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Abstract
This study examines the impact of three amino acids such as proline, methionine 
and tryptophan on methane (95%)–propane (5%) hydrate formation with the use of 
different impellers. The concentration of amino acids was 1 wt% at 24.5  bar and 
2 °C. Based on experimental outcomes proline behaves as inhibitor and methionine 
and tryptophan perform as promoters. RT experiments both formed more quickly 
gas hydrates and indicated higher values in rate of hydrate formation compared to 
PBTU and PBTD experiments showing that in radial flow bubbles are subjected to 
higher shear stresses, their size are reduced, so that the contact surface is increased 
resulting in an improved mass transfer coefficient.

Keywords  Amino acids · Rate of hydrate formation · Single impeller · Induction 
time · Hydrates
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PVP	� Polyvinylpyrrolidone
CO2	� Carbon dioxide
LABS	� Linear alkyl benzene sulfonate
DBSA	� Dodecyl benzene sulfonic acid
SDSN	� Sodium dodecyl sulfonate
LDS	� Lithium dodecyl sulfate
SO	� Sodium oleate
SHS	� Sodium hexadecyl sulfate
SDBS	� Sodium dodecyl benzene sulfonate
STS	� Sodium tetracyl sulfate
DAH	� Dodecylamine hydrochloride
HTABr	� Hexadecyl-trimethyl-ammoium bromide
CTAB	� Cetyl trimethyl ammonium bromide
ENP	� Ethoxylated nonylphenol
DN2CL	� N-Dodecylpropane-1,3-diamine hydrochloride
PBTU	� Pitched blade turbine upward
PBTD	� Pitched blade turbine downward
RT	� Rushton turbine
dn/dt	� Gas consumption rate mol/s
t	� Time, s
NR30	� Hydrate productivity mol/s × l
R30	� Hydrate formation for first 30 min, mol/s
Vwater	� Volume of experiment

Introduction

Gas hydrates are crystalline compounds formed from water and suitable sized gas 
molecules. Depending on which gas molecules are present, hydrates form different 
crystal structures. Cubic structure I (sI) and structure II (sII) and hexagonal structure 
H (sH) are the three structures of gas hydrates [1]. Structure I hydrate has two types 
of cavity: a small pentagonal dodecahedral cavity consisting of 12 pentagonal rings 
of water and a large tetrahedral cavity consisting of 12 pentagonal and two hexag-
onal rings of water. Structure II hydrate also has two cavity sizes, the pentagonal 
dodecahedral cavity and larger hexakaidecahedral cavity consisting of 12 pentagonal 
and four hexagonal rings of water [2]. Methane hydrates can contain 150–180 v/v 
at standard temperature and pressure and they provide very good storage charac-
teristics [3]. Gudmundsson and Parlaktuna initially and several scientists later have 
reported outcomes in this field [3–7].

Two well-known of non-pipeline methods of methane storage are liquefied natural 
gas (LNG) or compressed natural gas (CNG). LNG method is less energy demand-
ing but more costly compared to storage of gas hydrates, while CNG method is only 
developed for small-scale systems [8]. On the other hand, gas hydrate formation 
guides to pipeline plugging matters throughout the period of oil and gas transporta-
tion [9–16]. To prevent hydrate formation, thermodynamic inhibitors (THIs) such 
as methanol [17] monoethylene Glycol (MEG) [18], ethylene glycol [19, 20] and 
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triethylene glycol [20, 21] are commonly injected in the pipelines during the produc-
tion and transportation of oil and gas. The amount of thermodynamic inhibitors is 
high hence the expenditures in these operations cannot be justified [22]. In such way, 
financial hydrate management policies have become more than an important need 
nowadays [23]. For that reason, another process for impeding hydrate formation is 
the use low dosage inhibitors (LDHIs). LDHIs can be divided into two classes of 
compounds: (i) kinetic hydrate inhibitors (KHIs) and (ii) anti-agglomerates (AAs) 
[24]. Kinetic inhibitors are mostly polymeric inhibitors while AAs are mostly sur-
factants. Both AAs and KHIs are used for continuous injection applications [25]. 
There are three main categories of kinetic inhibitors such as: (1) poly (N-vinyl lac-
tam) polymers including PVP [26], PVCap [27], (2) polyesteramides [28] and (3) 
N-isopropylmethacrylamide. Other Polymeric KHIs groups are polyaspartamides 
[29], poly alkyl amides [30] and pyroglutamate polymers [28]. An omnibus rule for 
developing KHIs is that a specific grade of hydrophobicity should be reached for 
the KHI to desirably disintegrate the water structures. Surfactants are another cat-
egory of LDIs for hydrates [30]. Anti-agglomerates (AAs) are surfactants that make 
the water phase to be suspended in small droplets. When hydrates are formed from 
water droplets, the flow characteristics are retained without occlusion. In that way 
there are hydrate crystals but they are very small and they are scattered in hydrocar-
bon liquid. Hence instead of inhibit hydrate formation; AAs inhibit hydrate plugging 
[8]. Sodium dodecyl sulfite (SDS) in methane hydrates when is used in submillimo-
lar concentration (around 0.3 mM) and tetra-n-butyl ammonium-bromide (TBAB) in 
CO2 hydrates can display a strong inhibiting effect [31].

