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Abstract
A series of inverse ZnO/Cu catalysts were prepared with varied Zn/Cu ratios using a 
microemulsion method. The catalysts were tested for CO2 hydrogenation to metha-
nol and the structure was characterized by nitrogen physisorption, X-ray diffraction 
(XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron micros-
copy (TEM), Scanning electron microscope  (SEM), H2 temperature-programmed 
reduction (H2-TPR) and H2 temperature-programmed desorption (H2-TPD). On the 
inverse samples, less amount of highly dispersed Cu was observed than that of the 
conventional Cu/ZnO catalysts. Thus, the inverse ZnO/Cu catalysts showed a lower 
CO selectivity and a higher methanol selectivity. CuZn alloy was formed in the sam-
ples, in which ZnO/Cu(4:6) had the most amount of the CuZn alloy. A linear rela-
tionship between the methanol yield and the CuZn alloy content can be found for 
the ZnO/Cu catalysts. Among all the catalysts, ZnO/Cu(4:6) exhibited the highest 
CH3OH yield (2.8  mmol  g−1  h−1) at 2.0  MPa and 250  °C, much higher than the 
conventional Cu/ZnO catalyst with the same composition. Moreover, microemulsion 
method is a very effective method to tune particle size of the catalysts.

Keywords  CO2 hydrogenation · Methanol · ZnO/Cu catalysts · CuZn alloy

Introduction

Under the background of global warming, the “low-carbon economy” based on 
low energy consumption and low output of greenhouse gas has become a hotspot. 
Converting the emitted CO2, the major greenhouse gas, into valuable chemicals is 
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a subject that many researchers have been working on. Methanol, as an important 
industrial commodity [1] as well as an ideal clean synthetic fuel [2], becomes the 
preferred target product for CO2 conversion. CO2 hydrogenation to methanol is 
expected to solve both environmental and energy issues at the same time. Therefore, 
much attention has been attracted on this research field.

At present, Cu/ZnO/Al2O3 catalyst has been extensively studied for CO2 hydro-
genation and industrialized for several decades in methanol production from syngas 
[3]. Although Cu/ZnO/Al2O3 shows excellent performance using syngas as feed gas, 
it is less active in CO2 hydrogenation to methanol [4]. In order to improve the activ-
ity, researchers have conducted in-depth researches such as adjusting the size of Cu 
clusters [5, 6], optimizing the preparation methods [7–9] and adding promoters [10, 
11]. Recently, a layer of metastable ZnO was clearly observed on the top of Cu par-
ticles for some Cu/ZnO catalysts with high performance for CO2 hydrogenation [12, 
13]. This ZnO layer can not only form ZnOx species acting as cocatalysts but also 
can protect the Cu from reshaping and sintering during the reaction [12]. This kind 
of catalysts with the oxide-metal structure was first proposed as “inverse catalysts” 
by Rodriguez et al.[14].

Due to the unique structure of the inverse catalysts, they showed better perfor-
mance than conventional catalysts in some reactions, such as CO oxidation [15], 
partial oxidation of methanol [16] and water–gas shift reaction [14]. For CO2 hydro-
genation to methanol, some inverse catalysts, e.g. ZnO/Cu(100) [17] and MnOx/
Co3O4 [18], exhibited superior activity than that of Cu/ZnO (000ī) and CoOx/MnO2. 
In order to further investigate the influence of composition on the properties and cat-
alytic performance of the powder ZnO/Cu catalysts, we used microemulsion method 
to prepare a series of ZnO/Cu catalysts and investigated their performance for CO2 
hydrogenation to methanol. Our results indicated that the inverse ZnO/Cu showed 
higher methanol selectivity than the conventional Cu/ZnO sample.

