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Abstract
This work compared the catalytic performance of the amorphous  Nb2O5 (NB) and 
12 wt%  Nb2O5/Al2O3 (NB-AL) catalysts for the xylose dehydration to furfural car-
ried out for 6 h at 140 and 160 °C using water or a 1:0.8 (v/v) water/isopropanol 
mixture as solvents. The solids were characterized by XRD,  N2 adsorption, TGA, 
XPS, TPD-NH3 and FTIR-Pyridine. Results indicated a specific surface area of 
144 and 108  m2/g and an average pore diameter of 44 and 76 Å to NB and NB-AL 
respectively. The solids presented similar density of acid sites (6.0 for NB and 
5.7  μmolNH3/m2 for NB-AL), but different strength distribution of the acid sites. 
Moreover, the fraction of Brønsted acid sites on NB was 27%, whereas on NB-AL 
it was only 2%. Concerning the catalytic tests, the highest conversion of xylose for 
NB and NB-AL (99.0 and 91.1%, respectively) was achieved for the reactions at 
160 °C in water/isopropanol mixture, whilst the highest selectivities to furfural were 
obtained in reactions with water at 160  °C (60.1% to NB and 35.1% to NB-AL). 
Finally, using water as solvent, the selectivity to furfural increased with both cata-
lysts at the highest temperature, though the carbon balance decreased.
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Introduction

The current growing energy demand and the negative effects of burning fos-
sil fuels are increasingly encouraging the use of renewable energy sources [1]. 
Among the main sources of renewable raw material, lignocellulosic biomass (LB) 
stands out and its catalytic conversion has been subject of several studies during 
the last decade.

Lignocellulosic biomass (LB) is obtained from agricultural residues, aquatic 
plants and wood with structure mainly composed of lignin, cellulose and hemi-
cellulose [2]. Hemicellulose derivatives appear as a very important raw material 
for synthesizing green chemicals. Hemicellulose is an amorphous heteropoly-
mer whose components are mostly xylan and lesser amounts of arabinan, glucan, 
mannan, galactan, acetic acid, and uronic acids [2]. Xylose constitutes between 3 
and 30% of LB [3] and can be transformed into furfural, furfuryl alcohol, xylitol, 
tetrahydrofuran, levunilic acid, ethylene glycol, among others important building 
blocks for current chemical industry.

Furfural (2-furaldehyde) is currently obtained through the dehydration of 
xylose and has an average production of 250,000 tons per year of which about 
70% are produced in China [4]. It is an excellent solvent for organic materials, 
such as resins and polymers, as well as it can be used as a raw material for the 
production of gasoline, diesel and airplane fuel [5]. Therefore, the use of hetero-
geneous catalysis in the production of furfural has emerged as an alternative to 
the traditional process (carried out through homogeneous catalysis) due to issues 
like low furfural yield, high energy demand, severity of process conditions and 
the impressive amount of effluents generated on homogeneous processes [6].

Solid catalysts applied in the production of furfural come from several sources: 
silicas [7, 8], zeolites [9–12], phosphates [13–15], oxides [16–19] and others. 
The two possible reaction routes for xylose dehydration to furfural are shown in 
Fig.  1. Studies reported that Catalysts with a greater amount of Brønsted acid 
sites (BAS) favors the direct route for the formation of furfural, while the pres-
ence of Lewis acid sites (LAS) promotes the isomerization of xylose (indirect 
route) [20–22]. Weingarten et al. [23] demonstrated that higher amounts of LAS 
led to the formation of by-products from xylose and lower yields to furfural. 
Moreover, You et al. [24] pointed out the formation of  C1–C3 products and iso-
mers from xylose in the presence high content of LAS. Indeed, even in similar 
reactions, such as glucose conversion from 5-HMF, the medium to strong LAS 
decreased the selectivity to the main product [25] and an optimum ratio of BAS 
and LAS sites was necessary [26].

The oxides derived from niobium have been studied in this reaction [27–29] 
due to their high surface acidity. In contrast, studies have shown that the high 
density of acid sites can lead to a decrease in the activity of catalysts due to the 
large formation of humins [30]. In this way, the use of niobium-based supported 
catalysts in this reaction aims to decrease the density of the acid sites on the solid 
surface by dispersing niobium species onto a high surface support. Hence, less 
humins formation and greater catalyst stability are sought.
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Generally water is used as solvent because it has the capacity of releasing  H+ 
in reaction media [31]. Also, recent literature researches reported that the forma-
tion of humins can also be reduced through the use of co-solvents, such as toluene, 
γ-valerolactone, isopropanol (IPA) among others [28, 32]. Their role is to affect the 
dispersion and conversion of xylose, as well as the formation, distribution, degrada-
tion and separation of furfural [33]. With regards to IPA, it may develop hydrogen 
bonds in furfural molecule, increasing solubilization [33]. Moreover, it is one of the 
most promising solvents derived from green routes.

