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Abstract
The nickel-based catalysts supported on MgO-modified α-Al2O3,  CeO2, and SBA-
15 were prepared by impregnation method and investigated by  N2 physisorption 
measurements, powder X-ray diffraction, Raman spectroscopy,  H2 temperature-
programmed reduction,  CO2 temperature-programmed desorption, and transmission 
electron microscopy. Investigation of the kinetics of the dry reforming of methane 
(DRM) was carried out in gradientless circulating micro-flow system at atmospheric 
pressure and temperature range of 600–800  °C. The results showed that carriers 
have a prominent role in characterising the physico-chemical properties of catalysts 
such as specific surface area, dispersity of active metal, reducibility and basicity 
that greatly affect the adsorption feature and activity of NiO catalyst. However, the 
kinetic equation of DRM on three catalysts was found to be written by a common 
fractional equation, following a dual-site Langmuir–Hinshelwood Hougen Watson 
model. The order in the catalyst reducibility and apparent rate constant was observed 
as follows: NiMg/Al<Ni/Ce<Ni/SBA, while the apparent activation energy (E) is in 
the opposite order. The highest activity was observed on the catalyst containing 31.2 
wt% Ni supported on SBA-15.
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Introduction

Dry reforming of methane (DRM) is a promising way to convert two major green-
house gases,  CO2 and  CH4, into valuable semi-product, the synthetic gas. Many 
metals used as active components of catalysts have been reported for reforming of 
 CH4. Among these metals, due to the relatively high activity, low cost and avail-
ability, Nickel has been used frequently in researches. However, current restric-
tions on the activity and stability caused by strong coke-formation and sintering 
of the nickel catalysts make them inapplicable commercially. So, many ways have 
been proposed to improve the Ni-based catalysts for methane reforming.

The most commonly used support for DRM is  Al2O3 while other supports 
such as MgO,  TiO2,  SiO2, and  La2O3 are also used [1]. Both Ni/α–Al2O3 and 
Ni/γ–Al2O3 were unstable with time on stream (TOS) for methane reforming. 
While Ni/α–Al2O3 has been reported to be unstable due to carbon deposition, 
phase change of γ-Al2O3 at high temperatures (700 °C) was the reason for insta-
bility of NiO/γ–Al2O3 catalyst [2]. Nakamura et al. [3] found that the effect of the 
support in the performance of reforming catalysts decreased in following order: 
 Al2O3>TiO2>SiO2.

To overcome the limitations of  Al2O3 support, the alkali metals [4] and lan-
thanides [5] had been added to  Al2O3. The addition of basic oxide as MgO led to 
increase  CO2 adsorption as well as enhance the coke resistance of the catalyst [4]. 
Core–shell catalysts are also studied for abating the aggregation of Ni particles 
under high reaction temperature. The core–shell catalysts [(Ni/MgAl2O4)@SiO2] 
had better coke-resistance and stability than the uncoated catalysts (Ni/MgAl2O4) 
in DRM [6]. The addition of lanthanum in the catalysts led to the formation of 
 LaNiO3 perovskite, which reduces the sintering of the active phase, increases the 
degree of dispersion of the catalyst and provides better Ni–La interaction in dry 
reforming of methane [7]. Xu et al. [8] presented that the addition of lanthanum 
in the NiO–La2O3–Al2O3 catalyst improves the absorptive capacity of  CO2 by 
improving the reactivity of the reaction.

As a material with high thermal stability (SBA-15 [9]) and unique properties 
 (CeO2 [10]), they recently are considered as the promising supports for DRM 
reaction.  CeO2 has been known as a material with high oxygen storage and release 
by shifting between  CeO2 under oxidizing conditions and  Ce2O3 under reducing 
conditions [11]. This property originates from the relative ionic radius of  Ce4+/
O2− of 0.71 which results in a coordination number of Ce/O atoms of 8 and that 
of O/Ce atoms of 4 [12], producing oxide defects in  CeO(2−x) (x ~ 0.5) [13]. High 
oxygen storage (OSC) at the cerium oxide surface, reaching 357 μmol  O2/g [12], 
was proved to improve the yield of CO and  H2 in gasification of cellulose [14], 
the activity of three-way catalysts [11, 15] as well as enhance coke-resistant of 
DRM catalysts [16]. Studies have shown that the affection of the support could 
be attributed to direct activation of  CH4 or  CO2 by metal oxides and differences 
in particle size. As a support,  CeO2 can provide strong metal-support interaction, 
leading to the high dispersion of active metal onto  CeO2 [17]. Meanwhile, the 
controllable and uniform pore size distribution, high surface area and large pore 



709

1 3

Reaction Kinetics, Mechanisms and Catalysis (2020) 131:707–735 

volume of Santa Barbara Amorphous 15 (SBA-15) facilitate improving the nickel 
catalyst dispersion for  CO2 reforming of  CH4 [18, 19].

Recently, hexagonal boron nitride (h-BN) is considered as a promising nanoma-
terial in the heterogeneous catalysis due to the superior chemical and thermal sta-
bility [20]. The boron nitride defect-confined Ni catalysts (Ni/d-BN) [21] and Ni 
nanoparticles embedded on vacancy defects of hexagonal boron nitride nanosheets 
(Ni/h-BNNS) [22] exhibited very high catalytic activity, excellent stability and cok-
ing-resistance for DRM. It was found that the defect sites of BN play a key role 
in adsorption and activation of reaction gases in the first case and the synergistic 
effect of abundant surface defects and nano-sized Ni species significantly improve 
the conversion of  CH4 and  CO2 in the second case. Meanwhile, a combined effect of 
both h-BN interface and nano-sized Ni species result in the excellent catalytic stabil-
ity and coke-resistance of h-BN supported  mesoSiO2-confined Ni catalysts Ni/BN@
mSiO2 in DRM [23].

Ni catalysts confined between boron nitride (BN)-nanoceria (NC) interfaces have 
been also demonstrated as efficient and stable DRM catalysts, which exhibit high 
activity and high resistance towards carbon deposition [24]. The stronger interaction 
between nickel and BN-nanoceria interfaces led to higher concentration of  Ce3+ spe-
cies, which promotes adsorption and activation of  CO2 that facilitates the fast forma-
tion of –OH species. The active –OH species prevent coke formation and improve 
the stability of Ni catalysts. In addition, an efficient and stable boron nitride inter-
face-confined and layered double hydroxides (LDHs)-derived Ni catalysts (NiMA-
BN-M-R) was also developed for DRM [25]. The confinement derived from the 
interface between h-BN and LDHs-derived (Ni, Mg)Al2O4-sheets were responsible 
for well-dispersed Ni nanoparticles and anti-sintering of Ni nanoparticles during 
DRM reaction were demonstrated.

To widely apply this process in simulation and industry, design reactors and find 
the optimal conditions for the process, the mechanism and kinetics of the process 
was extremely important [26]. Although kinetics and mechanism of dry reforming 
of  CH4 have been studied for many years, it is still highly controversial [27–29]. 
Different mechanisms for DRM reactions are proposed depending on the used cata-
lysts and reaction conditions [30, 31]. Correspondingly, the various kinetic models, 
including the Power Law [32], Eley–Rideal [33], and Langmuir–Hinshelwood mod-
els [34], have been published.

The simple power-law rate Eq.  (1) was reported in numerous publications 
[35–37]:

Here r is reaction rate; k is the reaction rate constant; n and m are the orders of 
corresponding reactants.

