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Abstract
In this study, carbon dots coated with diluted polyethylene imine was prepared from 
the carbonization of citric acid (CA) with branched polyethylene imine (BPEI) at 
temperature (200 °C), designated as BPEI-CDs. The solid catalyst was character-
ized by various techniques including X-ray powder diffraction (XRD), Fourier trans-
form infrared (FT-IR), atomic force microscopy (AFM), high resolution transmis-
sion electron microscopy (HRTEM). The obtained BPEI-CDs are spherical graphite 
nanocrystals (averaging 5–10 nm). It was found that it could be used as heterogene-
ous catalyst for Knoevenagel condensation of aromatic aldehydes with malononi-
trile at 60 °C in ethanol. The Knoevenagel aromatic products were obtained with a 
moderate to excellent conversion within 2 h. The BPEI-CDs as catalyst was easily 
isolated from the reaction mixtures by simple filtration and reused for three times 
without significant loss of catalytic activity. There was also no contribution from the 
leached active species and conversion was only being possible in the presence of the 
prepared modified carbon dots.

Keywords Carbon dots · Knoevenagel condensation · Branched polyethylene imine · 
Citric acid

Introduction

The ability of carbon atoms to form covalent bonds with other atoms via sp,  sp2 
and  sp3 enables it to form different allotropies such as, diamond, graphite, carbon 
nanotube, carbon dots and so on [1]. Carbon-based quantum dots with fascinating 
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properties such as great potential applications in bioimaging, optoelectronics sen-
sors, SERS, and photocatalyst have gradually become a rising star as a new nano-
carbon member due to their benign, abundant and inexpensive nature [2–4]. A great 
variety of techniques and methods have been developed in recent years for prepa-
ration of C-dots such as chemical ablation [5–7], electrochemical carbonization 
[8–11], laser ablation [12], microwave irradiation [13] solvothermal and hydrother-
mal methods [14] are provided. On the other hand, other methods such as thermal 
decomposition of organic compounds in solvent with high boiling points is a simple 
and inexpensive procedure for preparing C-dots. This method is based on heating 
nitrogen-and oxygen rich organic molecules in an autoclave above 200 °C. Zhang 
et al. have reported N-doped C-dots can be formed by heating toluene solution of 
 CCl4 and  NaNH2 [15]. Other methods have also been used for preparation C-dots 
such as thermal decomposition [16, 17] and ultrasonic carbonization [18].

Recently a single step method based on thermal decomposition of substituted 
ammonium citrate salts are reported. Based on reported citric acid is one of the stat-
ing materials as carbon source in which solutions of branched poly(ethyleneimine) 
(BPEI) in water at 200 °C causes formation of C-dots modified with (BPEI) [16].

In this study, attempts have been made to use this type of C-dots as catalyst for 
Knoevenagel reactions because of basic character of C-dots surfaces.

The Knoevenagel reaction is due to the carbon–carbon bond formation between 
active methylene group and aldehydes or ketones. The Knoevenagel products have 
been widely used for the preparation of coumarin derivatives, cosmetics, perfumes, 
pharmaceutical compounds, polymers and so on [19–21]. Up to now various Lewis 
acids and bases have conventional been used as homogeneous catalyst [22–26]. 
Because of separation and recyclability problems of homogeneous catalyst, many 
efforts has been made to use heterogeneous system such as molecular sieves [27] 
organic functionalized molecular sieves, or silica [28–30] metal organic frameworks 
(MOF) such as UiO-66 [31], Zif-8 [32], Zif-9 [33], IRMOF [34], and mixed oxides 
nanoparticles [35] are active for Knoevenagel reactions.

