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Abstract
Various strategies are investigated for the synthesis of jasminaldehyde over het-
erogeneous catalysts. The jasminaldehyde synthesis via conventional cross-aldol 
condensation of heptanal with benzaldehyde using heterogeneous catalyst with 
a heptanal:benzaldehyde ratio of 1:4 was performed. Even with 100% conversion 
of heptanal with 100% selectivity, only 25% benzaldehyde reacts and 75% of ben-
zaldehyde has to remain unreacted as the heptanal:benzaldehyde ratio is 1:4. So 
here, a strategy was applied in which, addition of heptanal in regular intervals to 
the reaction mixture was performed by keeping the ratio of heptanal:benzaldehyde 
as ~ 1:4. This could afford to convert 62% of benzaldehyde to jasminaldehyde with 
69% selectivity in 20  h. Heptanal can be obtained by hydroformylation of 1-hex-
ene. Hence in the next strategy, the investigations had been performed for the syn-
thesis of jasminaldehyde via a tandem reaction by individually carrying out hydro-
formylation and aldol condensation. Hydroformylation of 1-hexene to heptanal and 
further condensation of this product mixture with benzaldehyde to jasminaldehyde, 
using heterogeneous catalysts HRh(CO)(PPh3)3 encapsulated HMS (HF-1) and 
amino functionalized chitosan (CH-1) respectively were studied. The study was also 
extended to perform a single-pot hydroformylation and aldol condensation using 
heterogeneous catalysts (HF-1) and (CH-1) together. All the strategies were found to 
be effective for selective synthesis for jasminaldehyde, however the performance for 

 *	 N. Sudheesh 
	 sudhinarayanan@gmail.com

	 Ram S. Shukla 
	 ramshukla55@yahoo.in

1	 Inorganic Materials and Catalysis Division, Council of Scientific and Industrial Research, 
Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat 364 002, 
India

2	 Department of Chemistry, N.S.S. College, K.R. Puram, Cherthala, Alappuzha, Kerala 688 541, 
India

http://orcid.org/0000-0001-7042-5934
http://crossmark.crossref.org/dialog/?doi=10.1007/s11144-022-02196-9&domain=pdf


1486	 Reaction Kinetics, Mechanisms and Catalysis (2022) 135:1485–1502

1 3

addition of heptanal in regular intervals to the reaction mixture was remarkable due 
to being capable to consume 62% benzaldehyde.

Graphical abstract

Keywords  Jasminaldehyde · 1-hexene · Aldol condensation · Hydroformylation · 
Chitosan · Single pot reaction

Introduction

The perfumery fine chemical jasminaldehyde used as an aroma compound  in per-
fumes possesses the characteristic scent of jasmine. Jasminaldehyde or α-amyl cin-
namaldehyde is synthesized by condensation of heptanal with benzaldehyde using 
acid or base catalyst (Scheme 1) [1, 2]. Generally, this condensation is done in the 
presence of liquid alkali as a catalyst taken in more than stoichiometric amounts and 
adding heptanal slowly into benzaldehyde at moderate reaction temperature [3, 4]. 
This homogenous catalytic route using liquid alkalis has drawbacks of recyclabil-
ity and disposal of alkali used. This process is associated with the problems like 
handling of strong liquid NaOH or KOH, separation and disposal of spent KOH or 
NaOH which require post-synthesis work-up and corrosion of reaction vessel. The 
process is not environment friendly also. A huge amount of spent liquid base gets 
generated during the formation of the product from aldol condensation in homo-
geneous conditions. It is estimated that approximately, 10–15 percent of spent base 
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solutions are generated during the product formation in homogeneous aldol conden-
sation [5]. Heterogeneous catalysts offer the potential advantage of easy separation, 
recycling of the catalysts and easy purification of the products. Hence heterogene-
ous catalysis is one of the emerging research areas to overcome the drawbacks of 
recyclability associated with homogeneous catalysis for many industrially required 
organic transformations for the production of bulk and fine chemicals. We are 
actively engaged since last 15 years in our wide research programme to develop het-
erogeneous catalytic systems, for the production of bulk chemicals like aldehydes 
[6–18], acids [19–22] and fine perfumery chemical jasminaldehyde [2, 23–25].