The rate of the  CO2–CH4 reforming is first-order in  CH4 and zero-order in  CO2 
was found on Ni/MgO [35] and Rh/NaY catalysts [36]. Further, the kinetically rel-
evant step of the C–H bond activation and fast steps of hydrogen desorption to form 
 H2 and  CO2 reactions with  CH4-derived chemisorbed species to form CO was sug-
gested [35]. Meanwhile, on Rh/Al2O3 catalyst both  CH4 and  CO2 limit overall rates 

(1)r = kPn
CH4

Pm
CO2
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of DRM reaction [38] and first-order rate dependencies on  CO2 and  CH4 were pro-
posed [37]. Zheng et al. [39] reported that the reaction order of  CH4 (n) is in the 
range of 0.419–0.479, lower than that of  CO2 (m) ranging within 0.523–0.734 for the 
reaction rate of  CH4, while the reaction order of  CO2 in the range of 0.434–0.567, 
lower than that of  CH4 for rate of  CO2 conversion (Eq. 1) for the DRM on silica-
coated  LaNiO3 nanoparticles. The Power Law model was used quite universally to 
calculate the kinetics for dry reforming. The main advantage of this model is the 
simplicity of applying and estimating parameters as the reaction order. However, it 
cannot fully explain the various steps in the reaction mechanism that occur on the 
catalyst surface [40].

The Eley–Rideal model is also used to describe DRM reaction [41]. According 
to this mechanism, the reaction takes place between the substances adsorbed on the 
surface of catalyst with the other in the gas phase to produce the product. The fol-
lowing kinetic equations for DRM on the Ir/Al2O3 catalyst was established based on 
Eley-Rideal model [41]:

Eley − Rideal I (ER I):

and Eley − Rideal II (ER II):

Here KCH4
 and KCO2

 are the adsorption equilibrium constant of  CH4 or  CO2, 
respectively;  Pi is the partial pressure of corresponding substance, and Keq is equilib-
rium constant of the reaction at certain temperature and pressure.

Langmuir–Hinshelwood (LH) model received much attention from scientists 
[42] due to the concordance between mechanisms and experimental results. For this 
model, both reactants were firstly adsorbed on the catalyst surface before proceeding 
the reaction between adsorbed species to form product. Based on kinetic research 
and isotopic measurements [27, 29, 43, 44], a common sequence of elementary steps 
for reactions of  CO2–CH4 reforming on different catalysts was proposed, from which 
different kinetics equation was offered.

It has been shown in numerous publications that there are two main models under 
the Langmuir–Hinshelwood mechanism: single [34] and dual-site model [45]. For 
the single-site model, the following general kinetic equation is often used to express 
the reaction rate on different catalysts [31, 41, 46–48]:
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kKCH4
(PCH4
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−
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Here α is surface coverage, the other symbols in Eq. 4 having the same meaning 
as in Eqs. 1, 2, and 3. In this equation the second factor of the right part of equation 
takes into account the inverse reaction.

This kinetic equation described the reaction between  CH4 and  CO2 both chem-
isorbed to the one kind of surface site. Different values of exponents create differ-
ent LH models. The LH1 model of molecular adsorption of both  CH4 and  CO2 on 
the singe site with bimolecular surface reaction (n = m = 1) is reported in most of 
the researches [30, 31, 41, 46, 48, 49]. Meanwhile, LH2 (n = 1 and m = 0.5), the 
associate adsorption of  CH4 and dissociative adsorption of  CO2 and LH3 (n = 0.5 
and m = 1), the dissociative adsorption of  CH4 and associate adsorption of  CO2 with 
bimolecular surface reaction models, were proposed for DRM on lanthania sup-
ported cobalt catalyst [46]. The LH4 model described the reaction, in which both 
materials is involved in reaction in dissociated adsorption state (n = m = 0.5) was 
considered in the studies [46, 47]. In addition, the reaction took place in the high 
surface coverage (α = 1) in LH1, LH2, LH4 models, while in the medium surface 
coverage in LH3 model (α = 0.5). On Ni/TiO2, Ni/MgO, Ni/SiO2 [50], and Ni/La2O3 
catalysts [51], the reaction rate is expressed by Eqs. 5 and 6, in which reaction prod-
ucts  (H2 and CO) exhibit reaction suppression.

Nevertheless, other study [52] proposed a dual-site Langmuir–Hinshelwood 
mechanism, corresponding to the following equation:

From this general equation different LH models were drawn. The dual site associ-
ate adsorption of  CH4 and  CO2 with bimolecular surface reaction (n = m = 1) was 
proposed by Pichas [53] for DRM on Ni/γ–Al2O3 and perovskite-type oxides. Dual 
site dissociative adsorption of  CH4 and associate adsorption of  CO2 (n = 0.5 and 
m = 1) [54] on bimetallic Co–Ni/Al2O3 catalysts and dissociative adsorption both 
of  CH4 and  CO2 (n = 0.5 and m = 0.5) with bimolecular surface reaction [47] on the 
catalysts based on Ni–Co/Al2O3 was considered. Other study [52] indicated that 
over a Ni/La/Al2O3 catalyst the  CH4 consumption rate was inhibited by product CO 
and the kinetic equation has form:

(5)r =
aPCH4

PCO2

bPCOP
(4−x)∕2

H2
+ (1 + cPCH4

)PCO2
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aPCH4
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Furthermore, considering DRM as a reversible reaction Olsbye et  al. [52] has 
expressed the reaction rate in the form of Eq. 9:

In the references, the different opinions in intermediates and rate-determining 
step (RDS) for the dry methane reforming reaction have been published. Some 
authors [27, 55] suggest that the intermediate compound is  CHxO formed via quasi-
equilibrated reaction of  CHx with O, which are originated from reversible dissocia-
tion of  CH4 and dissociative adsorption of  CO2. Further, the interaction of  CHx with 
surface oxygen to form  CHxO is fast, and the absence of  CHx species on the catalyst 
surfaces was reported [50, 56]. Finally,  CHxO dissociates to form adsorbed CO and 
H, which then desorb to form CO and  H2. In this case, the  CH4 activation and  CHxO 
decomposition as kinetically relevant steps were suggested and the kinetics of the 
reaction was described by Eq. 5.

In other studies [29, 57, 58], the decomposition of  CH4 to chemisorbed carbon 
 Cads in a series of elementary H-abstraction steps was accepted. Because activation 
energy for the first H-abstraction step in  CH4 on Ni clusters is much higher than that 
for  CH2 formation from  CH3 [59], the  CHx,ads coverages are low and  Cads is the most 
abundant carbon-containing reactive. In the next step the resulting chemisorbed car-
bon is removed by oxidation using  CO2 dissociatively adsorbed on the catalyst sur-
face as CO and O. Based on the dependence of the reaction rate on the partial pres-
sure of  CH4 and  CO2 and the kinetic isotope effects, Junmei Wei et al. [35] asserted 
that the exclusive kinetic relevance of C–H bond activation and the absence of any 
species derived from  CO2 in rate-limiting steps during DRM reaction.

However, there are several studies reporting the role of  CO2 activation in the 
kinetics of DRM reaction. On Ni/La2O3 and Ni/SiO2 [60–62] as well as noble met-
als catalysts [55], the significant involvement of  CO2 activation and of chemisorbed 
oxygen in kinetically relevant steps are recognized. Based on the thermodynamic 
isotope effects,  CO2 activation or reaction of chemisorbed carbon with oxygen [60] 
or  CO2 dissociation [63] or its reaction with adsorbed  CHx species [64] was pro-
posed to limit  CO2-reforming rates. However, Junmei Wei et al. [35] confirmed the 
quasi-equilibrated nature of  CO2 activation and  H2 formation.