Experimental

All chemicals were purchased from Merck Chemical Company, and used without 
further purification. XRD patterns of powdered samples were carried out on Siefert 
3003 PTS diffractometer using Cu  Kα radiation (k = 1.5406 Å) in the 2θ range of 
10° to 60° with accelerating voltage and current of 40 kV and 40 mA, respectively. 
FT-IR spectra were recorded on a Bruker instrument using KBr pellets technique in 
the range of 4000–500 cm−1. The Atomic Force Microscopy (AFM) images were 
taken by Nanosurf easyscan 2. The products were analyzed by gas chromatography 
(GC) (Agilent Technologies, 6890 Series GC System, HP-5 Phenyl Methyl Siloxane 
Capillary, 30 m × 530 µm × 1.5 µm Nominal, Carrier Gas; He) GC–MS analyses 
were performed using an 5973 Network Mass Selective Detector, 6890 Network, GC 
System, Column; HP Phenyl Methyl Siloxane Capillary, 30 m × 530 µm × 1.5 µm 
Nominal, Carrier Gas; He. High Resolution Transmission Electron Microscopy 
(HRTEM) were performed using a Tecnai, FEI.
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Preparation BPEI‑CDs as catalyst

BPEI-CDs was prepared as reported [16–18]. CDs with BPEI coatings are pro-
duced by a mixture of citric acid (CA) with branched polyethylene imine (BPEI) 
at temperature (200  °C). Therefore 0.5  g of BPEI and 1  g of CA are dissolved 
uniformly with 10  mL of hot water in a 25  mL beaker, and then heated mod-
erately (<  200  °C) using a heating mantle. Most of water evaporated for about 
20 min, until a uniform pale-yellow gel was formed. Then one 1 mL of water was 
added before the gel was scorched and heating was continued. This procedure 
was repeated about 10 times (in 3 h), then the gel with orange color was obtained. 
The product was used without further purification. In this step, carbon dots with 
polyethyleneimine was obtained.

Catalyst test

In a typical experiment BPEI-CDs (25  mg), malononitrile (5  mmol), aldehyde 
(5  mmol) and solvent as ethanol (1.5  mL) were placed into round bottom flask 
(25 mL) and the reaction mixture was stirred at 60 °C for 2 h. Then the mixture was 
dissolved in 2 mL ethyl acetate and the Knoevenagel products were separated and 
subjected to GC and GC–MS analysis. The catalyst was recovered by simple filtra-
tion, washing with ethanol and drying in air in order to use in the next run.

Result and discussion

Catalyst characterization

In this study, BPEI-CDs was prepared based on reported [16], with citric acid and 
branched polyethylene imine.

The XRD pattern of BPEI-CDs is shown in Fig. 1, the obtained results is consist-
ent with those reported before [16]. The typical diffractions at 2θ = 21.68° and 43° 
are related to the (002) and (100) planes respectively. In fact, the obtained results of 
BPEI-CD indicates the presence of carbon-based materials and graphite crystalline 
plates [16, 36].

The FT-IR spectra of citric acid, BPEI and BPEI-CD are shown in Fig.  2a–c 
respectively. The obtained results were consistent with those reported before [16]. 
The FT-IR spectrum of the BPEI–CDs is similar to that of the BPEI (3440 and 
1585 cm−1 due to NH  CH2 at 2950 and 2820 cm−1 and CN at 1338 cm−1), but no 
characteristic absorption of CA was observed. These results indicate that CA might 
be mostly carbonized during the pyrolysis, while the BPEI kept stable. In fact, 
observing a peak at 1700 cm−1 in Fig. 2c should be attributed to the –CONH stretch-
ing vibrations.

The AFM images of BPEI-CDs are shown in Fig. 3 the particle size distribution 
of BPEI-CD is 5 to 50 nm. Most particles have a size of 5 to 10 nm.
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The HRTEM with two different magnification of modified C-dots are shown in 
Fig.  4. HRTEM images (Figs.  4a and 4b) reveals that BPEI-CDs spherical mor-
phology with average particle size of 5–10  nm, but the majority of particle sizes 
are 5 nm. Based on the SAED results, the spacing between the crystalline lattice is 
around 0.26 nm.

The EDX of CDs is shown in Fig.  5, which indicates the presence of carbon, 
nitrogen and oxygen in the prepared BPEI-CDs.

