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Abstract
In this research, non-isothermal kinetic analysis of the oxidation process of Al–
50Mg (wt%) powder mixture was performed by employing differential scanning cal-
orimetry and thermogravimetry analysis techniques. The research findings revealed 
that oxidation of this powder mixture was completed at lower temperatures com-
pared to that of pure aluminum powder; and furthermore, it enjoyed a higher thermal 
efficiency than that of pure magnesium powder. Oxidation of this mixture powder 
led to the formation of magnesium oxide (MgO) and spinel phase  (MgAl2O4) during 
the first and second oxidation steps, respectively. Moreover, to calculate the activa-
tion energy (E) over a wide range of degree of conversion (α), two isoconversional 
methods, including Starink and Friedman methods were used. Activation energies 
decreased as the reaction progressed at both stages, indicating that these stages were 
multi-step reactions. Furthermore, the invariant kinetic parameter method and fit-
ting model were used to determine the empirical kinetic triplets (i.e. E, pre-expo-
nential factor (A) and reaction model (g(α))). The obtained results showed that the 
first stage was controlled by the second order Avrami-Erofeev mechanism  (A2), 
two-dimensional phase boundary reaction  (R2), and two-dimensional diffusion  (D2) 
models at heating rates of 5, 10, and 30 °C/min. The second stage was controlled 
by the third order Avrami-Erofeev mechanism  (A3) and  A2 at heating rates of 5 and 
10 °C/min, while for a heating rate of 30 °C/min, the mechanism of reaction changes 
from  A3 to  A2.
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Introduction

Metal-based energetic materials are used in many applications such as termites [1, 2], 
energy storage, and pyrotechnics and explosives [3]. Light metal powders such as alu-
minum, magnesium and titanium can be added as high energy components to solid fuel 
or used as a metal suspension in hydrocarbon fuel [4]. Thermodynamic calculations 
indicate that the enthalpy of oxidation process of these metal-based energetic materi-
als is higher than that of the hydrocarbon fuels [4, 5]. Among these metals, Aluminum 
powder is known as the most common metal additive due to its unique properties such 
as high enthalpy of its oxidation and relatively low cost [6–8].

The effect of oxidizing atmosphere [9–11], particle size [12], and heating rate [8] 
on the oxidation of aluminum powders has been investigated by researchers. Zhu et al. 
[10] studied the oxidation of aluminum powder in  CO2 and  CO2/O2 mixed oxidizers. 
They showed that the main characteristic of oxidation of aluminum powder in  CO2 
environment compared with that of  O2 was the broadening of the γ-Al2O3 to α-Al2O3 
phase transformation, so that it leads to fuller oxidation in  CO2 environment. Also, 
the kinetics of the oxidation process of aluminum powder in the temperature range of 
1000–1150 °C was performed in previous publications [13–15]. It is shown that the 
oxidation of these particles as a multi-step reaction is controlled by the Avrami–Ero-
feev model and the values of activation energies were calculated equal to 150–160 kJ/
mol [13]. However, it has been accepted that oxidation of the aluminum powder parti-
cles is not completed even up to 1400 °C due to the presence of a protective oxide layer 
[14–17].

Magnesium powder particles are known as a high energy material, which can be 
oxidized without the presence of a protective oxide layer [18, 19]. Chunmiao et al. [11] 
showed that the non-isothermal magnesium powder oxidation under air atmosphere 
occurs in three stages. Although combustion enthalpy of the Mg powder particles is 
lower than that of the aluminum powder [20, 21], magnesium powder has a higher 
burning rate [22] with lower ignition temperature [21], which has attracted the attention 
of many researchers [5, 11, 23, 24]. Hence, they have focused on Al-based alloy pow-
ders such as Al–Mg, Al–Ti, and Al–Li to reduce the combustion delay [25, 26], and to 
increase burn rate [21, 27], and thermal efficiency [28, 29]. On the other hand, mixing 
metal powders can also be as another effective method [30–32], while the oxidation 
mechanism of these materials has not attracted much attention of researchers.

Therefore, in the present study, the oxidation mechanism of Al–Mg powder mix-
ture is investigated. For this purpose, the kinetic parameters including activation energy 
(E), pre-exponential factor (A), and reaction model (g(α)) were calculated by using the 
isoconversional methods (Starink [33, 34] and FR [35] methods) in combination with 
invariant kinetic parameter (IKP) [36] and fitting [37, 38] methods.
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Materials and methods

Materials and testing process

The powder mixture of Al50–Mg50 (in weight percentage) was prepared using the 
materials listed in Table 1.