The single rate-determining step (RDS) in the dry reforming was accepted in 
some investigations. The  CH4 decomposition over Ni/MgO catalyst [35], the decom-
position of  CHxO (x = 1–2) into CO gas and adsorbed H species on the KNi/Al2O3 
[65], or the reaction between the carbon species originated from  CH4 dissociation 
and the oxygen atoms resulting from  CO2 decomposition to produce CO gas over 
Ni/Al2O3 [66], Ni/SiO2 [60], and KNiCa [61] catalysts were considered as single 
RDS in DRM.

The other opinion in DRM reaction is two RDS involving in the reforming reac-
tion. Both  CH4 dissociation and  CHxO decomposition were the RDS in the reform-
ing reaction over the supported Ni catalysts suggested in several publications [50, 
56, 67]. The  CH4 dissociation and the reaction of surface carbon species with 

(9)
−rCH4

=

k

(

PCH4
PCO2

−
P2
H2

P2
CO2

Keq

)

(1 + k1PCH4
+ k2PCO)(1 + k3PCO2

)



713

1 3

Reaction Kinetics, Mechanisms and Catalysis (2020) 131:707–735 

 La2O2CO3 were RDSs in the reforming reaction over Ni/La2O3 catalyst was also 
concluded [51].

As can be found from the literature review, although there are various mecha-
nisms and kinetic equations proposed for the DRM reaction, however,  CH4 disso-
ciative adsorption via sequential elementary H-abstraction steps, and its surface 
chemical reaction with  CO2 molecular adsorption [55] or O originated from  CO2 dis-
sociatively adsorbed on the catalyst surface [27, 29] as the rate-determining step was 
commonly accepted over different catalysts. By density-functional theory, Burgh-
graef et al. [59] had determined that the activation energy for the first H-abstraction 
step in  CH4 molecular on Ni clusters is 142 kJ/mol and reduces to 25–40 kJ/mol for 
 CH2 formation from  CH3. So, the first H-abstraction is the kinetically relevant step. 
Junmei Wei and Enrique Iglesia [35] also reported that only the rate constant for the 
activation of the first C–H bond in  CH4 appears in the rate expression.

Recently, for kinetic modelling the Langmuir Hinshelwood Hougen Watson 
(LHHW) theory have been used [68, 69]. For example, the kinetic modelling of 
methanol to olefin (MTO) over SAPO-34 nanocatalyst [68], butane catalytic crack-
ing over La/HZSM-5 [69], biogas dry reforming over a platinum–rhodium alumina 
catalyst [70], and Fischer–Tropsch synthesis [71, 72] was performed using LHHW 
theory. According to the LHHW theory, in reactions over heterogeneous catalyst, 
the reactive molecules are absorbed onto the active sites of catalyst and the reactive 
molecules are formed. When this weak bond is broken, the reaction products leave 
the active sites mechanism [68, 69]. In the LHHW model the substance adsorption 
step or the surface reaction of the adsorbed species was accepted as the reaction 
determined step (RDS). For the catalytic process of biogas dry reforming, the reac-
tion takes place in the 5 following stages: (1)  CH4 adsorption; (2)  CO2 adsorption; 
(3) the surface reaction of adsorbed species; (4) desorption of CO and (5) desorption 
of  H2 [70]. In this mechanism system, step 3 was considered as RDS [70].

Generally, there have been many studies on kinetics and mechanism of DRM 
reaction, but no agreement on the kinetic model of this reaction has been released, 
shows that the reaction kinetics strongly depends on the catalyst used. Furthermore, 
we have not found previous studies on the kinetics of methane dry reforming over 
NiO catalyst supported on  CeO2 or SBA-15. The purpose of this study is to inves-
tigate properties and the activity of Nickel catalysts supported on different supports 
(MgO-modified  Al2O3,  CeO2, and SBA-15) as well as kinetics of DRM reaction over 
given catalysts. On these results, the effect of various supports would be clarified.

Experimental

Preparation of the catalysts

α-Al2O3 obtained by calcination of γ-Al2O3 (≥ 99.9%, Merck) at 1200 °C for 3 h. 
 CeO2 nanorods were obtained by following procedure outlined before [73]. SBA-15 
was prepared by hydrothermal method, described in detailed in our previous paper 
[74]. The NiO catalysts supported on  CeO2 and SBA-15 were prepared by impreg-
nation method from Ni(NO3)2⋅6H2O (Prolabo, > 99%) precursor. The Ni content in 
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the catalysts was 7.8 and 31.2 wt% on  CeO2 nanorod and SBA-15 supports, based 
on the result of previous investigations [73, 74]. After drying, samples were cal-
cined in air at 800 °C for 0.5 and 2 h. The two catalysts prepared are symbolized 
as Ni/Ce and Ni/SBA. Thirdly, the catalyst containing 5.2 wt% Ni; 12.0 wt% Mg 
on α-Al2O3 was prepared by co-impregnating Ni(NO3)2⋅6H2O and Mg(NO3)2⋅6H2O 
(≥ 99%, Xilong) solution on α-Al2O3 according to the procedure described in [75]. 
The resulted suspension was then stirred regularly in 1 h at 80 °C before overnight 
aging and drying in air at 80 °C, 100 °C and 120 °C within 2 h at each temperature. 
Finally, the sample was calcined in air at 900 °C for 3 h and denoted as NiMg/Al.

Characterization of the catalysts

The crystalline structure of prepared catalysts was investigated by X–ray dif-
fraction using Bruker D2 Phaser powder diffractometer with Cu  Kα radiation 
(λ = 0.15406 nm). The specific surface area of the catalysts was measured by BET 
isothermal adsorption of nitrogen at − 196  °C (Nova Station B, Quantachrome 
NovaWin Instrument). The Raman spectra were obtained at room temperature with 
a laser Raman spectrometer (Invia, Renishaw, UK). The reducibility of catalysts was 
characterized by Temperature-Programmed Reduction  (H2-TPR) and the basicity 
of catalysts activating at 450 °C for 1 h was evaluated by Carbon dioxide Temper-
ature-Programmed Desorption  (CO2-TPD) measurements, both using a Gas Chro-
matograph GOW-MAC 69-350 with a Thermal Conductivity Detector (TCD). The 
size of metal particle dispersed on support was characterised by scanning electron 
microscope on FE–SEM JEOL 7401 instrument and transmission electron micros-
copy (TEM) using TEM-JEOL 1400 instrument. The amount of coke deposited on 
the catalysts working at 700  °C during 30  h was determined by temperature pro-
grammed oxidation (TPO) technique [73].

Investigation of the catalyst activity and the reaction kinetics

The activity for DRM of the prepared catalysts was tested in a micro-flow reac-
tor under atmospheric pressure at 600–800  °C, feed flow velocity of 6 L h−1, the 
mol ratio of  CH4:CO2 in feed of 3:3 and the loading mass of catalyst sample 0.2 g. 
Before conducting the reaction, catalyst was reduced in-situ in 40%  H2/N2 gas mix-
ture flow (3 L h−1) for 2 h at 800 °C. The reaction mixture was analysed on the Agi-
lent 6890 Plus Gas Chromatograph (HP-USA) using both TCD detector (capillary 
column TG-BON Q) and FID detector (capillary column DB-624).