Many solid base as well as acid heterogeneous catalysts are developed to over-
come the drawbacks of homogeneous catalysts for the synthesis of jasminaldehyde. 
Solid acid catalysts like Al-MCM-41, alumino silicates, ALPOs, acidic zeolites and 
PTSA-MCM-41 were used for this condensation reaction [1, 3, 26, 27]

Modified chitosan [23], reconstructed hydrotalcites [28] mesoporous cubic Ia3d 
materials (Al-KIT-6) [29] Mg–Al mixed oxide supported on hexagonal mesoporous 
silica [30], reusable NaOH-CTAB micellar system [31], Mg–Al mixed oxides [32, 
33], potassium modified alumina [34], amino modified MOF [35], modified zirconia 
[36], silica immobilized piperazine [37], various solid supported cesium and potas-
sium catalysts [38] are some of the recent results on heterogeneous/reusable base 
catalytic systems for jasminaldehyde synthesis. Acid–base bifunctional catalysts 
were also found to be active for jasminaldehyde synthesis [39]. The reaction kinetics 
of the jasminaldehyde synthesis over heterogenous catalysts are also studied which 
gave insight into the mechanism of reaction [2, 40].

Most of the reported condensation process for jasminaldehyde discusses the con-
ventional reaction setup and conditions. In view of above and our focus to develop 
heterogeneous catalysts, and since jasminaldehyde is a fine chemical and produced 
industrially, a pressing need is realised to perform strategic investigations aiming 
solid base chitosan catalysed heterogeneous aldol condensation for the synthesis 
of jasminaldehyde. Apart from that, various synthetic strategies are discussed and 
compared here in the present study for jasminaldehyde synthesis. In present work, 
amino functionalized chitosan catalyst (CH-1) [24] is used as a base catalyst for 

Scheme 1   Synthesis of jasminaldehyde by aldol condensation
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aldol condensation and HRh(CO)(PPh3)3 encapsulated hexagonal mesoporous silica 
(HF-1) [9, 11, 13, 16, 17] as hydroformylation catalyst.

The first strategy involves to perform the conventional reaction on a fixed ratio 
of heptanal and benzaldehyde. In the second strategy the experiment was designed 
to carry out aldol condensation by stepwise addition of heptanal into the reaction 
mixture containing benzaldehyde and catalyst under the identical reaction condi-
tions of first strategy, aiming for the maximum consumption of benzaldehyde during 
the condensation. Stepwise addition of heptanal afforded an appreciable consump-
tion of benzaldehyde of 62% under the present employed experimental designing 
and reaction conditions. In the third strategy, the hydroformylation of 1-hexene was 
carryout using HF-1 as heterogeneous catalyst for the formation of heptanal, and 
thus formed heptanal was separated and used as heptanal source for aldol conden-
sation with benzaldehyde catalysed by CH-1 for the synthesis of jasminaldehyde. 
This third strategy parallels with the synthesis of jasminaldehyde practiced in indus-
try, where jasminaldehyde is ultimately produced from the castor bean plant and not 
usually derived from jasmine essential oil. Ricinoleic acid, the principal constitu-
ent of  castor oil, undergoes  cracking  to undecylenic acid  and heptanal. Thus pro-
duced heptanal is separated by distilling and is then reacted with benzaldehyde  in 
the presence of a basic catalyst (trans-aldol condensation) to give jasminaldehyde 
and water. In the fourth strategy the hydroformylation of 1-hexene and aldol con-
densation were carried out in a single-pot using an autoclave for the jasminaldehyde 
synthesis. There are many tandem single pot reactions starting from hydroformyla-
tion to other valuable products through aldols [6–8, 10, 18, 41–43] hydrogenation 
[10, 44, 45] and aminomethylations [14, 15, 46]. To the best of our knowledge, this 
is the first report, if any, for the stepwise addition of heptanal into benzaldehyde over 
heterogeneous catalyst for the synthesis of jasminaldehyde and also the single pot 
synthesis of jasminaldehyde via hydroformylation—aldol condensation route. The 
present work accounts and discusses the effect and significance of the investigated 
strategies on the selective synthesis of jasminaldehyde.

Materials and methods

Materials

Aminopropyltrimethoxysilane (APTMS), heptanal, tetraethylorthosilicate, chitosan 
and 1-hexene were procured from Sigma-Aldrich USA. Hexadecyl amine was pro-
cured from Sisco Laboratories, India. Syn gas (1:1) was purchased from Alchemie 
gases and Chemicals Pvt. Ltd., India. Toluene was procured from Spectrochem, 
India. All chemicals were used without further purification.