To characterize the chemical composition of the used commercial magnesium 
powder, the coupled plasma optical spectroscopy (ICP-OS) technique was employed 
and the results are listed in Table 2.

To prepare the powder mixture, the reagents are mixed in a can by mini gear-
box engine (Ming Jong Electric Co.) for 6 h with a speed of 4 rpm. Thermogravim-
etry (TGA) and differential scanning calorimetry (DSC) techniques were used by a 
Simultaneous Thermal Analysis (STA) device (NETZSCH STA 409 PC/PG) at vari-
ous heating rates of 5, 10, 20, and 30 °C/min up to 1200 °C. The DSC/TGA analysis 
was carried out on approximately 25 mg quantities of powder mixture samples with 
sensitivity of ± 10 μW under air flow supplied at the rate of 30 mL/min. Based on 
the DSC/TGA curves, the characteristics temperatures of the oxidation process were 
determined.

For a detailed understanding of the oxidation process, the mixture powder sam-
ples were heated at a heating rate of 20 °C/min under air atmosphere up to the char-
acteristics temperatures determined by DSC/TGA curves (500, 750, and 1000 °C). 
Then, these samples were subjected to phase analysis by using X-ray diffraction 
(XRD, Philips PW1730) with a Cu target (Cu  Kα, λ = 0.15418 nm) radiation gener-
ated at a voltage of 40 kV and current of 30 mA. The samples were scanned in an 
interval of 10° < θ < 90° and at a scanning rate 1°/min with a step size of 0.05° in a 
continuous mode. XRD analysis of the investigated samples was performed using 
X’pert High Score software (3.0.5) in comparison with the reference powder diffrac-
tion data given by the Joint Committee on Powder Diffraction Standards (JCPDS). 
Also, microstructural observations were performed by using a scanning electron 
microscope (SEM, FEI ESEM QUANTA 200). The samples were gold coated for 
240  s in a sputter coater in an Ar atmosphere before loading in SEM. The elec-
trons at 20 kV sources were used to develop relevant information about the samples. 
The semiquantitative chemical analysis was carried out by energy-dispersive x-ray 

Table 1  The specifications of 
the raw materials

Material Size (µm) Purity (%) Company

Al  < 100 99.00 MERCK
Mg  < 63 99.66 Yazd Powder 

Metallurgy, 
Iran

Table 2  Chemical composition 
of the Mg powder used in this 
study (measured by ICP-OS)

Elements Mg Ca K Al Si Fe

Composition (wt%) 99.656 0.120 0.094 0.070 0.040 0.020
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spectrometry (EDX, EDAX EDS Silicon Drift 2017), coupled to the scanning elec-
tron microscope.

Kinetic analysis

The values of the degree of conversion (α) at any given temperature and heating rate 
were calculated by using the peaks of DSC curves as follows [39]:

Here Ax is the peak area from the start temperature of reaction to a specified tem-
perature (T) and A∞ is the total peak area.

To perform a comprehensive kinetic analysis, the isoconversional methods in 
combination with the fitting models are used [38–44]. Therefore, the kinetics of oxi-
dation of powder mixture has been investigated by these methods.

Isoconversional methods

The isoconversional methods are used to obtain activation energy (E) and its 
dependence on α regardless of the reaction model, [38, 45, 46]. Among these meth-
ods, Starink and FR can be used to calculate more accurate values of E [47].

The integral Starink [33, 34] and differential FR [35] isoconversional methods are 
based on Eqs. 2 and 3, respectively:

Here α is the degree of conversion, β is the linear heating rate (°C/min), T is the 
absolute temperature (K), R is the general gas constant (J/mol K), and E is the acti-
vation energy (kJ/mol).

For α = const., the E values can be evaluated from the slope of the plots of 
ln(β/T1.92) vs. 1/T and ln[β (dα/dT)] vs.1/T without knowing the reaction model.

Invariant kinetic parameter (IKP) method

In this method, invariant kinetic parameter including Einv and Ainv values are 
obtained with the intersection of lnA versus E curves in an appropriate kinetic model 
[36]. For this purpose, the values of Eg(α) and lnAg(α) are achieved for all heating 
rates and algebraic expressions (g(α)) (which have been presented in the previous 
publications [38, 40, 48]) by using the Coats-Redfern (CR) [49] method (Eq. 4).
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According to IKP method, there is a linear relationship between the values of 
E and lnA at each heating rate (Eq. 5). So, the lines drawn at various heating rates 
intersect at a given point, if there is a constant mechanism. This intersection repre-
sents values of Einv and lnAinv for the correct reaction model [36].