The kinetics of DRM was studied in a gradientless flow-circulating system [76] 
using the circulating pump with a flow rate of 150 L h−1, which is much higher than 
feedstock flow velocity (varying from 6 L h−1 to 36 L h−1). The kinetic investigation 
was conducted at atmospheric pressure and 600–800 °C. The ranges of initial partial 
pressures of  CH4,  CO2, CO, and  H2 were 15–30, 15–30, 0–15, and 0–15 hPa. Under 
these conditions, the conversion of  CH4 ( XCH4

 ) was varied in the range of 0.25 to 
0.95.
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The conversion (X) of  CH4 and  CO2, selectivity (S) of  H2 and CO are defined as 
follows [39]:

Here: hi,in and hi,out are the moles number of substance i at the inlet and out of the 
reactor, respectively.

The reaction rate in the flow system in gas phase is calculated by the Temkin’s 
formula [77]:

Here Po
CH4

 is the initial partial pressure (hPa) of methane in the inlet gas mixture; 
XCH4

 is the methane conversion; g is the catalyst loading mass (gram); and v is the 
total flow velocity of reaction gas mixture (L.h−1).

Results and discussion

Characterization of the catalysts

The low-angle XRD pattern for bare SBA-15 support (Fig. S1) exhibited three inten-
sive main diffraction peaks at 2θ of 0.90°, 1.60 and 1.84°, indexed as the (100), (110) 
and (200) reflections, indicating the ordered hexagonal meso-structure SBA-15 was 
successfully synthesized [78, 79]. The low-angle diffraction pattern of the NiO/
SBA-15 catalysts (Fig. S1) exhibits a broader (100) peak shifts toward a larger angle 
to around 1.1°, with low intensity. The (110) and (200) peaks completely disap-
peared. This is explained by the presence of NiO particles out and into mesoporous 
structure of SBA-15 channels [80], as evidenced in the TEM image (Fig. 3c).

The PXRD patterns of 5.2%Ni/Al2O3 (Ni/Al), NiMg/Al, Ni/Ce and Ni/SBA 
samples (Fig. 1) were compared with the reported standard JCPDS data for NiO 
(JCPDS cards No.71-1179). It could be seen that diffraction peaks characterizing 
NiO phase appear strongly on Ni/SBA sample at 2θ = 37.2°, 43.3°, 62.9°, 75.4°, 
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and 79.6° corresponding to (101), (200), (220), (311), and (222) plans with high 
intensities [18]. Meanwhile, on Ni/Al, NiMg/Al and Ni/Ce catalysts, these char-
acteristic peaks are very weak (Ni/Al, NiMg/Al) or absent (Ni/Ce). This indicates 
that NiO exists in the crystals of 18.3 nm on the first catalyst and in the highly 
dispersed or amorphous phase on the two rest catalysts. In addition, on the XRD 
patterns of NiMg/Al the weak peaks characterizing  MgAl2O4 spinel appeared at 
2θ = 19.1°; 31.5° and 65.4° (JCPDS cards No.77-1193) [81] were also observed, 
meanwhile, on Ni/Al samples, the very weak peaks characteristic for spinel 
 NiAl2O4 at 2θ = 18.9° and 44.39° (JCPDS Card no. 73-0239) [82] appeared.

For supports, in contrast, α-Al2O3 and  CeO2 exist in crystalline state, which are 
characterized by strong diffraction peaks at 2θ = 25.5°, 35.1°, 37.8°, 43.3°, 52.5°, 
57.5°, 61.3°, 66.5°, 68.2°, 76.8° (JCPDS cards No.82-1399) [83] and 2θ = 28.6°, 
33.1°, 47.5°, 56.4°, 59.2°, 69.4°, 76.7°, 79.2° (JCPDS cards No.34-394) [84, 85]. 
While the broad diffraction peak observed at about 2θ = 20–30° is attributed to 
amorphous  SiO2 (ICDD PDF No. 00-29-0085), frameworks of SBA-15 [86, 87].

Raman spectroscopy was used to further validate the phase purity of the 
synthesized samples. Fig.  2 shows that on all samples the peaks appear in the 
range of 500–650 cm−1 were attributed to the presence of the NiO phase due to 
the oscillation of the Ni–O bond in line [88]. It shows that no other peaks were 
detected on the Ni/SBA sample, indicating the amorphous properties of SBA-15 
material [18]. On Ni/Ce sample, a main peak at 465  cm−1 was observed which 
corresponds to the first order  F2g mode of the cubic fluorite structure of  CeO2 
[89]. There is the additional bands around 625 and 1170  cm−1 attributed to 
defect-induced (D) [90], being induced by the oxygen vacancy originated from 
reducing  Ce4+ to  Ce3+ [91, 92] and longitudinal optical (2LO). The concentration 
of oxygen vacancies of  CeO2 catalysts were estimated by the ratio of intensity of 
these peaks  (I(625+1170)/I465) from Fig. 2 [93], to be 0.28.

Fig. 1  XRD patterns of the catalysts Ni/Al, NiMg/Al, Ni/Ce [73], and Ni/SBA [74] (empty triangle: 
α-Al2O3, empty circle: NiO, filled circle: MgO, empty square:  MgAl2O4, filled diamond:  CeO2)
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From the SEM image in Fig. S2, it can be asserted that NiMg/Al catalyst 
exists in the form of a solid bar, size (60–100 nm) × 300 nm, Ni/Ce is in the form 
of small, long rods, size (10–20  nm) × (40–100  nm), while Ni/SBA is in large 
cocoon shape particles, size (70–150  nm) × (150–700  nm). Compared with Ni/
Al sample, the modified NiMg /Al catalyst showed smaller bar size. Further, on 
SBA-15 cocoons, there are 50–100 nm particles attached to the surface. The rod 
shape of  CeO2 in Ni/Ce catalyst and the hexagonal mesostructured along chan-
nels of SBA-15 in Ni/SBA was also observed in their TEM images (Fig. 3b, c).

The pore diameter of the catalysts, determined from nitrogen adsorption iso-
therms, is approximately 2 nm for Ni/Ce, Ni/Al and NiMg/Al and 6 nm for Ni/
SBA catalysts, being favourable for diffusion of  CH4 and  CO2 into the pores, as 
their kinetic diameter are 0.38 and 0.44 nm. The TEM image (Fig. 3c) indicated 
that Ni/SBA sample is a highly porous material. However, the mean average crys-
tallite size for NiO was superior to the mean pore diameter for SBA-15 support 

Fig. 2  Raman spectra of the catalysts

Fig. 3  TEM images of the catalysts: a NiMg/Al, b Ni/Ce, and c Ni/SBA
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(18.3 nm vs 6.08 nm), thus, a large number of aggregated NiO blocks can be seen 
on the outer part of the support.

The block of the parts of pores of SBA-15 and the cover of surface and pores of 
the supports by NiO particles as well as the agglomeration of catalyst particles, as 
observed from SEM and TEM images, were responsible for a sharp reduction of 
the specific surface area  (SBET) of catalyst as compared to corresponding supports. 
Specifically, the value of  SBET reduced from 18 to 7.9  m2 g−1 and 7.1  m2 g−1 for the 
Ni/Al and NiMg/Al, from 103.2 to 46.8  m2 g−1 for Ni/Ce, and from 630 to 232.6 
 m2 g−1 for Ni/SBA catalysts. As it follows from Table 1, the value of the specific 
surface area and pore volume, as well as optimal Ni content of three catalysts are in 
the same decreasing order as Ni/SBA≫Ni/Ce > NiMg/Al ≈ Ni/Al.