Synthesis of catalysts

The catalyst for aldol condensation [24] and hydroformylation [9] were synthesized 
and characterized according to previous reports.
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Aldol catalyst was synthesized by treating chitosan with APTMS. Chitosan 
(1.5 g) and APTMS (1 g) were dissolved in toluene (25 ml) in a 50 ml RB flask con-
nected with a water condenser. Inert atmosphere was created by nitrogen filled in a 
balloon. It was refluxed in an oil bath at 110 °C for 24 h. The catalyst was filtered, 
dried at 100 °C and denoted as CH-1.

Hydroformylation catalyst was synthesized by in situ encapsulation method. Hex-
adecyl amine (2.7 mmol) was dissolved in an ethanol–water mixture. To this stir-
ring solution HRh(CO)(PPh3)3 (0.07 mmol) was added. To the suspension obtained, 
TEOS (10.0 mmol) was added drop wise. The precipitate formed was stirred for 1 h 
and then aged for 18 h. The precipitate was washed with 1:1 ethanol–water mixture 
and dried in vacuum at room temperature. The catalyst was denoted as HF-1.

Catalyst characterization

CH-1 catalyst was characterized by C, H, N elemental analysis and for accessible 
amino groups. HF-1 catalyst was characterized by P-XRD, FT-IR, 31P-CPMAS 
NMR and surface area analysis. FT-IR was recorded using Perkin-Elmer, GX-FTIR 
by KBr pellet method. Elemental analysis (C, H, N) was carried out with Perkin-
Elmer CHNS/O analyzer (Series II, 2400). Powder X-ray diffraction of the catalyst 
was recorded with Phillips X’Pert MPD system using Ni-filtered Cu Kα radiation 
(= 1.54050 Å) over a 2θ range of 1–8° at a step time of 0.05° s−1. 31P-CPMAS NMR 
was recorded in a Bruker 500 Ultrashield system. The surface area analysis and pore 
size distribution of the catalyst was determined by N2 adsorption at 77.4 K using a 
Sorptometer (ASAP-2010, Micromeritics). Catalyst was degassed at 80 °C for 4 h 
prior to the measurement.

Methods of reaction: hydroformylation and aldol condensation

For the conventional heterogeneous aldol condensation, heptanal (2.6 g), benzalde-
hye (10 g) and CH-1 catalyst (400 mg) were taken in a 100 ml two-necked round 
bottom flask. One neck was connected to a water condenser and another neck was 
fixed with a silicon rubber septum. N2 gas was purged into the reaction mixture for 
5 min and then the top of the water condenser was fitted with a balloon filled with 
N2 gas to create inert atmosphere. The RB flask was kept in an oil bath at 140 °C 
kept over a magnetic stirrer. Aliquots of sample were taken at suitable intervals and 
analyzed using GC (Shimadzu GC-17A).

For the synthesis of jasminaldehyde by slow addition of heptanal to benzaldehyde 
was conducted as follows. Benzaldehyde (10 g) was taken in round bottom flask and 
heptanal (2.6 g) was added to keep heptanal to benzaldehyde ratio of 1:4. Chitosan 
catalyst CH-1 (400 mg) was added and reaction mixture was heated to 140 °C under 
stirring. After 2 h of reaction, a small quantity of sample was withdrawn and ana-
lyzed. Further, 0.35 ml (~ 280 mg) heptanal was added to the reaction mixture using 
a syringe at 2 h. The addition of 0.35 ml was continued at every 30 min up to 8 h. 
After that, the addition of 0.35 ml was done at every 1 h up to 12 h. The reaction 
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was continued by adding 0.35 ml at every 1 h interval for 15 h. Aliquots of samples 
were taken out and analyzed at selected intervals. The product was analyzed by GC.

Hydroformylation was conducted in a 100 ml autoclave reactor (Autoclave Engi-
neers, USA). In an experiment, 15 g of 1-hexene is dissolved in 50 ml of toluene and 
200 mg of catalyst (HF-1) was added. The reactor was fitted and flushed twice with 
N2 gas and the reactor was heated to 80 °C. The reactor was charged with syn gas 
(CO:H2 = 1:1) up to 40 bar. Reaction was initiated with stirring at 950 rpm. Aliquots 
of samples were collected and analyzed in GC.