In Eq. 5, subscript ‘‘i’’ represents the heating rate; a and b are the compensation 
effect parameters.

Fitting models

As mentioned, the isoconversional methods determine the activation energy without 
determining the reaction model and the pre-exponential factor. Therefore, the fit-
ting models are used not only to validate the results obtained by isoconversional and 
IKP methods but also to determine two other kinetic parameters [37, 38]. According 
to the fitting model, the reaction model is specified by plotting experimental and 
theoretical data of g(α) and obtain the best matching between them. The theoreti-
cal curves of g(α) as a function of α can be plotted by using the algebraic expres-
sions for g(α), which have been indicated in the previous literature [38–40, 48]. The 
experimental curves of g(α) as a function of α can be plotted by using the following 
Eq. 6.

Here the temperature integral in Eq. 6 ∫ T

0
exp(−

E

RT
)dT  is determined by Eq. 7 [50];

Results and discussion

Thermal analysis

Fig. 1 displays the DSC and TGA curves of the Al–Mg powder mixture. As shown, 
there are two exothermic peaks at different heating rates, corresponding to the 
extreme weight gain in the TG curves. Thus, the oxidation process of the powder 
mixture is carried out in two steps. On the other hand, it is shown that the oxida-
tion steps shift to higher temperatures with an increase in heating rate, which can be 
attributed to thermally activated process [51–54]. These results are in a good agree-
ment with other thermally activated processes [55, 56].
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Fig. S1 illustrates the DSC curves related to the pure Mg and Al powders and 
Al–Mg powder mixture at a heating rate of 20 °C/min. By comparing the two DSC 
curves of magnesium powder particles (Fig. S1) and the powder mixture (Fig. 1a), 
it is illuminated that the first peak of the DSC curve of the powder mixture is related 
to the oxidation of magnesium powder particles in the powder mixture.

On the other hand, the DSC curve of Al powder particles (Fig. S1) represents an 
endothermic peak and an exothermic peak, which are related to the melting of alu-
minum at 660 °C and the partial oxidation of these particles at 1060 °C [13–15, 57]. 
Therefore, it is concluded that a small endothermic peak observed in the DSC curve 
of the Al–Mg powder mixture at a heating rate of 10  °C (Fig. 1a) can be related 
to the melting of Al (~ 660 °C). Moreover, previous publications [13, 14] showed 
that there is a great amount of residual aluminum in the pure Al powder particles 
heated up to 1200 °C. While, the DSC curve of Al–Mg mixture particles shows that 
aluminum powder particles in the Al–Mg powder mixture are oxidized at lower tem-
perature (880 °C) compared to that of pure aluminum powder particles (1060 °C).

Phase analysis

The XRD patterns of the raw powder mixture and the samples annealed at a heat-
ing rate of 20 °C/min up to the selected temperatures in accordance with the DSC 
curves are shown in Fig. 2. As seen, only Al and Mg peaks (JCPDS card No. 001-
1176 and 03-065-3365) are observed in the XRD patterns of both the raw sample 
and the sample annealed up to 500  °C, indicating that no oxidation occurs up to 
500 °C, which is in agreement with the DSC curve.

With an increase in maximum temperature up to 750 °C, aluminum, magnesium 
oxide (MgO; JCPDS card No. 01-075-1525) and spinel  (MgAl2O4; JCPDS card No. 
01-075-1797) phases are identified in the XRD pattern. Therefore, it is confirmed 
that only the magnesium oxidation is carried out at the first peak of the DSC curves 
according to the following reaction [11]:

Fig. 1  a DSC and b TG plots of the oxidation of Al–Mg powder mixture at various heating rates under 
air atmosphere
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The presence of a protective oxide layer on the surface of aluminum particles 
delays their oxidation; therefore, this process does not start until the temperature 
reaches 800 °C. Nevertheless, it is observed that the oxidation of aluminum par-
ticles in the powder mixture begins at lower temperatures than in pure aluminum 
particles, which can be attributed to the reduction of the strength of the protective 
oxide layer as a result of the oxidation in the first stage.

It is reported that the expansion of the aluminum melt inside the crust can 
play a significant role to overcome the strength of the crust [15]. Thermal stresses 
caused by oxidation of the first stage cause the oxidation of aluminum particles 
in the second stage at lower temperatures. Therefore, this powder mixture can be 
considered as a solid fuel.