On the  H2-TPR diagram of the Ni/Al catalyst (Fig. 4) three reduction peaks with 
the maximum reduction temperatures at 425 °C, 504 °C and 820 °C were observed. 
The two low-temperature reduction peaks are characteristic for the reduction of 
small and large NiO particle [94], while the reduction peak at 820  °C is attrib-
uted to the reduction of strong interaction NiO-support species or  NiAl2O4 [95]. 
 H2-TPR pattern of NiMg/Al catalyst showed the main reduction peak with maxima 
at about 875 °C, corresponded to reduction of  Ni2+ in the mixed metal oxide phase 
 (MgxNi1−xO) [96] and a very weak peak at 336 °C, assigning to the reduction of the 
relatively free NiO species. In  H2-TPR pattern of Ni/Ce, the broad  H2 consumption 
peak consists of three reducing peaks. The peak with maxima at 325  °C belongs 
to the reduction of NiO to metallic Ni [97, 98]. The main  H2 consumption peaks 
concentring at 360 °C, which represented the reduction of Ni from the mixed Ni–Ce 
hydroxides [97, 98]. While the peak at 380 °C is characterized the strongly inter-
active NiO species with  CeO2 reduction [99]. In addition, the broad weak peak at 
around 820 °C was attributed to the reduction of lattice oxygen in bulk  CeO2 (elimi-
nation of  O2 from the lattice and formation of  Ce2O3) [100] was also seen in the 
 H2-TPR pattern. Further, very weak peak at 250 °C, attributed to the reduction of 
oxygen adsorbed on the vacancies of the catalysts, which originated from the incor-
poration of  Ni2+ ions into the ceria lattice [101] was also observed.

Table 1  The structural properties of the catalysts

a BET surface  (SBET), average pore diameter  (dpore), and total pore volume  (Vpore) were obtained from  N2 
adsorption isotherm analysis
b The maximal reduction temperature  (Tmax,) and the number of reduced  Nio ( m

Ni
o ) , based on  H2 con-

sumption, were obtained from  H2-TPR results
c The desorbed  CO2 amount ( m

CO
2
 ) was obtained from the results of  CO2 –TPD results of activated sam-

ples

Catalysts SBET
a  (m2 g−1) dpore

a (nm) Vpore
a  (cm3 g−1) Tmax

b (°C) m
Ni

o
b 

(mmol g−1)
m

CO
2

c (a.u)

Ni/Al 7.7 2.00 0.002 425, 504, 820 0.266 –
NiMg/Al 7.1 2.02 0.002 336, 875 0.124 3.69
Ni/Ce 46.8 2.15 0.023 335, 360, 380, 

820
0.266 20.75

Ni/SBA 232.6 6.08 0.273 370, 455, 630 0.814 10.30
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Meanwhile, Ni/SBA catalyst presented two main reduction zones: the first one 
appearing at temperature ranging 300–500 °C with higher intensity and the second 
one at  Tmax ~ 630 °C. According to S.M. Sidik et al. [102], bulky NiO and  Ni2O3 spe-
cies tended to reduce at temperature lower than 400 °C, whereas NiO interacted with 
support was reduced at the temperature > 400  °C. The weak interaction NiO-sup-
port species can be reduced at temperature range of 400–500 °C, while the medium 
NiO-support strength species are reduced at temperature zone 500–600  °C [103], 
and the strong NiO-support interaction sites are reduced at temperature > 600  °C 
[104]. Then, the strongest peak concentred at 370  °C on  H2-TPR pattern of Ni/
SBA catalyst was ascribed to the reduction of bulky NiO. The reduction peak at 
 Tmax = 455  °C was representing the reduction of the weak NiO-support strength 
species, while the peak at 630 °C likely corresponded to the reduction of NiO dis-
persed deeply in pores of support, as seen on TEM image, or reduction of strong 
NiO-support strength species [104]. These types of NiO should comprise portions 
of the precursors of the NiO species which acted as the active component during the 
reaction [105, 106]. In addition, the amount of hydrogen consumed in the reduction 
process of Ni/SBA catalyst has estimated approximately 0.814 mmol g−1, 3.0 and 
6.5 times of Ni/Ce and NiMg/Al, as seen in Table 1. Relatively low reducibility of 
NiMg/Al sample is likely related to the fact that on this catalyst, nickel exists largely 
in the form of the hardly reducible mixed metal oxide phase  MgxNi1−xO, which is 
not completely reduced even at 900 °C, as indicated on Fig. 4. Meanwhile, on Ni/
Ce and Ni/SBA catalysts nickel exists in the form of easily reducible NiO particles, 
as observed in TEM image (Fig. 3b, c), and  H2-TPR pattern (Fig. 4), having higher 
reducibility. The high reducibility of Ni/Ce and Ni/SBA samples is probably due 
to a high dispersion of small size NiO particles inside the rod/pore [107, 108], as 
seen from TEM images (Fig. 3). The good dispersion of NiO particles in the Ni/Ce 
sample is explained by the strong interaction of  Ni2+ with the  CeO2 support forming 
 Ce3+ ions and oxygen vacancies that disperse NiO particles better on the catalyst 

Fig. 4  H2-TPR diagrams of the catalysts Ni/Al, NiMg/Al, Ni/Ce [73], and Ni/SBA [74]
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surface [109]. Meanwhile, the high dispersion of inside NiO particles on Ni/SBA 
sample was supported by the high specific surface area and well orderly channel 
structure with large pores of SBA-15, facilitating diffusion and dispersion of NiO 
inside the pores.

CO2-TPD patterns of the three activated samples (Fig. S3) reflected that there was 
one main broad desorption zone stretching from 60 to 250 °C. The peak maxima at 
130–150  °C corresponding to weak  CO2 adsorption on OH groups [101]. On the 
 CO2-TPD pattern of the two catalysts Ni/Ce and Ni/SBA also observed weak des-
orption peak at ca 250  °C attributing to moderate  CO2 adsorption on metal–oxy-
gen pairs [92]. The peak appeared at ca 520 °C in Ni/SBA catalysts was ascribed to 
strong  CO2 adsorption on  O2

−anions [101]. The appearance of strong base sites in 
NiO/SBA-15 catalysts has also been observed in previous work [110]. The order in 
the desorbed  CO2 amount obtained from the  CO2–TPD results decreased in follow-
ing order: Ni/Ce>Ni/SBA>NiMg/Al (Table 1).

The exceptionally high basicity of the Ni/Ce sample, as seen in Table  1, was 
explained as follows, the oxygen vacancies on the surface of Ni/Ce catalyst as dem-
onstrated in Raman spectroscopy above, promoted the reduction of  Ce4+ ions to 
 Ce3+ ions to make the system charge neutral [111], which is expressed as reduc-
ing peak at 820  °C on  H2-TPR diagrams (Fig. 4). On the reduced  Ce3+ ions  CO2 
adsorbed to form carbonate − CO2−

2
species, which have a higher thermal stability 

than those on the  Ce4+ sites [112–114]. It resulted in increasing of the basic sites 
that enhance the adsorption of acid gas  CO2. In the  CeO2 crystal, oxygen has good 
migration ability and the electron delocalization formed by the oxygen vacancy 
that can increase the electron density in the nano-CeO2 structure [115, 116] and the 
strength and the amount of the basic sites.

As is well known, the high basicity of catalysts stimulates the adsorption and dis-
sociation of  CO2, which in turn reduces the carbon deposition over the surface of 
the catalyst and therefore, suppressing the catalyst deactivation [117, 118]. In DRM 
reaction,  CO2 on the one hand participates in main reaction (15), on the other hand 
oxidizes deposited coke in the reverse Boudouard reaction (16) that improved the 
coke resistance and stability of nickel catalysts.

The high basicity of Ni/SBA and Ni/Ce samples (Table  1) should create their 
superior coke resistance.