On the other side, surfactants can also play the role of kinetic promoters. Kalo-
gerakis et al. was the first that investigated the performance of surfactants in meth-
ane hydrate formation without any influence in the thermodynamics [32]. Anionic 
surfactants that have been used to promote methane hydrates are linear alkyl ben-
zene sulfonate (LABS), dodecyl benzene sulfonic acid (DBSA), sodium dodecyl 
sulfonate (SDSN), lithium dodecyl sulfate (LDS), (SO), sodium hexadecyl sulfate 
(SHS), sodium dodecyl benzene sulfonate (SDBS), sodium tetracyl sulfate (STS), 
sodium octadecyl sulfate and other sodium alkyl sulfates like sodium butyl sulfate 
[33–37]. Cationic surfactants that play the role of promoter in methane hydrates 
are dodecylamine hydrochloride (DAH), hexadecyl-trimethyl-ammoium bromide 
(HTABr), cetyl trimethyl ammonium bromide (CTAB), N-dodecylpropane-1,3-di-
amine hydrochloride (DN2Cl) while non-ionic surfactants such as ethoxylated non-
ylphenol (ENP), tergitol and polyoxyethylene (20) cetyl ether (Brij-58) have also 
been tested successfully as methane hydrate promoters [38–42].

Another group of chemicals that are used as hydrate inhibitors or promoters are 
amino acids. Hydrophobic amino acids such as glycine, l-alanine, and l-valine can 
be applied as thermodynamic hydrate inhibitors (THIs) [43]. l-serine, l-proline, 
asparagine, l-threonine, l-valine, l-histidine, glycine, alanine, serine, proline, argi-
nine, l-leucine, l-tryptophan, Lysine, valine, methionine, phenylalanine, alanine, 
serine, glysine + ethylene glycol and glysine + 1-ethyl-3-methy limidazolium chlo-
ride have also been used as inhibitors for methane gas hydrates [44]. Other amino 
acids that have been used for CO2 hydrate inhibition are l-phenylalanine, l-cysteine, 
l-methionine l-threonine, proline, glycine, threonine, glutamine, histidine, alanine, 
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arginine, l-methionine, l-norvaline, l-norleucine, 2 amino heptanoic acid, n-hexy-
lamine, lysine, phenylalanine, methionine, cysteine, isoleucine, aspartic acid, aspar-
agine, histidine, l-histine, PVP and l-tyrosine [45, 46]. Polymers and starches also 
have been tested successfully as hydrate promoters. Polymers that have been used 
for promoting hydrates are soluble hydroxyl ethyl cellulose [47], poly (2-acryla-
mido-2-methylopropane sulfonic acid and poly (acrylic acid) [48] and poly vinyl 
alcohol (PVA) [49]. Starches that successfully functioned as hydrate promoters are 
potato starch [50], xanthan gum and starch [51], and Maize starch [52]. There are 
few previous works examine mixture of methane-propane gas hydrate formation or 
inhibition by the use of different amino acids [53–58]. In this work, three differ-
ent amino acids will be examined if they function as promoters or inhibitors with 
the use of three different impellers. The impellers that will be examined are pitched 
blade turbine upward trending (PBTU), pitched blade turbine downward trending 
(PBTD) and rushton turbine (RT). The first two impellers create mixed flow while 
rushton turbine creates radial flow.