Experimental

Catalysts preparation

The catalysts were prepared with a microemulsion method. First, two microemul-
sions with the same composition were prepared. Both of them contained 32% wt. 
of Trition-x-100 as the surfactant, 20% of n-hexanol as the cosurfactant, 38% of 
n-heptane as the oil phase and 10% water. In one of the microemulsion, an appro-
priate amount of copper nitrate was dissolved in the water phase, while an appro-
priate amount of precipitating agent (tetramethylammonium hydroxide, TMAH) 
was added to the other microemulsion. After stirring for 1 h, the TMAH-containing 
microemulsion was added dropwise to the microemulsion containing copper nitrate. 
The mixture was kept at 25 °C for 24 h to complete the precipitate. Then, the pre-
cipitate was separated with a centrifuge for 3 times and washed with methanol. After 
dried in an oven at 100 °C for 24 h and calcined at 350 °C in a muffle for 2 h, CuO 
was finally obtained.
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ZnO/CuO precursors were prepared in the same procedure except that the above-
obtained CuO and zinc nitrate were added to the water phase in one of the micro-
emulsions. After precipitation, centrifugal separation, drying, calcination at 350 °C 
for 2 h, and finally reduced under pure hydrogen at 300 °C for 2 h, ZnO/Cu cata-
lysts were obtained. A series of ZnO/Cu catalysts were obtained where n(Zn)/n(Cu) 
equals to 1:9, 2:8, 3:7, 4:6 and 5:5.

For comparison, CuO/ZnO sample, with a n(Zn)/n(Cu) of 4:6, was also prepared 
using the same method. After reducing under pure hydrogen at 300 °C for 2 h, Cu/
ZnO (6:4) was obtained.

Catalysts characterization

N2 adsorption–desorption was measured at liquid nitrogen temperature (77 K) on a 
Quantachrome Autosorb-1-C-TCD-MS instrument. Prior to the tests, evacuating of 
the samples for 6 h at 200 °C was carried out. Multipoint Brunauer–Emmett–Teller 
(BET) model and Barrett-Joyner-Halenda (BJH) model were applied to calculate the 
specific surface areas (SBET) and the pore size distributions.

The phase analysis of the catalyst was carried out on a Brucker Advance D8 
X-ray powder diffractometer (XRD). Cu-Kα with a wavelength of 0.1506 nm was 
used as the radiation source. The instrument was operating at 40 kV and 40 mA, 
with a scanning range of 20°–80° (0.0167°/step).

X-ray photoelectron spectroscopies were collected on a VG Mulitilab 2000 
instrument (Thermal Electron Corporation) under 2 × 10–6  Pa. Monochromatic Al 
Kα X-ray operating at 15 kV and 20 mA was used as the radiation source. Samples 
were first reduced in pure H2 at 300 °C for 2 h. After cooled down to room tempera-
ture in pure H2, they were sealed in the glass sample bottles without air. Finally, the 
samples were transferred into the XPS instrument for and measurement. The C1s 
binding energy (284.6 eV) was used as a standard to calibrate the shift of the bind-
ing energy caused by the charge effect.

TEM images were obtained on FEI Tecnai G2 F20 electron microscope under 
200 kV. Scanning electron microscope (SEM) images of the sample were acquired 
on a Hitachi-48005 instrument equipped with energy dispersive X-ray analysis 
(EDX) detector.

The reducibility of the catalysts was tested on a multifunctional characterization 
analyzer AMI-200 (Zeton Altamira Corporation). 25 mg of the catalyst was purged 
at 150  °C for 1  h under argon (25  mL/min) to remove the adsorbed water. After 
cooling down to 50 °C, 10% H2/90% Ar with a flow rate of 25 mL/min was used to 
reduce the sample. H2-TPR data was collected with the temperature rising to 400 °C 
at a heating ramp of 10 °C/min.

H2-TPD was performed on the Micromeritics Instruments Corporation Auto-
Chem II 2920 instrument to determine the Cu surface area and the dispersion of Cu. 
0.2 g of a sample was first reduced in a pure hydrogen (35 mL/min) atmosphere. The 
temperature was raised from room temperature to 300 °C at a heating rate of 10 °C/
min and held at 300 °C for 2 h. After cooling down to -50 °C and holding at this 
temperature for 1 h in pure hydrogen, pure Ar (25 mL/min) was introduced into the 
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system. Then, the temperature was raised from -50 °C to 150 °C in the Ar at a heat-
ing rate of 10 °C/min. Assuming that the chemisorption of H2 on Cu atoms is car-
ried out according to Cu:H = 2:1 [19, 20], the specific copper surface area (SCu) and 
the degree of dispersion (D) were calculated as follows:

In this equation, Nav is the Avogadro’s constant, 1.47 × 1019 is the value of Cu 
atoms per square meter [19, 21].