For the tandem hydroformylation-aldol condensation to jasminaldehyde, the 
hydroformylation reaction was first conducted for 12  h. The product mixture was 
separated from the HF-1 catalyst and analyzed with GC. The product mixture was 
distilled to remove toluene and iso-hexene in a rotavapor, and the final product mix-
ture was weighed. Required amount of the product mixture was weighed out and 
was mixed with required amount of benzaldehyde (heptanal:benzaldehyde ratio of 
1:4) in a RB flask. Catalyst CH-1 (400 mg) was added and the condensation reaction 
was conducted at 140 °C. The product was analyzed by GC. Conversions were taken 
with respect to heptanal only and iso-heptanal remained unreacted.

Single pot synthesis of jasminaldehyde was conducted as per the following pro-
cedure. 1-Hexene (7.5 g) and benzaldehyde (10 g) were taken in a 100 ml autoclave 
with 25 mL toluene. 200 mg of HF-1 catalyst and 400 mg of CH-1 catalyst were 
also added and pressurized with 1:1 syn gas up to 40 bar. Autoclave was heated to 
140 °C and stirred for 16 h. Small quantity of sample were withdrawn at specific 
interval and analyzed. The product mixture was separated by filtration and analyzed 
by GC. n-Tridecane was used as the internal standard in all of the above reactions.

Results and discussion

Characterization of catalysts

CH‑1 catalyst

C, H, N analysis was conducted for chitosan and also APTMS functionalized chi-
tosan (CH-1). The results are: Chitosan (C: 40.02, H: 6.72, N: 8.63) and CH-1 (C: 
41.26, H: 6.94, N: 11.02). This confirms the functionalization of chitosan with 
APTMS. The percentage of accessible amino group was determined by the Schiff 
base formation of the CH-1 catalyst with salicylaldehyde [24]. The percentage of 
accessible amino group was found to be 32.6%.

HF‑1 catalyst

Catalyst characterization results are given in supplementary material. P-XRD pat-
tern of the catalyst showed a peak at 2θ of 2.08 corresponding to (100) plane of 
HMS. 31P CPMAS NMR spectrum of the catalyst showed two peaks at 50.0 and 
38.60  ppm. N2 sorption isotherm showed type-IV isotherm. BET surface area 
and BJH pore diameter of the catalyst were found to be 16.08 m2  g−1 and 6.6 nm 
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respectively. These observations match with those reported in our previous studies 
and confirmed the encapsulation of rhodium complex inside the pores of HMS [9].

Condensation of heptanal with benzaldehyde

The condensation of heptanal with benzaldehyde was carried out using the CH-1 
catalyst and the result is given in Table 1 (Entry 1–3). Conversion was 55% at 2 h 
with 75% selectivity for jasminaldehyde. The reaction gave 99% conversion with 
respect to heptanal at 6 h. The selectivity to jasminaldehyde was increased to 79% 
and self-condensed 2-pentyl nonenal was 18%. Benzaldehyde was oxidized to ben-
zoic acid with 3% selectivity in products.

The product distribution [6] for jasminaldehyde formed in mmol was calculated 
in terms of the conversion of heptanal and the selectivity of aldol products, jas-
minaldehyde and 2-pentyl 2-nonenal only and the percent of jasminaldehyde was 
determined (Eq. 1) as follows.

The conversion increased almost linearly on increasing the time from 2 to 6 h and 
the formation of jasminaldehyde increased from 9.4 to 18.4 mmol Table 1 (Entries 
1–3). Selectivity remained almost constant but had a slight increase from 75 to 79% 
with time. This reaction was the conventional aldol reaction. Here benzaldehyde is 
taken in excess to prevent the self-condensation of heptanal. Hence the atom econ-
omy with respect to benzaldehyde was very low. Maximum formation of 18.4 mmol 

(1)

%of jasminaldehyde =
%selectivity of jasminaldehyde × 100

(%selectivity of jasminaldehyde + %selectivity of 2 − pentyl2 − nonenal)