Hence, in this study the performance of amorphous niobium oxide  (Nb2O5) 
and niobium oxide supported on γ-Al2O3 are assessed in the dehydration reaction 
of xylose to furfural in the presence of water or a water/isopropanol mixture as 
solvents.

Experimental

Catalyst preparation

Niobic acid  (Nb2O5⋅nH2O—Companhia Brasileira de Metalurgia e Mineração, 
77.4%) was calcined at 300 °C for 4 h under synthetic air flow (80 mL/min) with a 
heating rate of 10 °C/min. This solid was labelled NB.

For the preparation of 12 wt%  Nb2O5/Al2O3, the γ-Al2O3 support (Alfa Aesar, 
99.99%) was previously calcined at 550 °C for 6 h under the same conditions applied 
for NB. The wet impregnation method was adapted from the procedure described 
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Fig. 1  Reaction pathways for converting xylose to furfural. Source: adapted from [21, 22]—reproduced 
with the permission of ACS
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by Kitano et  al. [34]. The impregnation was conducted using a rotary evaporator 
(IKA—RV 10 control). The Nb precursor used was amoniacal niobium oxalate 
 (NH4NbO(C2O4)2⋅(H2O)n—Sigma-Aldrich, 99.99%). Precursor and support were 
kept for 2 h under stirring with distilled water at 80 °C. After this time, vacuum was 
applied until almost all water evaporated. Subsequently, the solid was dried in an 
oven at 80 °C for 12 h. Finally, the solid was calcined at 400 °C for 4 h (synthetic air 
flow − 80 mL/min). This was labelled NB-AL.

Catalysts characterization

Powder X-ray diffraction (XRD) measurements were performed with a Philips Ana-
lytical X-Ray (X’Pert-MPD) with Cu Kα radiation of 1.54056 Ǻ. The 2θ scanning 
range was from 20° to 80° (0.02° step, 0.50 s/step).

In  N2 adsorption–desorption experiments, the solids were analyzed using 
a Micromeritics ASAP 2010 apparatus. The samples were previously treated 
under vaccum at 105  °C for 12  h. Subsequently, the catalysts were cooled to 
−  196  °C under 3  µmHg pressure. The data interpretation was performed by 
Brunauer–Emmett–Teller (BET) [35] and Barett–Joyner–Halenda (BJH) [36] mod-
els for the specific surface area and pore size distribution, respectively. Thermal 
gravimetric analyses (TGA) were performed on the non-calcined samples in a TGA 
analyzer from SHIMADZU (TGA-50  M), with a scan of 10  °C/min, from 25 to 
900 °C under synthetic air flow (50 mL/min). In order to better identify the thermal 
events that occurred, derivative thermogravimetry (DTG) and differential scanning 
calorimetry (DSC) were also calculated.

The X-ray photoelectron spectroscopy (XPS) analyses were carried out with a 
spherical VSW HA-100 analyzer with an aluminum anode (Al Kα,  hv = 1486.6 eV). 
To correct binding energies, the line C 1s (284.6  eV) were used as reference for 
NB-AL and NB.

To analyze the acidity strength of the catalysts, the temperature-programmed 
desorption of ammonia (TPD-NH3) was carried out. The used apparatus was a 
Micromeritics AutoChem II 2920. Initially, the samples were pretreated under 
a helium atmosphere at 300 °C (increment of 10 °C/min and flow rate of 25 mL/
min). The samples were then cooled down to about 50 °C and subjected to ammonia 
flow for 30 min. The physisorbed ammonia was removed by purging the system for 
30 min under helium flow. The desorption was carried out under helium flow up to 
650 °C with heating rate of 10 °C/min and it was monitored using a thermal conduc-
tivity detector (TCD).

