosities and pore sizes) were obtained via 
 N2 adsorption–desorption isotherms using BET and BJH methods (Micromeritics 
ASAP instrument). Before the measurements samples were outgassed at 250 °C and 
100 mmHg, overnight. XRD patterns of the samples were obtained by a Panalytical 
Empyrean instrument at 200 kV and 50 mA with 2θ values ranging between 5° and 



2062 Reaction Kinetics, Mechanisms and Catalysis (2022) 135:2059–2071

1 3

80° and with a speed of 10 °C/min. Metal loading were determined from ICP-OES 
analyses; Perkin Elmer Optima 4300DV.

Catalytic activity tests

0.25 g catalyst was added to an aqueous solution of  H2O2 (5.5 g, 30%) and the reac-
tion mixture was stirred for 2 h at ambient temperature (∼25 °C). At the end of the 
reaction, the catalyst was separated out. The partly decomposed  H2O2 was diluted to 
250 ml in a standard volumetric flask. Ten milliliter of this solution was transferred 
in a flask and titrated with standard  KMnO4 after addition of 20 ml of 2 M  H2SO4 
and 20 ml water [56]. The decomposition rate of hydrogen peroxide was measured 
by mass titration with  KMnO4. In each reaction experiment, 0.25 g of catalyst was 
used and four simultaneous reactions were carried out at room temperature.

Results and discussions

Characterization of catalysts

Physical and textural properties of Nb/KIT-6 catalysts were illustrated in Table 1. 
Results indicated higher surface areas for the catalysts synthesized. An increase 
in surface area with increasing Nb amount was observed. The increase was due to 
the increase of porosity emanated from niobium presence resulted in the increase 
of surface area. The decrease in pore volumes implied incorporation of Nb inside 
the pores with the increasing Nb amounts on the catalysts. Pore diameters varied 
between 3.9 and 7.6 nm and these values were determining mesoporous structure 
(2 nm < pore size < 50 nm). The amount of Nb% loss from the catalyst was deter-
mined by ICP-OES analyses (Table 1). Inductively Coupled Plasma (ICP-OES) is 
an analytical technique in which low concentrations of elements are measured. The 
sample is sent to argon plasma at a temperature of 6000–10,000 K. In the plasma, 
molecular bonds are broken, atoms and ions are formed. Immediately after these 
formed atoms and ions are excited in the plasma, they return to their former energy 
levels by irradiating at characteristic wavelengths. Emission signals are measured by 
array detector system. More than one element can be determined at the same time. 
The determination is made according to the wavelengths depending on the optical 
properties of the light passed through the plasma. Results indicated a significant loss 

Table 1  Textural and physical properties of Nb/KIT-6 catalyst

Catalyst BET surface area 
 (m2/g)

Pore volume 
 (cm3/g)

Pore size (nm) ICP-OES 
(Nb% loss)

10.9% Nb/KIT-6 752.5 0.7 3.9 11.8
6.1% Nb/KIT-6 704.2 0.9 6.6 5.2
3.4% Nb/KIT-6 642.2 1.0 7.2 2.4
1.5% Nb/KIT-6 591.6 1.3 7.6 1.2
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of active metal synthesized with 10.9% Nb loaded KIT-6 during synthesis. It is seen 
that the metal loss decreases as the loading ratio decreased. It is thought that the loss 
occurs during the synthesis procedure or it passed into the washing water during 
washing procedure.

Wide-angle XRD patterns of Nb containing KIT-6 catalysts prepared with dif-
ferent amounts of metal loading were given in Fig. 1. Small-angle XRD pattern of 
KIT-6 was at Supplementary file. The peaks of KIT-6 at 2θ of 0.99° and 1.68° indi-
cated the (211) and (220) reflections which are due to the well-ordered cubic 3-D 
mesoporous arrangement [54]. The broad peak obtained at 23.5° corresponded to 
amorphous silica. The peaks observed at 2θ values of 34.6°, 37.1°, 48.4°, 51.9°, 
58.2°, 62.3°, 68.7°, 70.1°, and 76.4° corresponded to reflections of Nb metal. XRD 
results are important due to confirming the presence of Nb in the catalyst structure. 
Similar to the literature, it was observed that the intensity of the peaks increased as 
the amount of Nb increased [57].

N2 adsorption–desorption isotherms of catalysts were Type IV according to 
IUPAC classification which indicated the formation of mesoporous structure with 
narrow pore size distribution [58]. The KIT-6 has the characteristic type IV iso-
therm according to the IUPAC classification with an average pore size of 4.5 nm. 
Nb/KIT-6 catalysts exhibit type II or type IV isotherms with average pore sizes 
between 4.7 and 5.5 nm (Fig. 2).