Catalytic performance measurements

CO2 hydrogenation to methanol activity measurements were carried out in a stain-
less-steel high-pressure reaction device. 0.1  g of a sample was loaded in the fix-
bed reactor with a diameter of 6 mm. Before the activity tests, the sample was first 
reduced in pure H2 with a GHSV of 2.4 L h−1 g−1 at 300 °C for 2 h under atmos-
pheric pressure and then cooled to room temperature. The typical gas (n(CO2)/
n(H2) = 1:3) with a GHSV of 3.6 L h−1 g−1 was injected into the device. The cata-
lytic performance test was conducted at 2 MPa and 250 °C and lasted for 50 h for 
each sample.

The final gas components were analyzed online by Agilent Micro GC 3000A gas 
chromatograph (TCD detector). The methanol and water components in the product 
were collected by a 0 °C cold trap, and analyzed offline with an Agilent GC 4890D 
(FID detector).

Results and discussion

Textural properties

Fig. 1 displays the nitrogen adsorption–desorption isotherms and pore sizes distri-
butions of the ZnO/Cu catalysts. All samples, showed a type IV isotherm, which 
was the typical feature of mesoporous materials. It could also be seen that all sam-
ples had a H3 type hysteresis loop, resulted from the capillary condensation inside 
slit-like pores formed by aggregation of flaky particles [22]. From Fig. 1b, one can 
observe that ZnO/Cu (5:5) and ZnO/Cu (4:6) samples had two distinct peaks, indi-
cating a bimodal pore size distribution. The pore structure parameters, including the 
BET specific area (SBET), total pore volume (Vp) and pore size (DBJH) are listed in 
Table 1. ZnO/Cu (3:7) had the largest specific surface area, which was beneficial to 

SCu = 4 × H2uptake × Nav∕(1.47 × 1019)(m2 − Cu∕g)

Percentage dispersion (D) =
amount of Cu atoms on surface (moles)

total amount of Cu atoms in the sample(moles)
× 100%

=
H2 uptake × 4(moles)

total amount of Cu atoms in the sample(moles)
× 100%
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the dispersion of active components. However, due to the small pore size, the pore 
volume was relatively small. ZnO/Cu(4:6) had the largest pore volume and pore size.

XRD measurements

The XRD diffraction patterns for ZnO/Cu catalysts were depicted in Fig. 2. As 
mentioned in the preparation section, the samples were reduced at 300 °C and 
ZnO could only be reduced at higher than 400  °C [23]. Therefore, only ZnO 
and Cu species could be detected for all ZnO/Cu catalysts. With the increase of 
Cu content, the intensity of the Cu diffraction peaks was gradually enhanced, 
while the characteristic diffraction peaks of ZnO were gradually weakened. 
The particle sizes of ZnO and Cu were calculated using the Scherrer equation 
at 2θ = 36.2 °C and 43.3°. The data are shown in Table 1. Before the reduction 
process, the particle size of CuO was about 14  nm, obtaining from the XRD 
pattern (Fig. S1). After the reduction, relatively large Cu particles were formed 
because of the coalescence of copper component [24]. Cu particle sizes followed 
this trend: ZnO/Cu(4:6) < ZnO/Cu(5:5) < ZnO/Cu(3:7) < ZnO/Cu(2:8) < ZnO/
Cu(1:9). ZnO/Cu(4:6) catalyst had the minimum Cu particle size in the series, 
probably suggesting the strongest interaction between Cu and ZnO, as observed 
similarly for the CuO-CeO2 systems [25]. No obvious difference for ZnO 