Reactor design and experimental process

A transparent reactor with internal volume 1.56 l was used to conduct our experi-
ments for mixture gas hydrate formation. Methane–propane mixture (95% methane 
and 5% propane—Hat Group Company, Kocaeli-Turkey) were used to form hydrates 
at medium-pressure PMMA reactor. Distilled water is the liquid phase to form 
hydrate (see supplementary material for dimensions and instruments of experimen-
tal process, S1, S2, S4,). The stages of experimental process are presented in sup-
plementary material, too (S3, S5). Hydrate equilibrium line is obtained from CSM-
HYD (Research Center for Hydrates, Chemical Engineering Department, Colorado 
School of Mines).

The main objective of this study is to investigate the effect of three different 
amino acids and their function (inhibitors or promoters) with the use of three dif-
ferent impellers. Therefore, a tool must be devised to extract the kinetic data from 
raw experimental data. Application of real gas law (pV = znRT) for each data point 
with known pressure, temperature and free gas volume gives the change in number 
of moles of free gas with time. The gas compressibility factor of the real gas law 
Z is calculated by using Lee and Kesler’s (1975) compressibility factor expression 
[59]. A sample plot of change in free gas number of moles is given in Fig.  1 for 
CH4–C3H8-SI-PBTU-FB-methionine.

Fig. 2 is plotted with the same data of Fig. 1 but covering only hydrate formation 
period result with Eq. 1.

here n = number of moles of free gas, mol and t = time, s.
The derivative of Eq. 1 results with the gas consumption rate (Eq. 2) which can 

be considered as the hydrate formation rate.

(1)n = −7.92 × 10−16t3 + 2.20 × 10−11t2 − 1.96 × 10−7t + 3.88 × 10−3
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here dn
dt

 = gas consumption rate, mol/s and t = time, s.
Comparison of gas consumption rates of different experiments will be done by 

utilizing gas consumption rate equations (Eq. 2 is an example) with four different 
time values, namely 1, 600, 1200 and 1800s. Table 1 presents the gas consumption 
rates of experiment CH4-C3H8-SI-PBTU-FB-methionine, as an example.

(2)
dn

dt
= −3 × 7.92 × 10−16t2 + 2 × 2.20 × 10−11t − 1.96 × 10−7

Fig. 1   Change in number of moles of free gas in CH4–C3H8-SI-PBTU-FB-methionine experiment at start 
rotational conditions T = 2 °C and p = 24.5 bar

Fig. 2   Gas consumption rate equation of CH4–C3H8-SI-PBTU-FB-methionine experiment at start rota-
tional conditions T = 2 °C and p = 24.5 bar
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here Vwater is the volume of water (l) in the reactor, R30 is the rate of hydrate growth 
(mol × s−1) calculated by fitting the gas uptake due to hydrate growth versus time for 
the first 30 min after the induction time.

Results and discussion

Table 2 shows the outcomes of single impeller such as PBTU, PBTD and RT, meth-
ane (95%)–propane (5%) mixture experiments with pure water and the amino acids 
of aspartic acid, methionine and proline. Hydrate formation almost began immedi-
ately in all RT experiments in contrast with PBTU and PBTD ones. Amino acids 
behaved as promoters and not as inhibitors (from perspective of induction time) with 
the objection that hydrate formation is a stochastic procedure. The different kind of 
impellers was a way to duplicate the experiments due to their stochastic process and 
take some conclusions in case the different flow may influence together with the 
chemistry of amino acids the rate of hydrate formation.

Column 5 shows the hydrate productivity. In all three different impeller experi-
ments showed that experiments with leucine have the highest value of hydrate pro-
ductivity while the lowest value of hydrate productivity belongs to experiments with 
water. From Table 2 and last column there is observation that third-order polynomial 
fits of experimental data very well since all R2 are above 0.97. The change in the 
number of moles of free gas after the initiation of hydrate formation was used to cal-
culate the rate of hydrate formation at four different times (1 s, 10, 20 and 30 min). 
Figs. 3, 4 and 5 present the hydrate formation rates of PBTU, PBTD and RT impel-
ler experiments.