Catalytic performance for DRM of the catalysts

The results showed that the conversion of both  CH4 and  CO2 increased as reaction 
temperature is raised from 600 to 750  °C because DRM (15) is a strongly endo-
thermic reaction. It is noticeable that the order in the activity, based on  CH4 and 
 CO2 conversions, decreased in the following order: Ni/SBA>NiMg/Al>Ni/Ce (Fig. 

(15)CH4 + CO2 ⇌ 2CO + 2H2 ΔH298 = + 247.3 kJmol−1

(16)Cads + CO2 ⇌ 2CO ΔH298 = + 86.2 kJmol−1
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S4). The conversion of  CH4 and  CO2 on Ni/SBA catalysts reached 88% and 76% at 
650 °C. Meanwhile, on catalysts Ni/Ce and NiMg/Al, in the same condition reached 
the conversion of  CH4 and  CO2 75% and 59%, and 84% and 76%. The best activity 
of Ni/SBA catalyst could be explained by its higher surface area for dispersing a 
bigger number of active sites and good reducibility, as seen in Table 1. The results 
of studying the activity of three catalysts in the temperature range of 600–800 °C 
showed that, the  CO2 conversion in all cases is lower than that of  CH4. This can be 
explained by the occurrence of Water Gas Shift (WGS) (17) in DRM conditions, 
producing additional  CO2 [119].

Although Ni/Ce catalyst had much higher basicity than NiMg/Al and Ni/SBA 
samples,  CO2 conversion of Ni/Ce was lower than that of the remaining two cat-
alysts. This is likely related to the fact that excessive basicity stimulated higher 
extent of the  CO2 dissociation  (CO2 → C + O2) to be happened and the phenomenon 
worsens when Boudouard reaction start to happen at high temperature due to the 
enriched composition of CO upon DRM activity, thus resulted in higher quantity of 
coke deposited on the catalyst surface and reduce  CO2 conversion [120]. Indeed, the 
value of  H2/CO ratio on Ni/Ce catalyst reached 1.33 while this value on the two oth-
ers remained at a theoretical level, approximately 1. In general, excessive basicity of 
the catalyst is not favourable over DRM [120, 121]. Thus, it was deduced that Ni/Ce 
was less favourable for DRM activity due to its excessive basicity.

In DRM reaction conditions, in addition to the main reaction (15), several side-
reactions may be involved in the process, including the Water Gas Shift (17) con-
sumes part of the product CO, methane decomposition (18), the Boudouard reaction 
and the carbon gasification reverse reaction (19) generate or gasify coke [122].

The thermodynamic analysis showed that in the condition of DRM reaction the 
reverse water gas shift reaction operates in or very close to thermodynamic equilib-
rium [55], and its influence on the DRM can be neglected. Thermodynamic studies 
also show that other side reactions of DRM such as CO disproportionation, CO/H2 
reduction (19), CO/H2 methanation,  CO2/H2 methanation also could be neglected 
above 550  °C. Furthermore, except unconverted methane, in the gas chromato-
graphic spectrum of the gas reaction mixture other hydrocarbons, originating from 
side-reaction (20), were not detected.

Therefore, the only by-product, which can appear in the kinetic equation of 
the DRM reaction, is coke generated from Eq.  (18) and from the H-abstraction 
of  CH4 [59]. However, at high temperatures, this deposited coke could be con-
sumed in the reverse Boudouard reaction (Eq. 16), the reaction favourable at high 

(17)CO + H2O ⇌ CO2 + H2 ΔH298K = − 41.1 kJmol−1

(18)CH4 ⇌ C + 2H2 ΔH298K = + 75.0 kJmol−1

(19)CO + H2 ⇌ C + H2O ΔH298K = − 131.0 kJmol−1

(20)2CH4 + CO2 ⇌ C2H6 + CO + H2O ΔH = + 16.7 kJmol−1
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temperatures [123]. Then, the amount of coke formed in the reaction should be 
small and could be ignored.

Conducting the reaction at 700 °C for 30 h, showed that all catalysts had stable 
activity (expressed through  CH4 and  CO2 conversion) (Fig. S5). The coke forma-
tion on the catalysts, determined by TPO method, was 5.25, 0.70 and 0.63 mgCg−1cat 
on NiMg/Al, Ni/Ce and Ni/SBA catalysts. In the same condition, the amount 
of coke deposited on the Ni/Al catalyst was determined to be 37.52  mgC  g−1. 
Despite high coke depodition, the Ni/Al catalyst remained stable for 30 h TOS. 
The amount of carbon (C) involved in coke formation, calculated based on the 
above results, accounts for 0.035; 0.005; 0.001 and 0.001% and the amount of 
coke was 3.5; 0.5; 0.1 and 0.1% of catalyst weight to Ni/Al, NiMg/Al, Ni/Ce and 
Ni/SBA catalysts. Obviously, on NiMg/Al, Ni/Ce and Ni/SBA catalysts, the coke 
deposited (in %) is very small compared to the catalyst weight, and the activity of 
the catalysts is stable during the reaction process. So, the obtained results indi-
cated that the amount of coke formed on NiMg/Al, Ni/Ce, and Ni/SBA catalysts 
is negligible and does not affect reaction kinetics.

Adding MgO to Ni/Al catalyst results in a sevenfold reduction in the coke 
deposition. This result is due to the fact that MgO is a typical base oxide, its 
addition generates the base sites, enhances  CO2 adsorption [2], that promoted the 
reverse Boudouard reaction consumed coke [122]. Another reason contributing to 
the reduction of coke on the MgO-promoted catalyst is the presence of MgO-NiO 
layers on the catalyst surface [124], as seen in TEM image.

The NiO supported on  CeO2 and SBA-15 (Ni/Ce and Ni/SBA) catalysts 
have lower coke deposition after 30 h TOS as compared to Ni/Al. This may be 
explained by the fact that  CeO2 acts as a storage and suply of oxygen for coke 
oxidation. The interaction of  Ni2+ with the  CeO2 support forming  Ce3+ ions in 
the form of  Ce2O3 and oxygen vacancies. On  Ce2O3,  CO2 adsorbs and dissoci-
ates to form CO and  CeO2, the produced  CeO2 reacts with the coke to regener-
ate  Ce2O3 and  CO2 [109, 125]. In addition, small-sized NiO crystals also dis-
tributed to lower coke deposition of Ni/Ce catalyst.  CeOx doping induces strong 
metal-support interactions, that stabilize Ni single atoms towards sintering, and 
favour selective activation of only the first C–H bond in methane, resulting in 
a high activity and stability with negligible carbon deposition was found in Ni/
hydroxyapatite (HAP) catalyst [16]. As seen from the XRD analysis results 
(Fig.  1), NiO in the Ni/Ce catalyst exists in highly dispersed or amorphous 
form, that significantly reduced in coke deposition. The existence of numerous 
NiO particles of less than 6 nm insize in the channels of SBA-15, as observed in 
the TEM image, also contributed to the reduction of coke formation on the Ni/
SBA catalyst. It has been shown in several studies that on Ni nanoparticle size 
below 2 nm [126] or 7–10 nm [62] the carbon deposition significantly decreases. 
Another reason for high coke resistance of two NiO catalysts carried on  CeO2 and 
SBA-15 is their high basicity (Table 1), that enhanced  CO2 adsorption, providing 
O adatoms for the oxidation of the resulting carbon [57, 58, 127]. However, as 
analyzed above, the excessive basicity of Ni/Ce to some extent is unfavorable to 
its coke resistance. Therefore, despite its high coke oxidation capacity in nature, 
the amount of coke deposited on Ni/Ce is not lower than on Ni/SBA.
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To ensure the catalytic activity was the same in all experiments, the standard 
reaction was repeated after each experiment. Once the activity has changed, the cat-
alyst was regenerated by burning the coke at 600 °C with a stream of air to remove 
the formed coke before in-situ reduction. Thus, all the experimental data can be used 
in kinetic calculations.