Fig. 3 displays the SEM images of the Nb/KIT-6 catalysts. The surface morphol-
ogy and the spongy nature of Nb/KIT-6 catalysts were investigated. Niobium ions 
into the catalyst surface affected the smoothness of the materials and Nb/KIT-6 is 
agglomerated to small irregular particles.

SEM–EDX analysis was also compiled to establish the chemical composition of 
the Nb/KIT-6. The EDX analysis demonstrated the presence of niobium in Nb/KIT-6 

Fig. 1  Wide-angle XRD diffraction patterns of Nb/KIT-6 catalysts [Small-angle XRD diffraction pattern 
of KIT-6 (Supplementary File)]
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Fig. 2  N2 adsorption–desorption isotherms of (blue: 10.9%, green: 6.1%, black: 3.4%, red: 1.5%) Nb/
KIT-6 catalysts. (Colour figure online)

Fig. 3  SEM images of a 10.9%, b 6.1%, c 3.4%, and d 1.5% Nb/KIT-6 catalysts (7 KX)
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framework. Niobium was successfully incorporated into the KIT-6 mesoporous sil-
ica. It was observed from the EDX results that the amount of niobium in the struc-
ture increased as the niobium loading rate increased (Supplementary File). The ele-
mentel distribution of Nb is indicated using EDX-SEM mapping. Nb particles were 
homogeneously dispersed on the catalysts surface (Supplementary File).

The morphology of Nb/KIT-6 was also investigated by TEM analysis (Fig.  4). 
The well-ordered pore structures of mesopores and arrays of mesoporous channels 
were observed from the images (shown in blue circle).

The FTIR spectra between 400 and 4000  cm−1 of Nb/KIT-6 catalysts are shown 
in Fig.  5. The characteristic peak belonging to Si–O–Si bond appeared at around 
1074   cm–1 due to symmetric stretching vibrations for all samples. The peaks at 
455   cm–1 and 806   cm–1 corresponded to the bending of Si–O bond and asymmet-
ric bending of Si–O–Si bond, respectively. The symmetric stretching of Si–OH was 
observed at around 952   cm–1. As well as the band at about 3392   cm−1, the peaks 
around 1645–1650   cm–1 was attributed to –OH stretching vibrations related to 
adsorbed water molecules which provide surface modification easily [59].

Catalytic performance of the catalysts in decomposition of  H2O2

All Nb loaded silica based KIT-6 catalysts were tested in decomposition of 
 H2O2 reaction. The catalytic activities were observed at room temperature and 
four simultaneous reactions were carried out for 2  h. In each reaction experi-
ment, 0.25 g of catalyst was used and 4 simultaneous reactions were carried out 
at room temperature (Run-1 to Run-4). 5.5 g 30% of hydrogen peroxide was used 
in the reactions and the experiments were carried out in a batch reaction sys-
tem consisting of a three-necked glass balloon. The amount of hydrogen peroxide 
decomposed as a result of the reaction was determined as a result of titration of 
10 ml samples taken from the reaction mixtures with  KMnO4. The reaction was 
continued for a maximum of 120 min and reaction experiments were carried out 
under the same experimental conditions at different time intervals. At the end of 
each reaction, 10 ml of solution was taken and titrated with 0.01  KMnO4 solu-
tion according to the procedure applied in the literature [56]. The reaction experi-
ment, which was continued for 120 min, was repeated 4 times, showing that the 

Fig. 4  TEM image of 10.9% Nb/KIT-6 catalyst



2066 Reaction Kinetics, Mechanisms and Catalysis (2022) 135:2059–2071

1 3

results were reproducible. The conversion of  H2O2 after 2 h has shown different 
trends for all of the catalysts. The decomposition of  H2O2 is presented in Fig. 6. 
0.25  g catalyst was used in the  H2O2 decomposition reactions carried out to 