In the second stage of oxidation, the following two reactions is taken place by 
tearing the oxide shell [23]:

As shown in Fig. 2, XRD pattern of the sample annealed up to 1000 °C con-
firms the existence of spinel phase  (MgAl2O4). Therefore, the second stage of oxi-
dation of the powder mixture can be accompanied by the formation of  MgAl2O4 
(reaction (10)). This spinel phase  (MgAl2O4) has a Pilling–Bedworth ratio greater 
than one (1.30) [23, 58], indicating that this phase can form a continuous oxide 
film on the surface of the remaining aluminum, which can prevent the remaining 
aluminum from oxidizing. Therefore, the aluminum peaks appear in XRD pat-
tern of the sample annealed up to 1000 °C. The thermodynamic calculations of 

(8)Mg(s) +
1

2
O2(g) → MgO(s);ΔG577 ◦C= −510kJ∕mol

(9)2Al(l) +
3

2
O2(g) → Al2O3(s);ΔG877◦C = −1314.8 kJ∕mol

(10)MgO(s) + 2Al(l) +
3

2
O2(g) → MgAl2O4(s);ΔG877◦C = −1361.5 kJ∕mol

Fig. 2  XRD patterns related to 
the raw Al–Mg powder mixture 
and the samples annealed from 
ambient temperature up to vari-
ous temperatures at a heating 
rate of 20 °C/min under air 
atmosphere
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reactions (9) and (10) also show that the reaction (10) is preferable, which is in a 
good agreement with the obtained results.

Microstructural observation

Fig. S2 represents the SEM micrograph and EDS map of the raw powder mixture. 
Also, SEM micrograph and EDS map of the sample annealed up to 500 °C are 
shown in Fig. S3. As seen, no oxidation occurs in the powder mixture by heating 
up to 500 °C. In our previous publication [20], it was revealed that Mg(OH)2 with 
a Pilling–Bedworth ratio of 1.76 is formed as a thin continuous oxide layer on 
the surface of magnesium particles; therefore, this layer can prevent the oxidation 
of these particles up to ~ 500  °C. Therefore, no significant oxidation should be 
expected up to 500 °C, which is in accordance with the phase and microstructural 
analyses of the sample annealed up to 500 °C.

At temperatures above 500  °C, where Mg(OH)2 is unstable and converts to 
MgO with a Pilling–Bedworth ratio of 0.81, cannot serve as a barrier layer [20, 
59]. Fig. S4 represents the SEM micrograph and EDS map of the sample annealed 
up to 750  °C. Unlike aluminum particles, magnesium particles are oxidized in 
this sample.

Fig. S5 shows the SEM micrograph and EDS analysis of the sample heated up 
to 1000  °C. As seen, the phenomena related to the oxidation of aluminum par-
ticles such as bursting of the protective shell of Al particles, oxidation of these 
particles, and the resulting agglomeration of the particles are well proven in this 
figure. The yellow arrow indicates the tearing of the alumina shell on the surface 
of the aluminum particles. Also, the stoichiometry of the formed phase and the 
theoretical one are compared in Table  3 to better understand the phase formed 
in this sample. As listed, the presence of the MgO and  MgAl2O4 phases are con-
firmed in areas 1 and 2, respectively.

Table 3  Elemental composition 
of the phases formed in 
the sample heated up to 
1000 °C as evaluated from the 
stoichiometry composition and 
EDS

Elemental composi-
tion evaluated from

Mg (at.%) Al (at.%) O (at.%)

Stoichiometry 
composition

 MgO 50.00 – 50.00
 MgAl2O4 14.29 28.57 57.14

EDS
 Area 1 48.53 9.60 41.87
 Area 2 26.53 34.58 38.89
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Kinetic analysis

Isoconversional methods

Fig. S6 displays the plots of α vs. T for the two steps of oxidation process of the 
powder mixture at various heating rates. The characteristic temperatures extracted 
from DSC/TGA curves are listed in Table 4.

The plots of E vs. α are shown in Fig. 3. As seen, the activation energy calcu-
lated for the first peak is strongly dependent on α, while for the second peak, this 
dependence is less expressed (in the range of 0.1 ≤ α ≤ 0.9), indicating that there is 
no unique kinetic mechanism for each of these two oxidation steps. In other words, 
both stages are multi-step reactions.

Also, the ranges of activation energy determined by both isoconversional meth-
ods are listed in Table 4. However, the values of activation energy evaluated by the 
Starink and Friedman methods are in good agreement with each other.

