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Abstract
In this paper, Fenton-like oxidation of Crystal Violet (CV) was simulated in Con-
tinuous Stirred Tank Reactor (CSTR) and Plug Flow Reactor (PFR). It was observed 
that the optimum decolorization rate in CSTR and PFR was occurred in 333 K and 
303 K, respectively. It was shown the CV decolorization in residence time of 15 min 
for CSTR is 64.11% while for PFR is 98.88%. In addition, CSTR can decolorize the 
dye about 0.03 g/L of CV solution by 90–100%, while, that efficiency can obtain up 
to 0.4 g/L of CV solution by PFR. It was also shown that PFR removes CV by 14% 
more than that of CSTR in residence time of 120 min for 0.15 g of catalyst. So, for 
same decolorization efficiency, PFR requires lower temperature, less contact time 
and consequently less reactor volume, and less catalyst amount compared to CSTR.
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Introduction

Water pollution as a result of synthetic substances from textile and other indus-
tries has been faced the world with a serious environmental challenge. Presence 
of dyes in the water has significantly affected health of human, animals, and 
ecosystem, so, scientists and engineers have aimed to remove dyes from water 
streams [1]. Based on the nature of synthetic dye, three different methods have 
been suggested for water treatment including: physical, biological and chemical 
technologies.

Physical water treatment methods such as adsorption, ultra-filtration tech-
niques, Dissolved Air Flotation, coagulation, membrane processes, and so on 
have an acceptable efficiency in elimination of contaminant from the water. How-
ever, the main disadvantage of physical separation technologies is removing color 
from water and transporting it into a solid material such as activated carbon, so, 
the pollutant is not decomposed during the process [2, 3].

The biological wastewater treatment technologies include bioremediation, phy-
toremediation, and mycoremediation of wastewater. During the biological waste-
water treatment processes, the pollutants are decomposed and treated biologically; 
however, they are usually insufficient for de-colorization of textile wastewater 
because of non-biodegradable nature of the chromophoric groups in the textile dyes.

Chemical substances have been extensively used to accelerate destruction of 
non-biodegradable pollutants during a series of chemical reaction. The most bril-
liant materials for chemical treatment are hydrogen peroxide, chlorine, sodium 
chlorite, and sodium hypochlorite. The progress of oxidative processes depends 
on the chemical composition of dye, nature of oxidant, and structure of catalyst 
[2, 3]. One of non-biodegradable dyes is crystal violet.

Crystal violet is a cationic triphenylmethane dye that extensively used for iden-
tifying and tracing medicine fingerprints in animals. The other application is the 
colorization of textiles and paper. It has been observed that the poison of crystal 
violet can be absorbed by ingestion, inhalation, and skin contact and faced the 
human with cancer or eye irritation [4, 5]. So, it is necessary to degrade existed 
crystal violet in wastewater to prevent its harmful effects on human beings.

According to the nature of crystal violet, Advanced Oxidation Processes 
(AOPs) degrade dyes to water, carbon dioxide, and small less harmful molecules 
[6]. Several AOPs has been proposed for CV decomposition such as photocata-
lytic decomposition in the presence of silver ion-doped TiO2 [4, 7] or over aque-
ous nano-ZnO suspension [8], a combination of a photocatalytic and biological 
system [9], electrochemical oxidation [10], electrocoagulation using aluminum 
or iron electrodes [11], Fenton-like oxidation process over several catalysts 
including complexes of Cu2+-amine [12], TiO2 powder or Ag-doped TiO2 cata-
lysts, CdO/zeoLe and P25-TiO2 catalyst, CdS, nano-CdS, nano-CdS/zeoLe [1, 4, 
13–18], and FeGAC/H2O2 [19]. Fenton oxidation process over the Fe2+ catalyst is 
the most applied and efficient of AOPs.

According to its acceptable efficiency, the de-colorization over Fe2+ cata-
lyst during Fenton-like oxidation process has been investigated for degrading 
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of phenol [20, 21], ethanol [22], and some of carboxylic acids [23], Orange II 
[24–26], Rhodamine 6G [27], Reactive Brilliant Blue KN-R [28], and Reactive 
Red 141 [29]. Although Fenton-like oxidation process over the Fe2+ catalyst has 
been implemented for different types of wastewater except for alkaline sludge and 
solutions with high buffering capacity; the challenge of this process is production 
of iron sludge as a secondary contaminant [30–32].

ZeoLes are aluminosilicate materials with high surface area whose recovery from 
water and regeneration are not too difficult. Metal-containing zeoLes do potentially 
have a substantial advantage over zeoLes in the greater ease in which metal ions can 
be introduced into the frameworks. The brilliant advantage of Fe/ZSM-5 zeoLe in 
Fenton-like oxidation process is that fixing iron ions into the frameworks of zeoLe 
structure, prevents them from leaching and release into the water. In other words, 
recovery of Fe2+ on the zeoLe surface, suspended in treated water, is significantly 
simpler than those ions dissolved directly in the water [33, 34].