FTIR spectra of adsorbed pyridine (FTIR-Py) were recorded on a Thermo Scien-
tific Nicolet 6700 FT-IR spectrometer. Each spectrum was analyzed over 128 scans 
between 4000 and 1000 cm−1 with a resolution of 2 cm−1. Self-supporting wafers 
of the samples were placed in a vacuum cell with a KBr window. The catalyst sur-
faces were evacuated under a 2.10–5 mbar dynamic vacuum for 2 h at 150 °C (NB) 
or 14 h at 250  °C (NB-AL). After that, they were exposed to pyridine vapor and 
degassed at different temperatures (100, 200 and 300 °C) to measure the strength of 
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the sites (weak, medium and strong, respectively) [37]. The extinction coefficients 
were  IL = 1.1 cm/μmol and  IB = 0.73 cm/μmol [38].

Catalytic tests

The xylose dehydration reaction was carried out in a semi-batch Parr reactor at 140 
or 160 °C under stirring (700 rpm). An inert atmosphere  (N2, 4.0 MPa) was kept in 
order to maintain the reaction medium in the liquid phase. The amount of xylose 
(d-(+)-xylose, Sigma-Aldrich, ≥ 99.9%) was sufficient to maintain the concentration 
of 20 g/kg (200 mL total solution). Catalyst/substrate ratio of 20% (w/w) was used 
in all reactions performed [39]. Catalytic tests were carried out for 6 h using either 
deionized water or a 1:0.8 (v/v) deionized water/isopropanol mixture as reaction 
medium.

The samples were quantified using Waters 717 plus Autosamples High Perfor-
mance Liquid Chromatography. The detector used was the Waters 410 Differential 
Refractometer and the Phenomenex Rezex RHM Monosaccharide H + column was 
applied with a mobile water phase (flow rate of 0.6 mL/min) at 80 °C. The param-
eters used to evaluate the performance of the catalysts were: conversion of xylose 
(X), selectivity to furfural (S), furfural yield (Y) and carbon balance (CB), as shown 
on Eqs. (1–4), where nc is the numbers of carbon atoms in each molecule and Ni is 
the number of moles of the i component.

Results and discussion

Catalyst characterization

XRD analysis of NB and NB-AL catalysts are shown in Fig. 2. From diffractograms 
it is possible to infer that NB structure is a predominantly non-crystalline [19]. 
Hence, one may conclude that the calcination treatment conditions were adequate to 

(1)X =
[xylose]0 − [xylose]t

[xylose]0

(2)S =
[furfural]t

[xylose]0 − [xylose]t

(3)Y =
[furfural]t

[xylose]0

(4)CB =
Nxylose × 5 +

∑

Nproduct × nc

Nxylose0
× 5
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prevent crystallization of  Nb2O5. This characteristic is also present in other studies 
with the same material [40–43].

In turn, the γ-Al2O3 diffractogram presents characteristic peaks at 37.4°, 39.7°, 
42.8°, 45.8°, 60.5° and 67.3° (2θ) attributed to γ-phase alumina (JCPDS 4-0880). 
Moreover, the XRD spectrum indicates that this material is also predominantly non-
crystalline, hence, a suitable support to be used in the synthesis of solid catalysts 
[19].

The NB-AL diffractograms did not show any evident alterations in comparison to 
the support diffractograms. This was probably due to the amount of niobium oxide 
supported on alumina (only 12 wt%) [19]. García-Sancho et al. [39] reported that 
the absence of characteristic peaks of the  Nb2O5 phases in supported catalysts is due 
to the presence of amorphous particles or small niobium oxide crystalline domains 
over catalyst surface.

Kitano et al. [44] evaluated the  Nb2O5/Al2O3 catalyst with similar niobium oxide 
loading. They observed that until the calcination temperature of 850  °C its struc-
ture presents a profile very similar to the one shown in Fig. 2 (NB-AL). Besides, 
studies of the same research group reported the formation of  AlNbO4 with  Nb2O5 
contents higher than 16 wt% in  Al2O3 support after the calcination at 850 °C [45]. 
Jiao et al. [46] evaluated the impregnation of  Nb2O5 in γ-Al2O3 in the range of 1–40 
wt%. They concluded that only above a load of 25 wt% of  Nb2O5 it is possible to 
verify some characteristic peaks of crystalline niobium oxide (region between 22° 
and 29°).