Table 4  Kinetic parameters obtained by isoconversional, IKP, and fitting methods

a Start temperature  (Ts) of the peaks
b Finish temperature  (Tf) of the peaks

Peak No Heating rate
(°C/min)

T (°C) Isoconversional method E 
(kJ/mol)

Fitting method

Ts
a Tf

b Starink Friedman lnA  (min−1) Model

I 5 568 578 354–901 318–866 85 ± 3 A2

10 574 591 81 ± 5 R2

30 575 619 83 ± 2 D2

II 5 821 880 346–482 348–512 46 ± 2 A3

10 834 892 48 ± 3 A2

30 857 897 51 ± 5 A3 →  A2

Fig. 3  The dependence of E on α evaluated for two oxidation steps of the oxidation of Al–Mg powder 
mixture under air atmosphere; calculated by isoconversional a Starink and b FR methods
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IKP method

The values of E and lnA for every kinetic model at each heating rate are obtained 
using the CR method (Eq. 4). Fig. 4 represents the linear relationship between E and 
lnA for both oxidation stages at various heating rates.

As shown, these lines do not intersect at a given point, indicating that the certain 
E and lnA cannot be achieved. Hence, the results of isoconversional methods that 
both stages are multi-step reactions are confirmed by the IKP method.

Fitting models

The fitting method is used to determine the reaction model for both oxidation steps. 
Fig. 5 represents the theoretical and experimental g(α) vs. α curves for the first and 
the second steps of oxidation process of the powder mixture at various heating rates.

Fig. 4  The compensation relationship and its enlarged region for the a first and b second oxidation stages 
of Al–Mg powder mixture under air atmosphere; calculated by IKP method
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The results obtained from these curves are reported in Table  4. As presented, 
these results are in a good agreement with that obtained by isoconversional and IKP 
methods. Also, for the first oxidation stage, it is seen that this stage is controlled 
by  A2,  R2, and  D2 at the heating rates of 5, 10, and 30  °C/min. Moser et  al. [5] 
performed a non-isothermal kinetic analysis on the oxidation of pure magnesium 
powder and showed that this process was controlled with  A2 model at heating rates 
less than 5 °C/min. This model demonstrated that the oxidation is controlled by the 
nuclei growth rate of MgO that is proportional to two-dimensional diffusion [60].

At a heating rate of 10 °C/min, the reaction follows the  R2 model. According to 
this model, nucleation occurs rapidly on the surface of the crystal and the reaction 
is controlled by the resulting reaction interface progressing towards the center [60].

At a heating rate of 30  °C/min, the  D2 model (two-dimensional diffusional 
model) is determined for the reaction. At a high heating rate, the product formation 
rate (MgO) occurs relatively fast, which can lead to the concentration gradient of 
oxygen around the magnesium powders. Therefore, the diffusion of oxygen controls 
the reaction rate. Unlike the first stage of oxidation, in the second stage of oxidation, 
the reaction follows Avrami-Erofeev models at all three heating rates. This oxidation 
stage follows the  A3 and  A2 models at heating rates of 5 and 10 °C/min, respectively. 
However, the reaction model changes from  A3 to  A2 in α = 0.5 at a heating rate of 
30 °C/min. Hence, the second step of oxidation is controlled by the nucleation and 
nuclei growth rate of  MgAl2O4, so that the growth rate of nuclei is proportional to 
the interphase area [61, 62].

Conclusions

In the present research, non-isothermal kinetic analysis of the oxidation process in 
the Al–Mg powder mixture was investigated. According to DSC-TGA results, this 
oxidation process of the Al–Mg powder mixture was divided into two stages. Phase 
analysis revealed that only the magnesium powder particles were oxidized dur-
ing the first step of the process. During the second oxidation step, the protective 
oxide layer on the surface of aluminum particles was broken and the spinel phase 

Fig. 5  Plots of the experimental and theoretical g(α) vs. α for the a first and b second oxidation stages of 
Al–Mg powder mixture under air atmosphere
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 (MgAl2O4) was formed due to the contact of aluminum melt with the magnesium 
oxide (MgO) formed in the first step. Moreover, the obtained results revealed that 
aluminum powder particles in the powder mixture is oxidized at lower temperatures 
and more completely compared with pure aluminum powder. Furthermore, activa-
tion energy of two oxidation stages of the Al–Mg powder mixture was calculated 
by isoconversional Starink and Friedman methods. At both stages, the activation 
energy obtained decreased as the reaction progressed. IKP method also confirmed 
the results of the isoconversional method. Based on the results obtained by fitting 
method, the first oxidation stage was controlled by  A2,  R2, and  D2 models at the 
heating rates of 5, 10 and 30 °C/min. In the second step, the reaction followed the 
 A3 and  A2 models at heating rates of 5 and 10 °C/min, respectively, and the reaction 
model changed from  A3 to  A2 at α = 0.50 at the heating rate of 30 °C/min.
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