In this study, decomposition of crystal violet by Fenton-like oxidation process 
over the iron-loaded ZSM-5 catalyst has been investigated. Since the treatment 
processes are studied in a batch stirred reactor; it was considered that based on the 
kinetics of oxidation reaction, plug flow regime influences the conversion of reac-
tion, residence time, reactor geometry, and other reaction parameters. For this pur-
pose, degrading of crystal violet by Fenton-like oxidation process in CSTR (con-
tinuous stirred tank reactor) and in PFR (plug flow reactor) has been simulated by 
HYSYS 3.2 and the results for effects of temperature, initial dye concentration, Fe2+ 
amount, and H2O2 concentration compared with each other.

Governing equations

Fenton-like oxidation reactions over ferrous ions are as follows [35]:

The produced hydroxyl radicals react with CV which the main reaction is pre-
sented as follows [14]:

During Eq. 5, CV decomposes by produced ̇OH in Fenton-like oxidation process. 
Kinetic relation for the decomposition of CV is as follows [36]:
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Here CCV and COH represent the concentration of crystal violet and ̇OH in mol/L.

Simulation procedure

In this paper, simulation of crystal violet decolorization by Fenton-like oxidation 
process has been performed by HYSYS 3.2. The prediction of the thermodynamic 
behavior of substances was performed by NRTL equation of state.

Simulation of CV decolorization in continuous stirred tank reactor (CSTR)

The simulations of present study have been carried out based on kinetic model and 
experimental set up of Unnu et al., [36]. They performed the oxidative degradation 
of CV under isothermal conditions in a shaded temperature- controlled glass batch 
reactor equipped with a mechanical stirrer at about 280 rpm. They used hydrogen 
peroxide solution (35% in mass), and FeZSM-5 (Si/Al = 42 and 1.825 g of Fe pow-
der) catalyst prepared by the ion exchange method.

Fig.  1 shows the simulation of CV de-colorization process in a Continuous 
Stirred Tank Reactor (CSTR). During the process, H2O2 produces radical hydroxyl 
and other products over iron ions according to Eqs. 1–4 in an equilibrium reactor. 
The effluent is sent to a CSTR to react with CV according to Eq. 5. In the exper-
iment for this process, all of the reactions take place in one reactor; however, in 
Aspen HYSYS, it is impossible to simulate equilibrium and kinetic reactions in a 
unique reactor; so, a couple of equilibrium and stirred reactors have been employed 
for simulation of CV decomposition. Table 1 presents the condition of feed based on 
Unnu et al., [36].

Verifying the validity of simulation results

In order to verify the validity of results, a comparison has been performed 
between simulation results for CSTR and experimental data reported by Unnu 

(6)−r
A
= 7.3e−14.7C0.7

CV
C ̇OH

Fig. 1   Simulation of CV decolorization by Fenton oxidation process in CSTR
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et  al., [36]. The comparison has been developed for the effects of three param-
eters of temperature, hydrogen peroxide, and CV initial concentration on dye 
decolorization.

Temperature effect on CV decolorization

Fig.  2 demonstrates the effect of temperature variation on CV decolorization 
from water in different residence times in a CSTR. It is shown that initially, CV 
decolorization quickly ascends by increasing the residence time, while the rate of 
increase slow down as contact time increases, due to decreasing in mass trans-
fer driving force. In addition, it can observe that CV decolorization reaction has 
higher conversion in higher temperatures due to the endothermic nature of reac-
tio, i.e., the simulation results demonstrate that CV decolorization in residence 
time of 120 min is 83.08 at 313 K which the average tolerance with experimental 
data of Unnu et al., [36] is 2.08%. So, it is seen that the simulation results are in 
line with experimental data.

Table 1   Properties and 
condition of feed [36]

Material Value Unit

CV 0.025 g/L
H2O2 7.5 Mmol/0.15 L
Temperature 50 °C

Fig. 2   Comparison of simula-
tion results with experimental 
data for CCV = 0.025 g/L, 
CH2O2 = 7.5 mmol/0.15 L, and 
T = 313 K
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H2O2 concentration effect on CV decolorization

Fig. 3 shows a comparison of simulation results with experimental data for crystal 
violet decolorization on the concentration of hydrogen peroxide of 7.5 mmol/0.15 L. 
It is shown that at a residence time of 120 min, the decolorization percent is 86.98%. 
A comparison of simulation results with experimental data shows an average error 
of 2.98% for the mentioned points.