The average pore diameters values of NB, NB-AL an γ-Al2O3 presented in 
Table 1 suggests that all solids can be considered as mesoporous [47]. The values 
obtained in this study were similar to others with similar materials [42, 44, 48]. Both 
catalysts showed textural properties that may allow xylose to access active sites, 

(a)

(b)

(c)

Fig. 2  XRD diffractograms of a NB, b NB-AL and c γ-Al2O3
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once the average pore diameters of 44 and 76 Å for NB and NB-AL, respectively, 
could guarantee the diffusion of xylose (6.8 Å) and furfural (5.7 Å) to acid sites. In 
addition, their high specific surface areas may provide an effective availability of 
sites for the reaction to occur.

NB-AL catalyst had an increase of its specific surface area compared to the sup-
port. This increase possibly occurred due to niobium oxides that formed on the 
material surface [44]. Despite this, the measurement of average pore volume and 
diameter decreased. This observation indicates that during impregnation of nio-
bium oxide precursor, agglomerates were formed on support surface, causing partial 
blockage of its pores. The results agree with the  Nb2O5 impregnation observed by 
Kitano et al. [44].

TG analysis of NB catalyst precursor,  Nb2O5⋅nH2O (Fig. 3a), exhibited total mass 
loss of 19.3% up to 250 °C. This event was expected, once a significant water con-
tent of water in the niobic acid was reported by the manufacter. Besides, the exo-
thermic event around 550 °C in the DSC curve may indicate the crystallization pro-
cess of amorphous niobium oxide [49]. Then, in order to the avoid crystallization 
of the material and loss of surface area and acidity, catalyst calcination temperature 
should not exceed 500  °C [50]. Therefore, after the result presented by the TGA 
analysis, the calcination temperature of 300 °C was selected to ensure that all mass 
loss events have already ended.

Concerning to the NB-AL solid, the main mass loss event verified by TGA of 
NB-AL (Fig. 3b) was between 213 and 339 °C. According to Medeiros et al. [51] 
and Su et al. [52], this event can be attributed to decomposition of oxalate niobium 

Table 1  Specific surface area, 
pore volume and average pore 
diameter of NB, γ-Al2O3 and 
NB-AL

a Values obtained from Lima et al. [19]

Sample Specific surface 
area  (m2/g)

Pore volume 
 (cm3/g)

Average pore 
diameter (Å)

NB 142 0.16 44
γ-Al2O3 95a 0.25 106a

NB-AL 108a 0.21 76a
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Fig. 3  Thermogravimetric analysis (TGA, DSC and DTG) of the non-calcined a NB and b NB-AL
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precursor and consequentely formation of niobium oxide. In fact, it is important to 
note that the calcination temperature to which this catalyst was subjected (400 °C) 
was defined after TGA analysis and was sufficient to remove all precursors salt 
anions from the catalyst surface [51, 52] without further degradation of catalyst 
structure.

XPS results presented in Table 2 were compared with several studies in order to 
identify catalysts surface species. For the catalyst NB, the peak with binding energy 
207.69 eV (Entry 1) can be attributed to niobium pentoxide. In addition, the surface 
Nb/O ratio of 29/71 is exactly the theoretical value for the atomic composition of the 
stoichiometric  Nb2O5.

For NB-AL catalyst, binding energy of 74.45 eV measured (Entry 6) is charac-
teristic of aluminum in gamma phase of aluminum oxide (γ-Al2O3) [39, 53]. Fur-
thermore, two niobium oxide species were found at NB-AL catalyst surface. At 
207.14 eV (Entry 5) the peak can be attributed to niobium in  Nb2O5 structure [54]. 
Moreover, it was observed a binding energy of 204.79 eV (Entry 4), which was not 
matched with any other value in literature. Some studies have identified evidence 
of the formation of a second niobium structure on the alumina surface after the 
impregnation process [55–57]. Kitano et al. [57] reported that the  NbO6 structures 
of niobium oxide can be distributed ramdomly along the surface, which could cause 
interfaces of overlapping layers. They also exposed the possibility of aggregating 
niobium oxide to form a new structure  (AlNbO4). Although the conditions for pre-
paring the catalyst in this study are milder than that presented by Kitano et al. [57], 
it is possible that there were regions of heterogeneous distribution on the NB-AL 
surface, which generated the formation of this second structure with lower binding 
energy. However, the formation of aluminum niobate is unlikely due to lower tem-
peratures than used (calcination of 400 °C for NB-AL).

The O 1s binding energies in NB were 530.71 (entry 2) and 532.58 eV (entry 
3). These values refer to the bond between niobium and oxygen on the catalytic 
surface. De Pietre et al. [58] reported that in niobic acid, the Nb–O bond has a 
binding energy of 530.4 and the double bond Nb=O bond has 532.3  eV [58]. 