The kinetics of methane dry reforming

The influence of internal diffusion was examined by comparing the reaction rate 
of DRM on Ni/SBA catalyst beads of different sizes, d = 0.01–0.25; 0.25–0.50; 
0.50–0.75; 0.75–1.00 mm at a constant reaction condition. The results exhibited that 
the reaction rate remained almost unchanged when the catalyst bead size was varied 
from 0.01–0.25 to 0.50–0.75 mm. Thus, there is no effect of internal diffusion when 
the bead size of the catalyst is less than 0.75 mm.

The influence of external diffusion was examined by correlating  CH4 conversion 
on Ni/SBA catalyst with different total gas flows, v = 6, 9, 12, 18, 30 and 36 L h−1 at 
a constant reaction condition. The results showed that the  CH4 conversion decreased 
with increasing gas flow velocity, corresponding to the reduction in dwelling time. 
This means external diffusion does not affect the reaction when total gas flow was 
changed from 6 to 36 L h−1. In the experiment, the catalyst particles of 0.25–0.5 mm 
and total gas flow ranging from 6 to 36 L  h−1 were used to avoid the effect of 
diffusions.

To determine the dependence of the reaction rate on the partial pressure of feed-
stocks, from the kinetic data set select the reaction rate at the different partial pres-
sure of  CH4 (or  CO2) at constant temperature and partial pressure of the remaining 
substances.

The curves expressing the dependence of the reaction rate on the partial pres-
sure of  CH4 and  CO2 on three catalysts (Fig. 5) is a convex form, describing nonlin-
ear increase of r with concentration of both feedstocks. This suggests that the par-
tial pressure of  CH4 and  CO2 enter both the numerator and the denominator of the 
kinetic equation.

Fig. 6 showed that at a constant composition of the reaction mixture the reaction 
rate (r) decreased with increasing of the partial pressure of reaction products,  H2 and 
CO. This demonstrates, the two products inhibiting the reaction. The dependence 
of reversed values of reaction rate (1/r) vs partial pressure of hydrogen ( PH2

 ) and 
carbon monoxide ( PCO ) is nearly linear, indicating the quantities PH2

 and  PCO must 
appear in the denominator of the kinetic equation in power may be unit.

From the research results, it is possible to draw the following feature of kinetics 
of the DRM reaction:

1. The partial pressure of the feed reactants enters both the numerator and the 
denominator of the kinetic equation;

2. The reaction is inhibited by the products of reaction and the partial pressure of 
hydrogen and carbon monoxide  (PH2 and  PCO) present only in the numerator with 
exponent may be 1.
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The above characteristics of the kinetics of the methane DRM reaction are similar to 
the 5-steps LHHW mechanism was proposed for DRM of biogas [70]. In the LHHW 
model the adsorption of reactants or the surface reaction between the adsorbing parti-
cles can be rate-limiting steps [128]. Since DRM reaction takes place at high tempera-
tures range:

This stage is considered to be the rate determining step (RDS). Then, the rate of 
reaction  CO2–CH4 reforming is proposed to be written in the following kinetic equa-
tion [70]:

(21)CH4,ads + CO2,ads ⇌ 2COads + 2H2

(22)r = kKCH4
KCO2

(

CCH4
CCO2

−
1

Keq

C2
CO

C2
H2

)

�2
�

Fig. 5  The reaction rate (r) versus the partial pressure of  CH4 ( PCH
4

 ) (above) and  CO2 ( PCO
2

 ) (below) at 
700 °C on the catalysts
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Here  CCH4,  CCO2,  CCO, and  CH2 are the gas phase concentration of  CH4,  CO2, CO, 
and  H2, k is the rate constant for the forward direction of reaction (Eq. 21), θυ is the 
fraction of vacant sites, given by

The mean of  CCH4,  CCO2,  CCO, and  CH2 in Eqs. 22 and 23 are equivalent to θCH4, 
θCO2, θCO, and θH2—the fraction of adsorption of corresponding surfactants to the 
surface. Therefore, Eq. 22 can be written as

Here r is the reaction rate; k is the rate constant, �CH4
 and �CO2

 are the fraction 
of methane and carbon dioxide adsorbed to the catalyst surface, respectively, which 
were determined by the Langmuir formulas:

(23)�� =
1

1 + KCH4
CCH4

+ KCO2
CCO2

+ KCOCCO + KH2
CH2

(24)r = k�CH4
�CO2

�

Fig. 6  Variation of reaction rate (r) with partial pressure of  H2 ( PH
2

 ) (above) and partial pressure of CO 
( P

CO
 ) (below) on the catalysts at 700 °C
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Here Ki represents the Langmuir adsorption constant of the corresponding spe-
cies to the surface of the catalyst, J is the intermediates; and ξi is the dissociation 
coefficient of i adsorbed species. γ is the coefficient, taking into account the inverse 
reaction, given by (15) [52].

Here KEq is the equilibrium constant of the reversible reaction (15).
Replacing quantities �CH4

 and �CO2
 in Eq. (24) with expressions (25) and (26) and 

divide both the numerator and the denominator of the equation by  
(

KCH4

)n1
(

KCO2

)n2 
obtain the general kinetic equation for DRM:

Here (−rCH4
 ) is the reaction rate of methane consumption; Pi are the partial pres-

sures of corresponding substances;  n1,  n2,  m1,  m2,  m3,  m4 are reaction orders of the 
corresponding reactants ( ni = 1/�i andmi = 1/�i ); 2α is surface coverage; and k,  ki, 
and  ki’ are kinetic constants.

Here
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The reaction order and the values of kinetic constants in Eq.  (28) were deter-
mined by using the least-squares optimization and the solver tool in MS excel to cal-
culate the experimental data with the conditions:  n1,  n2 = 0–2 (step 0.25),  mi = 0–2 
(step 0.25), α = 0–1 (step 0.25). The calculated results best fit the experimental data 
when:  n1 = n2 = 1;  m1 = m2 = m3 = m4 = 1, α = 0.5, A = 1 and A′ = 1.

The values of the kinetic constants have been indicated in Table 2. From the cal-
culation results, it follows that, the rate of DRM on studied catalysts is described by 
the following equations:

For NiMg/Al and Ni/Ce catalysts:

For Ni/SBA catalyst:

The form of Eqs. 28, 29, and 30 proves that the dry reforming of methane follows 
the dual-site Langmuir–Hinshelwood-Hougen Watson model, where the surface 

A =
k�

(

KCH4

)n1
;A� =

1

k�
(

KCo2

)n2

(29)−rCH4
=

kPCH4
.PCO2

�

(1 + k1.PCH4
+ k4.PH2

)(1 + k2� .PCO2
+ k3� .PCO)

(30)−rCH4
=

kPCH4
.PCO2

�

(1 + k1.PCH4
+ k3.PCO + k4.PH2

)(1 + k2� .PCO2
)

Table 2  The constants of Eqs. 29 and 30 and the root-mean-square deviations (∆) and  R2 value of calcu-
lated reaction rates from experimental values