Table 1   Synthesis of jasminaldehyde by aldol condensation

Reaction conditions: a heptanal = 2.6  g (22.8  mmol), benzaldehye = 10  g (94.2  mmol), catalyst (CH-
1) = 400 mg, temperature = 140 °C and agitation speed = 950 rpm
b benzaldehye = 10  g (94.2  mmol), catalyst (CH-1) = 400  mg, temperature = 140  °C, heptanal = 12.6  g 
(22.8 mmol), 23.72 g (32.6 mmol), 35.96 g (52.2 mmol), 48.2 g (71.8 mmol), 59.32 g (81.6 mmol); Total 
heptanal by continuous addition = 9.32 g (81.6 mmol)
c Jasminaldehyde (mmol) = Heptanal (mmol) ×

%Conversion of heptanal

100
×

%of jasminaldehyde

100

Entry Time, h %Conversion %Selectivity

Jasminaldehyde (mmol of 
jasminaldehyde)c

2-pentyl 
2-nonenal

Benzoic acid

1a 2 55 75 (9.4) 25 0
2a 4 86 78 (15.6) 20 2
3a 6 99 79 (18.4) 18 3
4b1 2 54 75 (9.3) 24 1
5b2 4 64 75 (16.0) 23 2
6b3 8 75 72 (29.1) 25 3
7b4 12 83 72 (45.2) 23 5
8b5 20 97 69 (58.1) 25 6
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of jasminaldehyde observed here (Entries 3) from 94.2  mmol of benzaldehyde is 
indicative of the consumption of ~ 20% of the benzaldehyde i.e. 80% of benzalde-
hyde is left unreacted. More insight into the reaction was given by the pictorial rep-
resentation of conversion and selectivity with respect to time (Fig. 1).

Another reaction more promising in terms of the making more consumption of 
benzaldehyde, was conducted by slow addition of heptanal by keeping the ratio of 
heptanal: benzaldehyde ratio near 1:4 in the beginning of the reaction. The rate of 
addition of heptanal was determined with the help of time dependent analysis of the 
products. The formation of jasminaldehyde was found to be appreciably increased 
(Table 1, Entries 4–8) on increasing the addition of heptanal and time. At 2 h, jas-
minaldehyde formed (Table 1, Entry 4) from 22.7 mmol of heptanal was 9.3 mmol. 
With slow addition of heptanal and time the formation of jasminaldehyde was con-
tinuously increased to 58.1 mmol with 81.6 mmol (Table 1, Entry 8) of the slowly 
added heptanal. This strategy afforded the formation of 58.1 mmol of jasminalde-
hyde from 94.2  mmol of benzaldehyde pinpointing that 62% benzaldehyde could 
be consumed here, which is three times more than conventional process. The rest of 
38% percent benzaldehyde is left unreacted. A time dependent study revealed that 
the conversion increased with increase in time and addition of heptanal. The selec-
tivity of jasminaldehyde was slightly higher at lower time (Table 1, Entry 4, 5). But 
as the reaction time increased, the addition of heptanal at every half an hour made an 
increase in heptanal concentration. This made an increase in self-condensation with 
a slight decrease in selectivity of jasminaldehyde. The former reaction (Entry 3) had 
79% selectivity to jasminaldehyde (18.4 mmol), and this reaction (Entry 8) had a 
lower selectivity of 69% for jasminaldehyde but with a higher yield (58.1  mmol) 
with respect to benzaldehyde. A clear picture can be obtained with the pictorial 

Fig. 1   Time dependent jasminaldehyde synthesis by conventional batch aldol reaction, Reaction condi-
tions: heptanal = 2.6 g (22.8 mmol), benzaldehye = 10 g (94.2 mmol), catalyst (CH-1) = 400 mg, tempera-
ture = 140 °C and agitation speed = 950 rpm
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representation of the time dependent conversion and selectivity (Fig. 2). Here the 
conversion increased largely in the first 2  h, and the slope of increase of conver-
sion got decreased after. This was due to the addition of heptanal to the reaction, 
which increases the heptanal concentration and requires more time for its conver-
sion. Selectivity was higher at the beginning and started to decrease slightly after the 
addition of heptanal which is already discussed above. The conversion vs time plot 
(Fig. 2) indicated that the conversion was increasing and had not attained saturation 
even after 20 h with addition of 82.5 mmol of heptanal. This strategy showed prom-
ising forthcoming to further enhance the consumption of benzaldehyde for which 
much more specific reactor design and some special automated slow addition of 
heptanal equipment can have potential to extent this reaction procedure to give a still 
better activity and selectivity.