Table 2  XPS analysis of NB 
and NB-AL catalysts

Entry Catalyst Element Binding 
energy 
(eV)

Atomic compo-
sition (%)

Nb/Al

Nb O Al

1 NB Nb  3d5/2 207.69 29 71 – –
2 O 1s 530.71
3 O 1s 532.58
4 NB-AL Nb  3d5/2 204.79 5 60 35 0.14
5 Nb  3d5/2 207.14
6 Al  2p3/2 74.45
7 O 1s 529.77
8 O 1s 531.24
9 O 1s 533.06
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The catalyst NB-AL presented three different binding energies for oxygen. The 
peak with center at 529.77 eV (entry 7) refers to niobium pentoxide [59], while 
the peak with center 531.24 eV (entry 8) refers to the bond between oxygen and 
aluminum in  Al2O3 [60]. The third peak with energy 533.06  eV (entry 9) was 
not matched with any other value in literature. Possibly it is related to the bond 
between oxygen and the niobium that presented energy of 204.79  eV (entry 4) 
constituting the second niobium structure on the alumina surface.

The atomic surface Nb content in NB-AL indicated by the XPS (5%) was 
higher than the nominal value (1.9%). The niobium oxide monolayer on the sur-
face of the alumina is formed only when the mass percentage of 16%  Nb2O5 is 
reached [57]. Although the niobium oxide monolayer on the surface of the alu-
mina has not been completely formed, this is an indication that the  Nb2O5 is well 
dispersed onto the surface. Furthermore, the amount of Nb in the surface was 
confirmed due to Nb/Al ratio of 0.14 (last column of Table 2). Similar value was 
obtained by recent studies involving supported  Nb2O5/γ-Al2O3 solids with a mass 
percentage close to that of this study [45].

In the study of the total acidity of the solids by TPD-NH3 (Table 3), the clas-
sification of site strength followed the study of Marciver et al. [61] and Berteau 
and Delmon (1989) [62]: from 25 to 200 °C (weak acid sites), from 200 to 400 °C 
(medium acid sites) and from 400 to 500 °C (strong acid sites). For further infor-
mation, the TPD-NH3 profiles of NB, γ-Al2O3 and NB-AL are presented in Fig. 
S1 (Supplementary Material) and the force distribution of the acid sites is shown 
in Fig. 4.

The NB catalyst showed a total acidity of 859.3 µmolNH3/g (Table  3, Entry 
1) distributed more intensely among weak and medium strength acid sites. For 
γ-Al2O3 support total acidity was 530.6  µmolNH3/g (Table  3, Entry 2), which 
is consistent with García-Sancho et al. [39] that present a similar value of acid-
ity 543.5 µmolNH3/g for γ-alumina. Finally, as expected, after the impregnation 
process, new acid sites were added on the support surface. This resulted in an 
increase of acidity of almost 20% (from 530.6 to 617.8 µmolNH3/g) for NB-AL 
solid. The aforementioned change can be attributed to the possible formation of 
new niobium clusters on the catalyst surface as verified, for example, by the XPS 
result. As a result, these new groups increased the strength of sites in all ranges 
(weak, medium and strong). It is important to note that the catalysts NB and 
NB-AL had similar density of acid sites (6.0 and 5.7 µmolNH3/m2, respectively), 
though the distribution of acid strength was different. For example, as shown in 

Table 3  Amount of  NH3 
(µmol/g and µmol/m2) desorbed 
for NB, NB-AL and γ-Al2O3

Entry Sample Total acid sites 
(µmolNH3/g)

Density of acid 
sites (µmolNH3/
m2)

1 NB 859.3 6.0
2 γ-Al2O3 530.6 5.5
3 NB-AL 617.8 5.7
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Fig. 4, NB-AL has twice the density of strong acid sites as NB and this will pos-
sibly provide different outcomes in their reaction performance.

As mentioned hereinbefore, Lewis acid sites (LAS) may favor an increase in 
xylose conversion whereas the increase in Brønsted sites (BAS) reflects higher 
selectivities to furfural [27]. Thus, it is reasonable to look for a catalyst that pre-
sents an optimal ratio of the two types of acid sites. FTIR-Py analysis (Fig. S2—
Supplementary Material) revealed that NB catalyst has about 27% of Brønsted 
acid sites (BAS) whilst the NB-AL presented only 2% BAS. Moreover, when 
compared to the NB catalyst, NB-AL had more contributions of Lewis acid sites: 
from the support and from the  Nb2O5 species over surface. This difference of acid 
sites ratio could directly influence the performance of the catalysts, especially 
with regards to selectivity.