Catalytic activity

Optimization of the Knoevenagel condensation reaction

The Knoevenagel condensation reaction of benzaldehyde with malononitrile was 
performed in the presence of BPEI-CD as catalyst to form benzylidene malononi-
trile (Scheme 1).

Various parameters such as the effect of catalyst amount, temperature, reaction 
time and solvent were evaluated. At first, to optimize the catalyst amount, reaction 
was carried out using 5, 13, 17 and 25 mg of BPEI-CD as catalyst within 2 h, in 
refluxing ethanol (Fig. 6). As seen in this figure, whereas increasing the amount of 
catalyst from 5 to 25 mg within 2 h increases the conversion from 87 to 100% with 
72 to 100% selectivity toward the benzylidene malononitrile (Fig. 6).

Then, the effects of reaction temperature on catalytic activity were investigated 
(Fig. 7). The results showed that the reaction conversion gradually increased from 
30 °C to 50 °C, but the maximum conversion (100%) of the product was obtained at 
60 °C within 2 h.

Fig. 1  The XRD pattern of BPEI-CDs
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In order to evaluate the effect of time on the Knoevenagel reaction, the reaction 
was performed at 60 °C for different reaction times from 30 min to 2 h (Fig. 8). 
With increasing reaction time, the conversion of benzaldehyde increased to 100% 
after 2 h. Therefore, all other reactions were carried out within 2 h.

Fig. 2  FT-IR spectra of (a) citric acid, (b) BPEI, (c) BPEI-CDs
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In order to investigate the effect of solvent on the product formation, reactions 
were carried out with different solvents such as methanol, ethanol, butanol, DMF 
and toluene (Fig.  9). It was found that the highest and lowest catalytic activity is 
observed in ethanol and toluene, respectively. As such, it can be concluded that 
the less polar solvents such as toluene are not suitable media for this reaction. In 
contrast, ethanol as a rather polar and eco-friendly solvent is better perhaps due 
to the stabilization of the generated partial ionic transition state structure. In fact, 
the reactivity of the catalyzed reactions to solvent depends on the (a) polarity and 
amphiprotic properties of catalyst surface [32, 33, 37]. For example, whereas some 
reactions in the presence of MOF catalyst such as UiO-66-NH2 exhibits the highest 
catalytic activity in DMF, ethanol is a good media as well. On the other hand, etha-
nol was found to be better than DMF in cases such IRMOF-3 [37] and  NH2-MIL(Al) 
[32] catalysts. This may be is due to the amphiprotic character of solid surfaces [34]. 
It was also reported that toluene is better than polar solvents for some amino-tagged 
silicas [33, 38]. In contrast, the polar solvent increases the reaction rate in some 
other Knoevenagel catalyzed reactions. Therefore, there is no general trend in the 
effect of solvent on Knoevenagel reactions using heterogeneous catalysis system.

Having established the optimal reaction conditions, we examined the generality 
of this Knoevenagel condensation on other substrates such as 3-nitrobenzaldehyde, 
2-chlorobenzaldehyde, 4-chlorobenzaldehyde, 2-hydroxybenzaldehyde, 4-hydroxy-
benzaldehyde, 4-methylbenzaldehyde, 4-methoxybenzaldehyde and furfural in etha-
nol (1.5 mL) using 0.025 g of catalyst within 2 h, at 60 °C (Table 1).

Fig. 3  AFM imag of BPEI-CDs 
with two maps
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Effect of the substitution on the conversion percentages can be rationalized if one 
has an insight into the reaction mechanism. As indicated in Scheme 2, it seems likely 
that the BPEI-CDS as Lewis base (LB) abstracts a  H+ from malononitrile and gener-
ates compound A. Subsequently, A reacts with aldehyde to afford B. Protonation fol-
lowed by elimination of water results in the formation of C and Knoevenagel adduct 
D, respectively. Effect of the substitutions on the conversion rate supports the sug-
gested mechanism. As seen in the Scheme 2, the presence of electron-withdrawing 
group in meta or para position of aldehyde should accelerate the reaction rate due 
to the stabilization of the intermediate B. This in turn increases the conversion rate 
(entries 1, 2 and 4, Table 1). On the other hand, the presence of electron-donating 