Figs. 3, 4 and 5 show that experiments with methionine have the highest hydrate 
formation rate with 15.0 × 10–8 mol/s, 14.60 × 10−8 mol/s and 16.60 × 10−8 mol/s for 
PBTU,PBTD and RT impellers respectively. The explanation is that promotion con-
duct of methionine is due to hydrophobic chain length and the synergistic effect of 
hydrophilic amino and carboxyl groups. Hence methionine practical helps in hydrate 
formation energy storage application since it forms stronger hydrogen bond with 
water molecules than hydrogen bonds between water molecules [60]. Tryptophan 
shows also promotion conduct since it belongs to non-polar hydrophobic amino 
acids. Moreover, the existence of the aromatic side chain in the amino acids also 
assists positively in mixture hydrate formation compared to aliphatic side chain 
[61]. On the other hand the lowest hydrate formation rate from amino acids with 
12.80 × 10–8  mol/s, 10.60 × 10−8  mol/s and 13.40 × 10−8  mol/s for PBTU, PBTD 

(3)Hydrate productivity is defined by the formula NR30 =
R30

V
water

(mol∕l s)

Table 1   Gas consumption rates of experiment CH4-C3H8-SI-PBTU-FB

Time (s) 1 600 1200 1800
Gas consumption rate (mol/s) − 1.96 × 10–7 − 1.70 × 10–7 − 1.47 × 10–7 − 1.24 × 10–7
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and RT impellers belongs to proline experiments. Proline is an aliphatic non polar 
amine which shows inhibition conduct. The experimental results demonstrated that 
the inhibition effects of uncharged side chain amino acids augment with increasing 
hydrophobicity values [62, 63].

The below outcomes are concluded from perspective of hydrodynamic analy-
sis. Hydrate formation rates of RT experiments are always higher than hydrate 
formation rates of PBTD and PBTU experiments. This shows that radial flow 
experiments present a behavior which nominates a better level of gas–liquid 
contact by giving the permission to mass transfer impedances to be appreciably 

Fig. 3   Rates of hydrate formation with PBTU impeller for pure water and four different amino acids for 
1 s, 10, 20 and 30 min at start rotational conditions T = 2 °C and p = 24.5 bar

Fig. 4   Rates of hydrate formation with PBTD impeller for pure water and four different amino acids for 
1 s, 10, 20 and 30 min at start rotational conditions T = 2 °C and p = 24.5 bar
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diminished which eventually guided at beneficial mixing intensity [64–66]. Bub-
bles are subjected to higher shear stresses, their size are decreased, so that the 
contact surface is augmented leading in an ameliorated mass transfer coeffi-
cient [67, 68]. This indicates better mutual practice between the gas and the 
liquid phases when radial flow is near the surface. Better pumping competence, 
unchanging in form shear field and good touch efficiency can be misdoubted to 
be the cause of this effect [69–71]. Last column of Table 2 shows the values of 
standard error for 1 and 600 s. The values of standard errors range from 1.21 to 
1.81 for the first 1 s and from 1.07 to 1.69 for the first 600 s confirming the qual-
ity of our experiments.

Conclusion

The main problem that gas hydrates create to oil and gas industry is the blockage 
of pipelines. Amino acids can play such role because are environmental friendly, 
biodegradable and can be used in small quantities. In this study there was exami-
nation of conduct in three amino acids. The outcomes indicated that proline 
works as inhibitor while methionine and tryptophan work as promoters. The high-
est rate of hydrate formation of methane (95%)–propane (5%) gas hydrate took 
place in radial flow experiments compared to mixed flow ones. The induction 
time of radial flow experiments is smaller compared to mixed flow ones showing 
that radial flow has better liquid gas contact compared to mixed flow.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s11144-​021-​02089-3.

Fig. 5   Rates of hydrate formation with RT impeller for pure water and four different amino acids for 1 s, 
10, 20 and 30 min at start rotational conditions T = 2 °C and p = 24.5 bar

https://doi.org/10.1007/s11144-021-02089-3
https://doi.org/10.1007/s11144-021-02089-3
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