The force distribution of the BAS and LAS is shown in Fig. 5. It is possible to 
verify that for NB catalyst the most prominent range of Py-BAS desorption is up 
to 100 °C (weak sites). Up to that temperature, Brønsted acid sites represent 85% 
of total (BAS + LAS) weak sites desorbed from surface of Nb catalyst. There is 
also an intense amount of medium, strong and very strong LAS.

For the supported catalyst (NB-AL), the LAS showed resistance up to 200 °C. 
This result indicates a major contribution of strong and very strong LAS for total 
acidity of supported catalyst when compared to the equivalent sites in NB cata-
lyst. Brønsted acid sites are present only up to 100 °C (weak strength) and even 
so with significantly low concentration. In agreement with results obtained by 
TPD-NH3 and by FTIR-Py analysis, can be verified that catalyst total acidity is 
mainly composed of medium and strong LAS. Therefore, the incorporation of 
 Al2O3 (a known Lewis acid solid) into  Nb2O5 solid led to the decrease of the 
density of BAS which was only observed as of weak strength while most of LAS 
were strong and very strong.

Fig. 4  Amount of  NH3 (µmol/m2) desorbed for NB, NB-AL and γ-Al2O3 as a function of  NH3 desorption 
temperature (weak < 200 °C; 200 °C < medium < 400 °C; 400 °C < strong < 500 °C)
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Both Lewis and Brønsted acid sites are active for the xylose dehydration reaction 
[21, 22]. Literature reports that the presence of water could hydrolyze the Nb–O–Nb 
bonds, generating new Brønsted acid sites [37]. Therefore, the catalysts may still 
undergo changes in their acid sites due to the presence of water inside the reactor. 
As an example, the transformation into BAS is illustrated at Fig. 6.

Catalytic tests

The catalysts NB and NB-AL were tested in the xylose dehydration reaction for 6 h 
at two different temperatures (140 and 160 °C) and the solvent system varied from 
pure water or 1:0.8 (v/v) water/isopropanol mixture. Fig. 7 presents the evolution of 
the xylose conversion throughout the reaction time for the NB and NB-AL catalysts.

Only xylose and furfural were identified as soluble products through HPLC 
analysis of reaction mixture using NB catalyst at 160  °C and water as solvent. 
However, a slight decrease in the catalyst activity was observed after 180 min of 
reaction (Fig.  7a). The high concentration of acid sites and its specific surface 

Fig. 5  Amount of Py (µmol/
m2) desorbed for NB and 
NB-AL (weak < 100 °C; 
100 °C < medium < 200 °C; 
200 °C < strong < 300 °C; very 
strong > 300 °C)
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Fig. 6  Possible generation of new Brønsted acid sites in the presence of water. Source: adapted from 
[37]—reproduced with the permission of Elsevier
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area may have favored the formation and deposition of insoluble by-products 
(such as humins) on the catalyst surface [63]. Over time, humins could block the 
active acid sites, leading to a decrease of the catalytic activity. A visual quali-
tative analysis (Table S1—Supplementary Material) of the NB catalyst revealed 
that the initial white color (fresh catalyst) turns to light brown after the reaction. 
According to the study of Bernal et al. [64], the dark brown shade can be related 
to the deposition of humins on the catalyst surface. In addition, the TGA analysis 
of the fresh and used catalysts (Fig. S3—Supplementary Material) corroborates 
the hypothesis of humins formation on the surface of the solids. There was a more 
intense formation of humins in NB-AL than in NB. Weingarten et al. and Phol-
jaroen et al. highlight that LAS are more active than BAS for reactions that pro-
duce humins [13, 23]. This is in agreement with the fact that the higher amount 
of LAS in NB-AL contributed to a more prominent formation of this by-product. 
Although NB and NB-AL have similar density of acid sites (Table 3), its surface 
properties (Table 1) were quite different, since NB has a higher specific surface 
area and smaller average pore diameter. Even though NB-AL had more humins on 
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Fig. 7  Conversion of xylose in reactions with a water at 160 °C, b water/IPA mixture at 160 °C and c 
water at 140 °C. Reaction conditions: 4.0 g of xylose, 200 mL of solvent (deionized water or 1:0.8 (v/v) 
deionized water/isopropanol mixture), 0.8 g of catalyst,  N2 pressure of 4.0 MPa, stirring rate of 700 rpm
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its surface, these factors may have influenced the probable blockage of NB pores, 
which reflected in the loss of activity.