Fig. 1   N2 adsorption–desorption isotherms (a) and the BJH pore size distribution (b) at 77  K for the 
reduced ZnO/Cu catalysts

Table 1   Physicochemical properties and particle sizes of ZnO and Cu for ZnO/Cu catalysts

a Calculated from the Scherrer formula

Sample SBET(m2/g) Vp (cm3/g) DBJH(nm) Cu(nm) a ZnO(nm) a aCu(Å)

ZnO/Cu(1:9) 51.9 0.48 2.8 29.3 17.0 3.618
ZnO/Cu(2:8) 40.3 0.27 2.5 27.8 19.6 3.622
ZnO/Cu(3:7) 65.5 0.38 2.5 24.2 17.1 3.627
ZnO/Cu(4:6) 56.2 0.60 3.2 19.8 20.7 3.634
ZnO/Cu(5:5) 47.1 0.20 2.5 23.5 20.5 3.628
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particles for all the ZnO/Cu samples was observed, as the particle sizes calcu-
lated using the Scherrer equation usually have an error of 1 nm [26]. The results 
indicated that microemulsion method is an effective method to tune particle size 
of Cu in the catalysts. Moreover, for ZnO/Cu(4:6) sample, the particle sizes of 
ZnO (20.7 nm) and Cu (19.8 nm) are quite similar. It has been reported that the 
interface of Cu–ZnO samples has some connection with the particle size of the 
two components. Although it was impossible to get precise quantification of the 
interface due to the non-ideal spherical shape, the authors considered that the 
more similar the particle sizes were, the larger was the interface at the perimeter 
[27]. Out of these this factor, ZnO/Cu (4:6) sample seemed to have the largest 
interface. For the other catalysts, the interface showed a decrease trend with the 
increase of Cu particle sizes. As reported previously, CO2 mainly adsorbs on the 
surface of ZnO [11], while H2 dissociatively adsorbs on the surface of Cu and 
transfers H atoms to ZnO via spillover. Large interface, i.e. large contact area 
between ZnO and Cu, can facilitate the spillover of H atoms and thus the forma-
tion of methanol.

In order to make sure whether CuZn alloy was formed in the samples, the 
enlarged part of the XRD patterns from 42–45 o is shown in Fig.  2b. Clearly, 
compared with pure Cu pattern, a slight shift of 2θ towards a lower angle can 
be noticed. Cu lattice constant was calculated using aCu =

√

3

2sin
�λ (cubic struc-

ture, orientation (111)). The obtained aCu is shown in Table 1. The lattice con-
stant of pure Cu (JCPDS Cu 04–0836) was also calculated using the same method 
and the value is 3.616 Å. The Cu lattice parameters of all the prepared samples 
were larger than that of pure Cu, indicating an expansion of the Cu lattice [28]. 
This should be attributed to the fact that Zn2+ entered into the Cu lattice to form 
Cu–Zn alloy, as reported by Valant [29] and Nakamura [30], since Zn2+ (0.60 Å) 
is bigger than Cu2+ (0.57 Å) [29]. Generally, the more Zn2+ entered into the Cu 
lattice, the larger the cell parameters of the resulted catalysts would be. There-
fore, in the series, ZnO/Cu(4:6) had the most amount of CuZn alloy, followed by 
ZnO/Cu(5:5), ZnO/Cu(3:7), ZnO/Cu(2:8) and ZnO/Cu(1:9).

Fig. 2   XRD diffraction patterns of ZnO/Cu catalysts
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SEM and TEM

SEM (A) and TEM (B) images of ZnO/Cu (4:6) sample are shown in Fig. 3 and 
the EDS results are displayed in Table 2. From Table 2, one can see that at point 
a, Zn element accounts for the majority; while at point b, Cu element accounts for 
the majority. Combing with the SEM image of the sample, it suggested that the 
small particles is probably correspond to the ZnO species. Meanwhile, the flake-
like structure was probably assigned to Cu particles. Hence, this finding implied 
that ZnO particles were relatively well-dispersed on the surface of flake-like Cu. 
The TEM image of the catalyst is consistent with the SEM results. The particle 
size of Zn in both SEM and TEM images is about 20 nm, in accordance with the 
XRD results. However, the particle size of Cu seems a little difficult to distin-
guish due to the aggregation.