Dye concentration effect on CV decolorization

Fig. 4 compares the simulation and experimental results of crystal violet decolori-
zation at different residence times based on concentrations of initial contaminant. 
According to the Fig. 4, the simulation results are in the line with experimental data.

According to Figs. 2, 3, and 4, it is clear that the simulation results are in good 
agreement with experimental data [36]. So, it can extend the simulation for the sug-
gested process for CV decolorization.

The proposed process for CV decolorization by Fenton‑like reaction

In chemical reactor design, those reactions strongly affected by the concentration of 
reactants, are usually performed in a Plug Flow Reactor (PFR). Since the concentra-
tion of H2O2 along with CV have significant effects on the crystal violet decomposi-
tion process; it seems that implementing a PFR would improve the decomposition 
reaction. So, in this paper, simulation of CV decolorization by Fenton-like oxida-
tion reaction over ZSM-5 catalyst has been performed in a PFR. Fig. 5 illustrates 
the simulation of the proposed process. For the mentioned process, the effects of 

Fig. 3   Comparison of simula-
tion results with experimental 
data for CCV = 0.025 g/L, and 
T = 323 K
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temperature of reaction, initial concentration of CV, the concentration of H2O2, and 
concentration of Fe2+ have been studied.

Temperature effects on CV decolorization in PFR

Table 2 demonstrates the effects of temperature on CV decolorization in PFR and 
CSTR. For this purpose, four temperatures of 303 K, 313 K, 323 K, and 333 K have 
been examined. It is clear that increasing temperature increases CV decolorization 
in both PFR and CSTR; however, PFR has significantly better efficiency compared 
to CSTR in low temperatures. For instance, by increasing temperature from 303 to 
323 K at a residence time of 30 min, the decolorization of CV for CSTR increases 
from 50.78 to 68.86% while the ascending value for PFR is from 89.02 to 98.04%. 
Higher decolorization rate of PFR in low temperatures is due to that the uniform 
motion of fluid causes temperature reduction take place differentially in the length 
of the reactor. So, the conversion of the endothermic reactions increases. According 
to Table 2, it is evident that the best temperature for reaction in CSTR is 333 K; the 

Fig. 4   Comparison of simula-
tion results with experimental 
data for CH2O2 = 7.5 mmol/0.15 
L, T = 323 K, and 
CCV = 0.015 g/L
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Fig. 5   Proposed process for CV decolorization in the plug flow reactor
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reaction temperature for PFR can be selected of 313 K for reaching the maximum 
decolorization rate of CV.

H2O2 concentration effects on CV decolorization in PFR

Table 3 and Fig. 6 show the effect of concentration of hydrogen peroxide variation 
on CV decolorization over iron-loaded ZSM-5 catalyst in CSTR and PFR. As it is 
seen, hydrogen peroxide has an optimum concentration for both CSTR and PFR. 
In other word, the optimum concentration of H2O2 for CV decolorization is deter-
mined of 7.5  mM and higher and lower concentrations are not as efficient as the 
optimum concentration. Because by increasing the concentration of H2O2, it reacts 
with radical hydroxyl according to Eq. 4, so, its concentration for CV decomposi-
tion decreases, and consequently dye decolorization descends. However, at the opti-
mum concentration of hydrogen peroxide, the efficiency of the CV decolorization 
process in PFR is significantly higher than CSTR. For instance, CV decolorization 
in the optimum concentration of hydrogen peroxide and residence time of 30 min is 
75.73% for CSTR, while the value for PFR is 100%.

Table 2   Effects of temperature on CV removal in PFR and CSTR for CH2O2 = 7.5  mmol/0.15 L, 
CCV = 0.025 g/L

Residence 
time (min)

T = 303 K T = 313 K T = 323 K T = 333 K

PFR CSTR PFR CSTR PFR CSTR PFR CSTR

0 0 0 0 0 0 0 0 0
15 79.64 43.56 77.85 43.04 94.11 55.68 100 62.92
30 89.04 50.78 98.59 64.47 100 68.86 100 83
45 96.62 58.28 100 73.28 100 76.98 100 100
60 96.88 59.66 100 75.13 100 86.97 100 100
90 99.38 65.2 100 82.45 100 92.42 100 100
120 100 71.67 100 83.08 100 97.13 100 100

Table 3   Effects of H2O2 
concentration on CV removal 
in PFR and CSTR for 
CCV = 0.025 g/L, T = 323 K

Residence 
time (min)

5 mmol/0.015 
L of H2O2

7.5 mmol/0.015 
L of H2O2

10 mmol/0.015 L 
of H2O2

PFR CSTR PFR CSTR PFR CSTR

0 0 0 0 0 0 0
15 58.16 30.4 98.88 64.11 77.29 41.71
30 86.76 49.88 100 75.73 92.3 53.29
45 92.83 54.73 100 78.64 97.27 60.65
60 94.53 56.62 100 84.68 100 69.85
90 97.5 60.79 100 86.81 100 79.67
120 100 65 100 86.98 100 84.55
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Effects of initial dye concentration