The reaction with the NB-AL catalyst with water at 160  °C (Fig.  7a) showed 
four soluble by-products in reaction medium. Then, when compared to NB catalyst 
at the same temperature (160 °C), the formation of more by-products with the use 
of NB-AL accounts for the lower selectivity observed in Fig. 8a, b. The values of 
xylose conversion (X), furfural selectivity (S), furfural yield (Y) and carbon balance 
(CB) of the end of the reactions are shown at Table 4.

NB-AL catalyst showed lower furfural yields, furfural selectivities and carbon 
balances compared in relation to NB in all reactions conditions. This was probably 
due to the fact that the NB-AL had less Brønsted acid sites (2%) than the NB catalyst 
(27%) [21, 22]. The study of García-Sancho et al. [27] reports that a high percent-
age of LAS contributes to the increase of the conversion of xylose while a greater 
amount of BAS reflects an increase in selectivity to furfural. Thus, the results pre-
sented by NB and NB-AL are in agreement with the literature.
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Fig. 8  Selectivity to furfural in the reactions of a NB and b NB-AL catalysts. Reaction conditions: 4.0 g 
of xylose, 200 mL of solvent (deionized water or 1:0.8 (v/v) deionized water/isopropanol mixture), 0.8 g 
of catalyst,  N2 pressure of 4.0 MPa, stirring rate of 700 rpm

Table 4  Conversion of xylose 
(X), selectivity to furfural (S), 
furfural yield (Y) and carbon 
balance (CB) at the end of 6 h of 
reaction with catalysts NB and 
NB-AL

Reaction conditions: 4.0 g of xylose, 200 mL of solvent (deionized 
water or 1:0.8 (v/v) deionized water/isopropanol mixture), 0.8 g of 
catalyst,  N2 pressure of 4.0 MPa, stirring rate of 700 rpm

Parameters Catalyst

NB NB-AL

T (°C) 160 160 140 160 160 140
Solvent Water Water/IPA Water Water Water/IPA Water
X (%) 76.8 99.0 60.9 87.4 91.1 43.5
S (%) 60.1 34.4 59.9 35.1 22.2 24.9
Y (%) 46.1 34.1 36.6 30.7 20.2 10.8
CB (%) 69.3 37.8 73.1 59.2 31.8 66.4
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When the temperature is increased in the reaction medium containing only water, 
it is possible to observe that the final selectivity to furfural is higher at 160 °C for 
both catalysts. This indicates that the parallel reactions were not benefited by the 
temperature rise, unlike the furfural formation reaction. For the NB-AL solid in the 
reaction at 140 °C, the drop in selectivity observed after ca. 90 min (Fig. 8b) may 
be attributed to the later formation of by-products, whether they are from parallel 
reactions of xylose (such as lyxose), or degradation of furfural (e.g., to formic acid, 
oligomers) [23]. Moreover, comparing the results on Fig. 7a, c, it is noteworthy that 
an increase on the reaction temperature had significant effects on the xylose conver-
sion of both catalysts. Regardless of the temperature, NB catalyst appears to be more 
active than NB-AL at the beginning of the reaction.

As previously mentioned, for the reaction system containing NB-AL and water 
160 °C four by-products were observed, among which lyxose was identified. This 
same by-product was also present in the reactions with NB catalyst with water/IPA 
at 160 °C and with water at 140 °C. The selectivity curves of lyxose are shown in 
Fig. 9.

It should be noted here that, according to Gallo et al. [10], lyxose and xylulose 
isomers are not easily separated through liquid chromatography. For the reaction of 
NB-AL in water 160 °C at about 150 min the selectivity to lyxose decreases (Fig. 9) 
whilst the selectivity to furfural increases (Fig. 8b). This possibly occurs due to the 
consumption of this xylose isomer for the formation of furfural via the indirect reac-
tion route.