XPS measurements

The XPS measurements were performed to determine the valence state of Zn 
and Cu on the surface and the results are shown in Fig.  4. The binding energy 
for Zn 2p3/2 was at about 1021.5 eV, which agrees well with reported Zn2+ [13]. 
There are two main peaks for Cu 2p XPS spectrum. The peaks at binding energy 
(BE) = 932–933  eV and BE = 952–953  eV should be ascribed to Cu2p3/2 and 
Cu2p1/2. For CuO sample, the obvious shake-up satellite peak at 937–945  eV 
was the characteristic of Cu2+ [31]. After the reduction process, the significant 

Fig. 3   SEM (a) and TEM (b) images of ZnO/Cu (4:6) sample

Table 2   EDS analysis for ZnO/
Cu (4:6) sample

Element Cu/wt% Zn/wt% O/wt%

Point a 11.88 60.96 27.16
Point b 53.96 17.01 29.04
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decrease or the absence of the shake-up peak strongly suggested that most cupric 
species had been reduced to a low oxidation or metallic state. Since the binding 
energy of Cu+ and Cu0 are almost the same, XPS spectra could hardly give a 
distinguished identification. However, our previous study showed that Cu+ only 
existed for a short time during the reduction process [32]. There were some other 
reports on similar catalysts confirmed the presence of only Cu0 on the surface 
using Cu LMM spectra [27, 33]. Therefore, we could conclude that Cu0 was the 
dominant species on the surface after the reduction. Table 3 lists the Cu/Zn molar 
ratios both on the surface and in the bulk of the samples given by XPS and Induc-
tively Coupled Plasma (ICP) results. It was obvious that the Cu/Zn ratios on the 
surface of the catalysts were significantly lower than that in the bulk phase, sug-
gesting that only a little amount of Cu presented on the surface in the prepared 
catalysts, while large amount of Cu remained in the bulk.

Fig. 4   Zn 2p and Cu2p XPS spectra of CuO and the reduced ZnO/Cu catalysts

Table 3   Cu/Zn molar ratios, TPR and TPD results for ZnO/Cu catalysts

a Cu/Zn molar ratios obtained by XPS
b Cu/Zn molar ratios obtained by ICP
c The temperatures of different reduction peaks of CuO

Sample XPSa ICPb Lower peak/°C c higher peak/°C c D(%) SCu (m2/g)

ZnO/Cu(1:9) 0.8 9.0 246 268 0.39 1.6
ZnO/Cu(2:8) 0.5 4.0 214 238 0.49 1.7
ZnO/Cu(3:7) 0.4 2.3 220 246 1.04 2.6
ZnO/Cu(4:6) 0.1 1.5 176 212 1.46 3.7
ZnO/Cu(5:5) 0.2 1.0 206 239 0.86 4.0
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The reducibility of the catalysts

The TPR profiles of the ZnO/Cu catalysts with different Zn/Cu ratios were pre-
sented in Fig. 5. For pure CuO sample, two reduction peaks at about 221 °C and 
269 °C were observed, indicating the presence of two different types of CuO. Many 
researchers have extensively studied the reducibility of CuO. The lower temperature 
reduction peak was commonly ascribed to the reduction of highly dispersed CuO, 
while the higher reduction peak was ascribed to the reduction of bulk CuO interact-
ing with the support [34, 35]. Furthermore, the two reduction peaks have also been 
described as stepwise reduction of copper, which is Cu2+ to Cu+ and Cu+ to metallic 
Cu [36]. In order to further analyze the reducibility of ZnO/Cu catalysts, the profiles 
were deconvoluted using the Gaussian Fitting. The reduction temperatures of CuO 
are shown in Table 3. All ZnO/Cu samples could be divided into two peaks, also 
suggesting the existence of two different kinds of CuO species or the two reduc-
tion steps. After adding ZnO, the position of the CuO reduction peaks shifted to 
the low temperatures, suggesting that the interaction between ZnO and Cu promoted 
the reduction of CuO. The most notable peak shift could be seen for ZnO/Cu(4:6) 
sample, indicating the strongest interaction, which is in accordance with the results 
of XRD. Meanwhile, the position of the reduction peaks of ZnO/Cu(1:9) did not 
change much, probably because the content of ZnO was too low to have any effects.