Kinetic constants Catalysts

NiMg/Al Ni/Ce Ni/SBA

k, mmol g−1 h−1 hPa−2
1.38 × 10

2
e

−28000

RT 3.82 × 10
2
e

−2550

RT 5.79 × 10
8
e

−1180

RT

E = 28,000 cal mol−1 E = 2550 cal mol−1 E = 1180 cal mol−1

k1,  hPa−1
1.16 × 10

−7
e

25800

RT 1.72 × 10
−3
e

3970

RT 1.12 × 10
−3
e

21500

RT

E
1
 =  − 25,800 cal mol−1

E
1
 =  − 3970 cal mol−1

E
1
 =  − 21,500 cal mol−1

k3,  hPa−1 0 0
6.3e

1010

RT

E =  − 1010 cal mol−1

k4,  hPa−1
4.22 × 10

−7
e

16300

RT 1.19 × 10
−5
e

5070

RT 4.28 × 10
−6
e

3630

RT

E
2
 =  − 16,300 cal mol−1

E
2
 =  − 5070 cal mol−1

E
2
 =  − 3630 cal mol−1

k2′,  hPa−1
7.28 × 10

−2
e

3530

RT 2.79 × 10
−3
e

15100

RT 1.39 × 10
−4
e

5800

RT

E
3
 =  − 3530 cal mol−1

E
3
 =  − 15,100 cal mol−1

E
3
 =  − 5800 cal mol−1

k3′,  hPa−1
1.39 × 10

−4
e

5800

RT 5.10 × 10
−5
e

3180

RT
0

E
4
 =  − 5800 cal mol−1

E
4
 =  − 3180 cal mol−1

∆, % 18.7 17.1 17.3
R2 0.9698 0.9773 0.9740
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reaction was rate-controlling step of  CH4 dry reforming process and all other steps 
were considered at equilibrium.

The value of the root-mean-square deviations (∆) ranges from 17.1% to 18.7% on 
different catalysts. Furthermore, the comparison of the calculated and experimental 
consumption rate of  CH4 for Eqs.  29 and 30 is expressed in Fig. S6 showing  R2 
value that reflects the amount of variance is reported as [72]:

Here 

The  R2 value of this model was obtained approximately 0.97–0.98 (Table 2). 
The obtained value of the deviations (∆) and  R2 shows that the well fit of experi-
mental data was achieved using a dual-site LHHW model.

Assuming the single-site Langmuir–Hinshelwood model for dry reforming of 
methane, reaction kinetics can be descried by Eq. (33).

Calculate experimental results according to Eq.  33 show that the root-mean-
square deviations (∆) of calculated reaction rates from experimental values are 
very large (> 100%). It means this model is not suitable. Furthermore, the experi-
mental results show that when adding 0.3%  V2O5, a selective oxidation additive, 
the  CH4 conversion on NiMg/Al catalyst at 650  °C increased 11% (from 84 to 
95%), while  CO2 conversion decreased from 76 to 70%. This proves that  CH4 and 
 CO2 were activated by different types of sites.

The two factors in the denominator of kinetic Eqs. (29) and (30) showed that 
the reaction takes place on two active sites. In many publications, adsorption and 
activation of  CH4 and  CO2 on two different sites are accepted. Specifically,  CH4 
was bound on the metallic phase while the  CO2 was bound on the oxide phase of 
the catalyst [45, 51, 129]. The appearance of  PCO term in the first factor in the 
denominator of Eq.  (30) explained by CO formed and adsorbed on the metal-
oxide interface before desorbing, the same as was reported in publication [45].

The value of α = 0.5 in Eq. 28, was determined from calculation, meaning that 
the reaction takes place in the medium coverage region. The constant  k5 and  k5′ in 
Eq. 28 on all catalysts is zero, indicating no intermediates inhibited the reaction.

From Eqs.  29 and 30, it is shown that  CH4 and  CO2 both participate in the 
reaction in the form of molecular adsorption. The presence of PCH4

 and PCO2
 terms 

in both the numerator and the denominator of the kinetic equation indicates that 
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the adsorption of the feeds simultaneously promotes and inhibits the reaction. As 
is known, for heterogeneous catalytic reaction, the adsorption of raw materials 
on catalyst surface is a prerequisite for the reaction to take place. However, their 
strong adsorption may inhibit the reaction. Meanwhile, the two resulting products 
only inhibited the reaction, as the PH2

 and PCO terms are present in the denomina-
tor of the kinetic equation, although the restraint is weak.

Supports created specificity in the physicochemical properties of nickel catalysts 
that greatly affect the adsorption feature and activity of NiO catalyst. The result in 
Table 2 indicated that the adsorption coefficients of  CH4 and  CO2 on the catalysts 
depend on the carriers used. The highest  CO2 adsorption coefficient obtained on Ni/
Ce catalyst is related to its highest basicity ( mCO2

 ), while the highest adsorption con-
stant of  CH4 and  H2 was observed on Ni/SBA sample, the sample with the highest 
number of reduced  Nio ( mNio ), as seen in Table 1. The order in the ratio of adsorp-
tion constant of  CH4 and  CO2  (k1/k2′) (Table 2) coincides with the order in the ratio 
of the quantities characterizing for catalyst reducibility and basicity ( mNio∕mCO2

 ) 
(Table 1), increased in the following order: Ni/Ce<NiMg/Al<Ni/SBA, the same as 
the order in activity in DRM (Fig. S4). This shows an intimate relationship between 
the adsorption affinity of the reactants and the properties of the catalysts, which 
directly depend on the nature of the carrier.

It has been found from Table 2 that the order in the apparent rate constant (k) 
of  CH4 reforming coincides with the order in the reducibility ( mNio ) of the studied 
catalyst: NiMg/Al<Ni/Ce<Ni/SBA and the value of the activation energy (E) is in 
the opposite order. The well order mesoporous structure of SBA-15 creates the out-
standing physicochemical characteristics of the nickel catalyst including the high 
specific surface area and pore volume, leading to finely disperse large amounts of 
highly reducible NiO, together with the reasonable basicity of catalyst, that lowering 
activation energy, increasing the catalyst activity as well as reducing coke deposi-
tion. The advantage of  CeO2 carrier is included in high dispersion and reducibility 
of NiO that reduces activation energy, increase the reaction rate constant and coke 
resistance as well as stability of NiO catalyst. However, the low optimal Ni con-
tent and excessive basicity, leading to overwhelming adsorption of  CO2 vs  CH4, that 
reduce catalyst activity.

Conclusion

The results show that the kinetics of the DRM reaction on Ni-based catalysts sup-
ported on different carriers is described by a common kinetic equation, following 
the a dual-site Langmuir Hinshelwood Hougen Watson mechanism with the surface 
reaction between adsorbed  CH4 and  CO2 was rate-controlling step. In which both 
 CH4 and  CO2 participate the reaction in form of molecules adsorbed on two active 
sites and the reaction is inhibited by the resulting products. However, the nature 
of the supports shows a strong effect on the adsorption affinity as well as activity 
of catalysts in the DRM reaction. On the two Ni/Ce and Ni/SBA catalysts, nickel 
exists in the form of highly dispersed NiO particles, leading to greatly improve the 
reducibility of catalyst and lower reaction activation energy, and their high basicity 
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markedly reduces the coke deposition as compared to NiMg/Al sample. The order in 
the apparent activation energy (E) of reaction on the studied catalysts was observed 
as follows: NiMg/Al>Ni/Ce>Ni/SBA, while the the apparent rate constant (k) and 
the catalyst reducibility were in the opposite order. Additionally, the increasing order 
in catalytic activity coincides with the order in the ratio of adsorption constant of 
 CH4 and  CO2  (k1/k2′) and mNio∕mCO2

 ratio: Ni/Ce<NiMg/Al<Ni/SBA. The highest 
activity was observed on the catalyst 31.2wt%Ni/SBA-15 thank to its high surface 
area, high reducibility and high adsorption affinity to methane.
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