Higher values of furfural yield were also observed for the reactions at higher 
temperature and this indicate that high temperatures had more beneficial effects in 
relation to the performance of both catalysts, which is in agreement with previous 
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works [15, 27, 65, 66]. Conversely, the carbon balance decreased at higher temper-
atures, probably due to the increase of reaction rates in parallel reactions. As the 
soluble and insoluble by-products could not be identified and quantified due to the 
broad spectra of side products in furfural production, the carbon balance presented 
most values close to 60 and 70%. Conversely, in water/IPA reactions, those results 
decreased to about 30 and 40%.

The use of isopropanol as a co-solvent led to a drastic increase of catalytic activity 
for NB catalyst. As seen on Fig. 7b, a complete conversion of xylose was achieved at 
ca. 200 min with this catalyst, whereas without isopropanol a maximum conversion 
of ca. 75% was achieved after 360 min at the same temperature (160 °C). In turn, the 
presence of isopropanol had little effect on the activity of NB-AL. Recently, Molina 
et al. [28] reported that isopropanol increased the activity of niobium oxide based-
catalysts. Then, the catalytic tests carried out with water/IPA as reaction medium 
reached higher conversions than the ones containing only water. According to lit-
erature, the alcohol solubilizes some of the by-products formed and decreases the 
amount of insoluble products over catalyst surface, ensuring higher stability, and 
consequent activity to the catalyst [28]. In turn, the lower values of selectivity to fur-
fural observed in the presence of IPA (Fig. 8) may be attributed to the increase in the 
formation of soluble by-products from degradation of xylose and furfural [28, 33]. 
When comparing the mass loss values of the catalysts used (Fig. S2) it is possible to 
observe evidence of a smaller amount of solid material accumulated on the surface 
of the catalysts used in the reactions with isopropanol. This result corroborates with 
that presented in the literature, which points out that in reactions with water only, 
the formation of this insoluble by-product is greatly favored [67].

Table 5 summarizes the results obtained with niobium-based catalysts for xylose 
dehydration in this work compared to other studies.

When the catalysts of this study (lines 6–9) are compared to similar systems in 
the literature, the results of conversion are similar to reactions with 24 h (entries 2 
and 3). This demonstrates the high activity of the systems, especially for NB catalyst 
with BAS high content, which exhibited excellent selectivity in water (60.1% at line 

Table 5  Comparison of NB and NB-AL catalytic performance with other systems reported in the spe-
cialized literature

Entry Catalyst Solvent Reaction 
time (min)

T (ºC) X (%) S (%) References

1 NbP Water 60 160 44.1 39.5 [13]
2 12 wt%  Nb2O5/SBA-12 Water/toluene 1440 160 85.0 93.0 [39]
3 12 wt%  Nb2O5/MCM-41 Water/toluene 1440 160 80.0 84.0 [39]
4 12 wt%  Nb2O5/Al2O3 Water/toluene 240 160 62.0 59.0 [39]
5 Nb2O5 Water/toluene 90 170 90.0 56.0 [27]
6 NB Water 360 160 76.8 60.1 This work
7 NB Water/IPA 360 160 99.0 34.4 This work
8 NB-AL Water 360 160 87.4 35.1 This work
9 NB-AL Water/IPA 360 160 91.1 22.2 This work
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6). Indeed, the selectivity of this solid was higher than the niobium oxide catalyst in 
water/toluene system (56%, at line 5). Then, the use of water as a solvent is promis-
ing for NB catalyst, once it is less aggressive to the environment than the organic 
solvents.

Conclusions

Results presented in this work show that the  Nb2O5 catalyst had better performance 
on its pure form (NB) than the  Nb2O5/γ-Al2O3 (NB-AL) for the xylose dehydration 
to furfural in all reaction conditions.

Both catalysts presented similar textural properties and were predominantly 
amorphous, given that calcination conditions were adequate to form niobium oxides 
and also prevent their crystallization. Acidity studies revealed that whereas both sol-
ids presented similar values of density of acid sites, though the distribution of acid 
sites strength and types were different. NB solid Brønsted acid sites ca. 13 times 
higher than for NB-AL. This led to different performances in xylose dehydration.

Whilst both solids were active for the dehydration of xylose to furfural, the per-
formance of NB catalyst was remarkably superior with maximum selectivity to fur-
fural of 60% against 35% of NB-AL. The presence of isopropanol in the reaction 
medium led to an increase in the conversion of xylose. However, the furfural selec-
tivity, yield of furfural, carbon balance and formation of humins decreased. The 
intense amount of non-quantified by-products contributed to the low carbon balance 
values.
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