Table 4 shows the effect of CV concentration on its decolorization rate during the 
Fenton-like oxidation process in CSTR and PFR. As it is shown in Table 4, as the 
initial dye concentration increases, the CV decolorization in both reactors decreases. 
Because by increasing the concentration of contaminant, more hydroxyl radicals 
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are required for decolorization process and leakage of it leads to descending in CV 
decomposition. However; in a CSTR, the concentration of the reactants decreases 
once the compounds enter the reactor, so, the available hydroxyl radicals for reac-
tion reduce. While in PFR, the hydroxyl radical concentration gradually decreases 
in the reactor length, which causes the CV molecules be in contact with the higher 
concentration of hydroxyl radicals, and decolorization efficiency increases. Accord-
ing to Table 4, the lowest CV decolorization is related to the dye concentration of 
0.035 g/L at a residence time of 15 min for CSTR is 56.45% while the value for PFR 
is 94.7%.

The highest conversion for CSTR is related to the concentration of 0.005 g/L in 
the residence time of 45, 60, 90, and 120 min, the concentration of 0.015 g/dm3 in 
the residence time of 90 and 120 min and the concentration of 0.025 g/L in a contact 
time of 120 min. While, in PFR, the decolorization value at the times higher than 
45 min for all concentrations and in 15 and 30 min for concentrations of 0.005 g/L 
and 0.015 g/L conversion are 100%.

The simultaneous effects of H2O2 and initial CV concentration on the dye 
decolorization

Fig. 7 shows the simultaneous effects of concentration of H2O2 and initial con-
taminant on the decolorization of CV in the CSTR and PFR. As it is seen, for 
both CSTR and PFR, the diagram has a maximum point based on the optimum 
concentration of hydrogen peroxide (7.5 mM). As it is seen, the optimum con-
centration of hydrogen peroxide for both CSTR and PFR is 7.5 mM. The opti-
mum point is due to the reaction of hydrogen peroxide with hydroxyl radicals 
according to Eq. 4, thus, available ̇OH for cv decomposition declines. Since the 
oxidative potential of HO2 radical is much smaller OH radicals, further increas-
ing of H2O2 concentration has negative effects on CV decolorization. More ever, 
by increasing CV concentration, the decolorization efficiency for both reactors 
descends. However, the CSTR can remove only 60–70% contaminant in most 
initial concentrations of CV (0.025 to 0.5  g/L), and the area under the curve 

Table 4   Effects of initial CV concentration on its removal in PFR and CSTR for CH2O2 = 7.5 mmol/0.15 
L, T = 323 K

Residence 
time (min)

Ccv = 0.005 g/lit Ccv = 0.015 g/L Ccv = 0.025 g/L Ccv = 0.035 g/L

PFR CSTR PFR CSTR PFR CSTR PFR CSTR

0 0 0 0 0 0 0 0 0
15 100 92.54 100 60.69 100 64.09 99.32 56.45
30 100 97.63 100 86.98 100 74.89 99.4 66.16
45 100 100 100 89.23 100 78.46 100 67.21
60 100 100 100 93.01 100 84.24 100 74.81
90 100 100 100 100 100 94.17 100 81.08
120 100 100 100 100 100 100 100 95.56
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for 90% CV decolorization is much smaller compared to the curve related to 
60–70% dye decolorization. While, the PFR can remove 90–100% of CV with 
initial concentration of 0.046–1 g/L in the optimum concentration of H2O2.

Investigation of Fenton-like oxidation reaction in CSTR and PFR shows that 
for same decolorization efficiency for PFR occurs in less temperature, lower 
resident time and consequently lower reaction volume, and less catalyst amount 
compared to CSTR.
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Conclusion

In this paper, simulation of crystal violet decolorization from wastewater by Fen-
ton-like oxidation reactions over Fe/ZSM-5 catalyst has been performed by HYSYS 
3.2. The simulations have been taken place in CSTR and PFR. Evaluation of the 
effective parameters in both reactors shows that the maximum decolorization rate 
in CSTR has been occurred in 333 K, while the same efficiency has been observed 
in 303 K in PFR. In addition, it has been shown that CSTR can treat only diluted 
wastewaters about 0.03 g/L of CV in water by 90–100%, however, that efficiency 
can obtain up to 0.4 g/L of CV in water by PFR. The studying of Fe2+ concentration 
showed that for 0.15 g catalyst, PFR removes crystal violet 14% more than CSTR in 
residence time of 120 min.
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