Hydroformylation‑aldol condensation to jasminaldehyde: a two pot tandem 
reaction

Another thought was, “from where we can get heptanal?” In the industrial synthesis 
of jasminaldehyde, distilled heptanal obtained from castor bean plant is used for its 
cross aldol condensation with benzaldehyde in the presence of a basic catalyst. In 
view of this hydroformylation is a good tool to obtain heptanal from 1-hexene and 
accordingly, hydroformylation was conducted with 1-hexene and syngas using a het-
erogeneous catalyst for that we were expertise by doing a series of experiments [9, 
11, 13] The results of hydroformylation are given in Table 2. A 12 h reaction gave 
99% conversion of 1-hexene with 39% selectivity to n-heptanal. The n/iso ratio was 

Fig. 2   Time dependent jasminaldehyde synthesis by slow addition of heptanal, Reaction conditions: 
benzaldehye = 10 g (94.2 mmol), catalyst (CH-1) = 400 mg, temperature = 140 °C, heptanal added to the 
reaction in parts according to Table 1 (entries 4 to 8)
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low (1.03) as it is in heterogeneous constrained conditions. It can be seen that the n/
iso ratio was better at lower reaction time with low conversion. As the reaction pro-
ceeds, more and more 1-hexene converts to iso-hexene over the catalyst leading to 
formation of iso-heptanal. This makes the decrease in n/iso ratio [9].

The product mixture after 12 h from the reaction given in Table 2 was filtered to 
remove the catalyst and then the solvent and iso-hexene were distilled off. Now the 
product mixture contains only heptanal, iso-heptanal and 2-ethyl 3-methyl butanal. 
10 g of the product mixture was used as heptanal source for jasminaldehyde synthe-
sis. The jasminaldehyde synthesis was conducted as like a conventional aldol reac-
tion and the results obtained are shown in Table 3. Conversion was calculated with 
respect to the heptanal and for the selectivity determination; only jasminaldehyde, 
2-pentyl nonenal and side product benzoic acid were considered. Other two alde-
hydes present were not active for aldol condensation in the given conditions and 
hence is not included in calculating the conversion and selectivity. At lower time of 
2 h, the conversion was very low (18%) with jasminaldehyde selectivity 58%. As the 
reaction time increased, conversion also increased steadily and reached upto 90% 
at 24  h of reaction. The selectivity to jasminaldehyde was increased to 80%. The 

Table 2   Hydroformylation of 1-hexene to heptanal

Reaction conditions: 1-hexene = 15  g (178.2  mmol), catalyst (HF-1) = 200  mg, pressure of syn 
gas = 40 bar, temperature = 80 °C, toluene = 50 mL and agitation speed = 950 rpm

Entry Time, h %Conv %Selectivity

iso-hexene n-heptanal iso-heptanal 2-ethyl 
3-methyl 
butanal

n/iso

1 2 45 36 44 19 1 2.20
2 4 68 28 43 26 3 1.48
3 8 92 28 42 25 5 1.4
4 12 100 23 39 30 8 1.03

Table 3   Synthesis of 
jasminaldehyde using the 
product mixture of reaction 
from Table 2

Reaction conditions: hydroformylation product mixture = 10 g, ben-
zaldehye = 20 g, catalyst CH-1 = 400 mg, temperature = 140 °C and 
agitation speed = 950 rpm

Entry Time, h %Conversion %Selectivity

Jasmi-
nalde-
hyde

2-pentyl 
2-nonenal

Benzoic acid

1 2 18 58 42 0
2 4 31 66 34 0
3 8 49 75 25 1
4 12 63 78 22 1
5 24 90 80 18 2
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decrease in conversion may be due to the blockage of basic site by the adsorption of 
iso-heptanal present in the reactant mixture.

Hydroformylation‑aldol condensation to jasminaldehyde: a single‑pot reaction

A combined reaction of hydroformylation followed by aldol condensation may be 
a promising reaction sequence for the synthesis of jasminaldehyde. A single pot 
synthesis of jasminaldehyde via a hydroformylation—aldol condensation tandem 
reaction in single pot was conducted. This removed the intermediate work up steps 
between hydroformylation and condensation. The scheme of single pot jasminalde-
hyde synthesis is shown in Scheme 2.