H2‑TPD

The copper surface area (SCu) was determined using the H2-TPD method. Although 
N2O measurement has been used for about 30 years to calculate the Cu surface area 
of the Cu/ZnO catalysts, recently, it has been confirmed that this method was not 
accurate because N2O measured the Cu surface area as well as the oxygen vacancies 

Fig. 5   H2-TPR profiles for ZnO/Cu catalysts
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on the ZnO surface [20, 37, 38], whereas the real Cu surface area should be accu-
rately determined by H2-TPD [20, 37, 39]. Fig. 6 gives the profiles for ZnO/Cu sam-
ples. As reported previously, pure ZnO did not absorb any hydrogen in our entire 
test range [20]. Usually, the desorption temperature of H2 from the ZnO surface was 
in the range of 300–500 °C [40, 41]. However, Cu species exhibited one desorption 
peak in the range of 30–60 °C, which can be assigned to the desorbing results of 
H atoms from metallic Cu surface [42–44]. For all the ZnO/Cu profiles, only one 
desorption peak at about 30 °C can be detected, which is quite similar to the des-
orption H2 from metallic Cu surface. Based on the hydrogen desorption amount, 
we calculated Cu dispersion (D) and SCu, which are shown in Table 3. All the ZnO/
Cu samples had rather small Cu surface areas and Cu dispersion due to the unique 
inverse structure. It was observed that for ZnO/Cu catalysts, with the increase of 
ZnO content from 10 to 50%, the exposed Cu surface area increased from 1.6 m2/g 
to 4.0 m2/g. However, the dispersion of Cu species had a different trend. It increased 
from 0.39 to 1.46 when ZnO content increased from 10 to 40%. When further 
increased ZnO content to 50%, a decrease of the dispersion of Cu species to 0.86 
can be observed.

Catalytic and stability performance

Fig.  7 displays the stabilities of CO2 conversion with time on stream for inverse 
ZnO/Cu catalysts. For all the ZnO/Cu catalysts, no obvious decrease of conversion 
had been noticed for 50 h, suggesting no deactivation had taken place on them. CO 
and CH3OH selectivity as well as CH3OH yield are shown in Table 4. When the 
ZnO loading increased from 10 to 40%, CO2 conversion and CH3OH yield increased 
significantly. However, further increasing ZnO loading to 50%, CO2 conversion and 
CH3OH yield decreased to 8.9% and 2.4  mmol  g−1  h−1. Previously, Cu/ZnO had 

Fig. 6   H2-TPD profiles for ZnO/Cu samples
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been studied for methanol synthesis with different Cu/Zn ratios. Valant [29] reported 
that Cu/ZnO, with a Zn loading of 62%, exhibited the highest activity. The metha-
nol formation rate was about 1.8 mmol g−1 h−1 at 3.0 MPa and 250 °C. Here, our 
results showed the best catalyst had a 2.8 mmol g−1 h−1 methanol yield, much higher 
than the reported one even at a lower reaction pressure. We also tested the Cu/ZnO 
catalyst with a Cu loading of 60%. CH3OH yield was 1.8 mmol g−1 h−1, much lower 
than the inverse ZnO/Cu sample with the same composition.