Fig. 5  FT-IR spectra of Nb/KIT-6 catalysts

Fig. 6  H2O2 conversion over the Nb/KIT-6 catalysts (Reaction conditions: T: ~ 25 °C, t: 2 h,  mcat.: 0.25 g 
with  KMnO4 titration and four simultaneous reactions)
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determine the catalytic activity and the reactions were carried out in atmospheric 
pressure at room temperature. Before the reaction experiments, it was observed 
that  H2O2 remained intact in the structure at the end of the highest reaction time 
of 120  min, in the trials without using a catalyst. The experiments carried out 
for 120  min were repeated 4 times, the conversion values were compared and 
the reproducibility of the results was examined. In Fig. 6, it was seen that at the 
end of 120 min, the  H2O2 conversion reached the highest value of 85% conver-
sion. Experiments performed under the same conditions reveal that the results 
are reproducible and that the experimental error is negligible. The results showed 
that the highest conversion value could be reached in a shorter time depending 
on the amount of active substance added. In other words, the conversion value 
increases depending on the amount of active substance in the catalyst structure. 
The results also revealed that the reactant could diffuse into the catalyst during 
the reaction. For the catalysts, as the niobium loading rate increases, there is a 
significant increase is observed. The choice of catalyst is justified by the fact that 
niobium metal is the most successful to catalyze the decomposition of  H2O2. The 
catalyst synthesized has shown good activity for  H2O2 decomposition. There 
are few studies with metal-containing KIT-6 catalyst in decomposition of  H2O2 
reaction. To the best of knowledge, there is no study about Nb/KIT-6 catalysts 
in this reaction. Literature survey showed a number of studies regarding to  H2O2 
decomposition. These studies were conducted in the presence of different variety 
of metal containing catalysts and varying experimental conditions (Table  2). It 
is clearly observed from the table that these Nb/KIT-6 catalysts exhibit the high-
est activity and efficiency. The Nb/KIT-6 catalyst synthesized in this study has 
shown good activity for  H2O2 decomposition reaction. A comparison with litera-
ture must be made in order to better visualize the extent of its activity and effi-
ciency. Literature survey showed a few and new number of studies regarding to 
 H2O2 decomposition reaction with KIT-6 catalysts. These studies were conducted 
in the presence of a variety of catalysts with varying experimental conditions and 
selected studies were summarized. It was clearly seen from the table that synthe-
sized catalyst had been among the ones with highest activity and efficiency [56, 
60–62]. It is obvious from reaction experiments and characterization analyses 

Table 2  Literature comparison of the catalysts in  H2O2 decomposition

References Catalyst Reaction conditions Conversion

[56] M-Y zeolite (M: 
Cr, Fe, Bi, Ni, 
and Zn)

T: ~ 25 °C, t: 1–2 h, 0.025 g cat Max. 45.69%  H2O2 with Fe-Y (2 h)

[60] Rh/Au BNPs T: 25 °C 600 mol-H2O2  min−1 mol-M−1 (with 
UV–Vis spectra)

[61] CNTs T: 25 °C, 0.05 g cat 10%  H2O2 (30 min)
[62] CN-S, CN-N T: 25 °C, t: 1 h, 50 mg cat Degredation rate constant: 

0.0508  min−1

This work Nb/KIT-6 T:25 °C, t:2 h, 0.25 g cat Max. 85%  H2O2 (10.9% Nb)
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that 10.9% Nb/KIT-6 catalyst had the highest activity among those synthesized 
by varying Nb amounts. This was among the most important results of the pre-
sent study as it showed the possibility of a sustainable production.

Reaction experiments conducted in the order of 10.9% Nb (85%) > 6.1% Nb 
(72%) > 3.4% Nb (63%) > 1.5% (51%) Nb/KIT-6 based on  H2O2 conversion. From 
reaction experiments and characterization studies it is obvious that 10.9% Nb/KIT-6 
catalyst had the highest activity (85%  H2O2 conversion) among those synthesized 
by varying Nb amounts. It was seen that as the amount of Nb increased, the activity 
increased accordingly. Nb was among the proper choices with its efficient property 
in this reaction.

Conclusions

Nb/KIT-6 with different Si/Nb weight ratios was successfully synthesized. The 
presence of highly ordered structure was evident from SEM, SEM–EDX, TEM and 
 N2 adsorption–desorption analysis. The absence of Nb crystals was inferred from 
XRD spectra. The effects of varying Nb amounts on the catalytic properties of 
KIT-6 catalysts were investigated during  H2O2 decomposition at 25 °C. Nb based 
KIT-6 catalysts presented high activity. Catalytic tests and characterization studies 
revealed better performance. It is noteworthy that the catalytic activity of Nb/KIT-6 
was increased with increasing amounts of niobium. In this study, where the catalytic 
activity was investigated by the  H2O2 decomposition reaction, the results showed 
that the reactant could diffuse into the catalyst and the conversion value increased 
according to the increasing amount of active substance in the catalyst structure. The 
obtained high catalytic activity revealed that the catalyst is an important alternative 
for such reactions. This shows that niobium is an effective metal for this reaction. 
There is no previous study in the literature using this metal in this reaction. Nb-
containing mesoporous silicas have attracted good consideration as catalysts in simi-
lar reactions. Nb into the KIT-6 structure generated better Lewis and Bronsted acid 
sites this is why it was chosen for this reaction. In the following studies it is aimed 
that the pure oxygen is used as an oxidizer for fuel cell system and the by-product 
water is used for hydrolysis of sodium borohydride for clean  H2 production with a 
systematic reaction process.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11144- 022- 02235-5.
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