The synthesis of jasminaldehyde was conducted with calculated amount of 1-hex-
ene and syngas, and benzaldehyde was taken in approximate excess of four times by 
calculation of the earlier hydroformylation reaction given in Tables 2 and 3. Hydro-
formylation catalyst and aldol catalysts were added to the reaction mixture to per-
form single pot synthesis. The result obtained by single pot synthesis is given in 
Table 4.

Scheme 2   Single pot synthesis of jasminaldehyde via hydroformylation–aldol condensation
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The conversion was calculated with respect to 1-hexene and all the products from 
hydroformylation to aldol condensation together were considered for calculation of 
selectivity. It is observed that, the condensation reaction was slow at lower reaction 
time. For 4 h, the conversion of 1-hexene was only 36% with selectivity for hepta-
nal (24%), iso-heptanal (35%) and jasminaldehyde (17%). Lower n/iso ratio was due 
to the condensation of heptanal formed with benzaldehyde to yield jasminaldehyde 
over CH-1 catalyst. This observation was almost in line with Table 2 (entry 1) show-
ing higher n/iso ratio at lower time. On increasing the reaction time, both conversion 
and selectivity for jasminaldehyde was increased. Conversion of 70% for 1-hexene 
was obtained for hydroformylation step and overall selectivity to jasminaldehyde 
was increased to 35% at 16 h of reaction time. When we calculated for heptanal to 
jasminaldehyde, 74% of the heptanal formed was converted to jasminaldehyde and 
self-condensed products with 80% selectivity to jasminaldehyde. A small amount 
of benzoic acid was formed < 1% as the reaction was done in a closed reactor. Also 
there had some amount of 2-hydroxyphenylmethyl heptanal, which is the aldol prod-
uct initially formed. The hydroformylation reaction was slowed down by the pres-
ence of base catalyst and benzaldehyde as it is evident from low 1-hexene conver-
sion to aldehydes. Also the possible coordination of carboxylic group of benzoic 
acid formed with rhodium could be another reason for catalytic poisoning leading to 
lowering the conversion. Similar carboxylate rhodium complexes and deactivation 
of catalysts are reported in literature [47]. A promising potential lies in this strategy 
to increase the conversion of heptanal and selectivity of jasminaldehyde by allowing 
the reaction for more time.

Mass balance for the best performed strategy

In order to account the mass balance [21] the best performed strategy affording the 
formation of 58.1 mmol of jasminaldehyde from 94.2 mmol of benzaldehyde with 
62% consumption of benzaldehyde, was subjected for quantification of the reactants 
and products for having an insight in to the reaction system under the employed reac-
tion conditions of entry 8 of Table 1, and corresponding data are listed in Table 5.

Table 4   Single pot synthesis of jasminaldehyde

Reaction conditions: 1-hexene = 7.5 g (89.1 mmol), benzaldehyde = 10 g (94.2 mmol), hydroformylation 
catalyst (HF-1) = 200 mg, aldol catalyst (CH-1) = 400 mg, syn gas (1:1) = 40 bar, temperature = 140 °C, 
toluene = 25 ml and agitation speed = 950 rpm
a 2-hydroxyphenylmethyl heptanal & benzoic acid

Entry Time, h %Conversion %Selectivity

iso-hexene n-heptanal iso-heptanal Jasmi-
nalde-
hyde

2-pentyl 
2- non-
enal

Other 
productsa

1 4 36 18 24 35 17 4 2
2 8 58 14 18 28 32 6 3
3 16 70 11 9 30 35 9 6
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The product distribution [6] for jasminaldehyde was determined by Eqs. 1 given 
above, and for 2-pentyl 2-nonenal and benzoic acid by Eqs. 2 and 3 respectively.

The charged amounts of benzaldhyde and heptanal were 94.2  mmol and 
81.6 mmol respectively. The reacted heptanal was 79.2 mmol yielding 58.1 mmol 
of jasminaldehyde and 21.1 mmol of 2-pentyl 2-nonenal. The reacted benzaldehyde 
(61.7 mmol) was accounted for the major formation of jasminaldehyde (58.1 mmol) 
and some benzoic acid (3.6  mmol). Neat 32.5  mmol of benzaldehyde remained 
unconsumed; however it can be further reacted by adding more heptanal and fur-
ther increasing the time more than 20 h, since Fig. 2 suggested that the conversion 
was continuing to increase and not attained saturation under the employed reaction 
conditions.