Discussion

Although many researchers have focused on the catalytic CO2 hydrogenation using 
Cu–ZnO based catalysts in recent years, no agreement regarding the active phase of 
catalysts has been made. Some researchers believed that there was a strong interaction 
between the activity and the CuZn alloy [39, 45]. Some argued that CO2 conversion 

Fig. 7   Stabilities of CO2 conversion with time on stream over the catalysts. Reaction conditions: 
2.0 MPa, 250 °C, VH2:VCO2 = 3:1, space velocity = 3.6 Lˑh−1ˑg−1

Table 4   Catalytic performance over ZnO/Cu catalysts at 2.0  MPa and 250  °C, V(H2):V(CO2) = 3:1, 
space velocity = 3.6 L h−1 g−1

Sample CO2 conversion 
(%)

CO selectivity 
(mol%)

CH3OH selectivity 
(mol%)

CH3OH yield 
(mmol g−1 h−1)

ZnO/Cu(1:9) 7.5 72.1 27.9 0.8
ZnO/Cu(2:8) 8.0 65.7 34.3 1.1
ZnO/Cu(3:7) 8.3 58.3 41.7 1.3
ZnO/Cu(4:6) 8.9 40.8 59.2 2.1
ZnO/Cu(5:5) 8.4 59.9 40.1 1.4
Cu/ZnO (6:4) 13.5 65.7 34.3 1.8
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was related to the Cu surface area [40, 46]. Still, others held the opinion that ZnO-Cu 
interfacial sites facilitated the methanol synthesis reaction [13, 47].

As shown in Fig. 8, methanol yield did not follow the trend of Cu surface area. This 
is also supported by the observation that Cu on its own is a poor catalyst for metha-
nol synthesis from CO2/H2 [48]. Therefore, the surface area of Cu is not the factor for 
the methanol synthesis activity. Fig. 8 also shows the relationship between the Cu lat-
tice constant and the yield of methanol. Clearly, a linear relationship can be detected. 
According to the Vegard’s law [49], a linear relation exists between the crystal lattice 
constant of an alloy and the concentrations of the constituent elements. Therefore, it is 
reasonable to deduce that there is a linear relationship between the methanol yield and 
the CuZn alloy content.

Furthermore, the unique inverse structure inhabited the formation of highly dis-
persed Cu, of which the amount was much less than that of the conventional Cu/ZnO 
samples [50]. According to previous reports on the mechanism of CO2 hydrogenation, 
H/D exchange experiments showed that the main side reaction (reverse water gas shift 
side reaction, CO2 + H2 → CO + H2O) proceeded on clean Cu surface sites [2, 51]. 
On CexCuyO [25], Cu/ZrO2 and Ga2O3/Cu/ZrO2 [52] catalysts, highly dispersed Cu 
sites were also considered the main active phases for reverse water gas shift reaction. 
Because of the lower amount of highly dispersed Cu sites on the surface, ZnO/Cu(4:6) 
sample had a lower CO selectivity and thus a higher methanol selectivity than Cu/ZnO 
(6:4).

Fig. 8   The relationship between methanol yield and the exposed Cu surface area (obtained from the 
H2-TPD results), Cu lattice constant (obtained from the XRD results) Reaction conditions: 2.0  MPa, 
250 °C, VH2:VCO2 = 3:1, space velocity = 3.6 L h−1 g−1
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Conclusions

Inverse ZnO/Cu catalysts were prepared with different Zn/Cu molar ratios and tested 
for CO2 hydrogenation to methanol. The inverse structure made the Cu/Zn molar 
ratios on the surface much lower than in the bulk phase. CuZn alloy was formed in 
the samples and there is a linear relationship between the methanol yield and the 
CuZn alloy content. Highly dispersed CuO accounted for only a small amount on 
the surface, while large amount CuO was in the bulk form. ZnO/Cu(4:6) sample 
had the smallest Cu particle size and lowest CuO reduction peaks, indicating the 
strongest interaction between ZnO and CuO. In addition, the unique inverse struc-
ture inhabited the formation of highly dispersed Cu sites, which is helpful for the 
production of CO. As a result, ZnO/Cu(4:6) exhibited the highest CH3OH yield 
(2.8 mmol g−1 h−1) at 2.0 MPa and 250 °C. From the results, we reckoned that the 
inverse structure and the tuning of CuZn alloy content would be an important topic 
to guide the preparation of ZnO/Cu catalysts.
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