Comparison of the performance with other heterogeneous catalytic systems

It is of significance to have an insight into the performance of the CH-1 catalyst with 
other closely related heterogeneous catalyst systems for the synthesis of jasminal-
dehyde. The CH-1 catalyst compared with other catalysts reported in literature is 
shown in Table 6.

(2)
%of 2 − pentyl 2 − nonenal =

% selectivity of 2 − pentyl 2 − nonenal × 100

(% selectivity of jasminaldehyde + % selectivity of 2 − pentyl 2 − nonenal)

(3)

%of benzoic acid =
% selectivity of benzoic acid × 100

(% selectivity of jasminaldehyde + % selectivity of benzoic acid)

Table 5   Mass balance of the best performed strategy of slow addition of heptanal with time for entry 8 
of Table 1

Reaction conditions: benzaldehye = 94.2  mmol, catalyst (CH-1) = 400  mg, time = 20  h, tempera-
ture = 140 °C and total heptanal by continuous addition = 81.6 mmol and agitation speed = 950 rpm
a Calculated in terms of the conversion of heptanal and the selectivity of jaminaldehyde and 2-pentyl 2- 
nonenal only
b Calculated in terms of the conversion of benzaldehyde and the selectivity of jasminaldehyde and ben-
zoic acid only

Entry Entrant mmol

1 Heptanal, M1 81.6
2 Heptanal reacted (97%), M2 79.2
3 aJasminaldehyde, M3 58.1
4 a2-pentyl 2- nonenal, M4 21.1
5 Heptanal unreacted, M5 (= M1 − M2) 2.4
6 Benzaldehyde, M6 94.2
7 bBenzaldehyde reacted for jasminaldehyde, M7 (= M3) 58.1
8 bBenzoic acid, M8 3.6
9 Unreacted benzaldehyde, M9 (= M6 – (M7 + M8) 32.5
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CH-1 catalyst has comparable conversion and selectivity with some of the 
reported catalysts, and was better than many of the reported catalysts. ALPO (Entry 
6), chitosan (Entry 8), MOS3 (Entry 10), Mg–Al hydrotalcite (Entry 12), Ni–Mg–Al 
(Entry 13) and chitosan metal oxide hybrid catalysts (Entry 14, 15) were comparable 
or better performed in terms of conversion and selectivity with that of CH-1 cata-
lyst (Entry 1). Other catalysts like PTSA-MCM-41 (Entry 7) and Fe-AlP (Entry 9) 
had comparable selectivity for jasminaldehyde but with lesser conversion. The reac-
tion with CH-1 catalyst was performed at higher temperature of 140 °C than other 
catalysts. The reaction by slow addition of heptanal was also comparable in terms 
of conversion. Stepwise addition of heptanal could convert 79.1 mmol of heptanal 
in 20 h (Entry 2). From 94.2 mmol of the benzaldehyde, the reacted benzaldehyde 
(61.7 mmol) yielded 58.1 mmol of jasminaldehyde. The merit of the present work 
was on designing the experiments with higher amount of heptanal and benzalde-
hyde. Also the stepwise slow addition of heptanal could convert much more amount 
of benzaldehyde.

Conclusions

Jasminaldehyde synthesis over heterogeneous catalysts was performed through dif-
ferent approaches. The studied methods were (1) conventional heterogeneous aldol 
condensation, (2) an improved aldol condensation by slow addition of heptanal, (3) a 
tandem reaction of hydroformylation of 1-hexene and aldol condensation with ben-
zaldehyde and (4) a single pot hydroformylation-aldol condensation reaction. High-
est selectivity (79%) was observed for the conventional heterogeneous aldol con-
densation, but about 75% of benzaldehyde was left unreacted. Reaction with slow 
addition of heptanal to the reaction mixture showed 69% jasminaldehyde selectiv-
ity in 20 h with 62% consumption of benzaldehyde, which is further improvable by 
increasing the time more than 20 h. In the approach of a tandem hydroformylation 
of 1-hexene to heptanal and aldol condensation with benzaldehyde, a conversion of 
90% with respect to heptanal with 80% jasminaldehyde selectivity was obtained. 
The work was extended to single pot hydroformylation-aldol condensation and gave 
good conversions and selectivity.
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