Fig. 4  HRTM image of BPEI-
CDs with two magnifications
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groups on para position retards the conversion rate due to the destabilization of the 
intermediate B. This in turn gives the corresponding product in lower yield (entries 
6, 7 and 8, Table 1). That ortho-chloroaldehyde has afforded the product in lower 
yield (entry 3, Table 1) mas has been the result of partial steric effect experienced 
between the rather large chlorine atom and reaction center. Finally, observation 
of excellent yield in the case of ortho-hydroxy aldehyde (entry 5, Table  1) is not 
surprising since the formation of hydrogen bonding between the –OH group and 
–C–O− in the transition state increases the conversion rate (inset, Scheme 2, E).

The recyclability of BPEI-CDs was investigated under optimum reaction condi-
tions. After each reaction run the catalyst was recovered by centrifugation, washed 
with ethanol for several times and dried under vacuum at 100  °C. As shown in 
Fig.  10, the catalyst maintains with high catalytic activity (100% conversion and 
100% selectivity), after three recycling step a very slight decreasing was observed 
(with 99% conversion and 98% selectivity). On the other hand, no catalytic activity 
was observed using the filtrate solution. The obtained results indicate the heteroge-
neous character of the prepared catalyst.

Fig. 5  The EDX of BPEI-CDs

Scheme 1  The Knoevenagel condensation reaction of benzaldehyde derivatives with malononitrile
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The other point is the FT-IR spectra before and after experiment were similar 
(Fig. 11).

The XRD patterns of BPEI-CDs before and after reaction is shown in Fig. S1. 
The intensity of broad diffraction peak at 2θ = 24.0 (d002) was decreased and the 

Fig. 6  Influence of catalyst amount on Knoevenagel condensation. Reaction conditions: benzaldehyde 
(5 mmol), malononitrile (5 mmol), solvent: ethanol (1.5 ml), 60 °C, 2 h

Fig. 7  Influence of reaction temperature on Knoevenagel condensation. Reaction conditions: benzalde-
hyde (5 mmol), malononitrile (5 mmol), solvent: ethanol (1.5 ml), catalyst 0.025 g, 2 h
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Fig. 8  Influence of reaction time on Knoevenagel condensation. Reaction conditions: benzaldehyde 
(5 mmol), malononitrile (5 mmol), solvent: ethanol (1.5 ml), catalyst 0.025 g, 60 °C

Fig. 9  The effect of solvent on product formation reaction conditions: aldehyde (5 mmol), malononitrile 
(5 mmol), catalyst 0.025 g, 60 °C, 2 h
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Table 1  Results obtained for Knoevenagel condensation of aldehydes
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intensity of weak peak at 43.4 (d100) has been increased. These results indicate the 
amorphous carbon phase decreased and graphitic phase increased which are con-
sistent with those reported before [36]. The interesting point is the XRD pattern of 
BPEI-CDs after second and third run were similar.

Reaction conditions: aldehydes (5  mmol), malononitrile (5  mmol), solvent: ethanol (1.5  mL), catalyst 
0.025 g, 60 °C, 2 h

Table 1  (continued)

Scheme  2  Suggested mechanism for catalyzed Knoevenagel condensation reaction of aldehydes with 
malononitril. Inset, the stabilized intermediate E due to the formation of intramolecular hydrogen bond
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Fig. 10  The effect of recyclability of catalyst for Knoevenagel condensation reaction at optimum condi-
tions

Fig. 11  FT-IR spectra of BPEI-CDs before and after Knoevenagel reaction
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Finally, in order to compare our results with those reported in literature, Table 2 
was included. The preparation of BPEI-CDs as a new Knoevenagel heterogeneous 
catalyst in one step in a free metal procedure together with low reaction time, and 
high conversion and selectivity are some advantages of this work.

Conclusion

In this work modified Carbon dots with citric acid and branched polyethylenimine 
(BPEI) was prepared and designated as BPEI-CDs. The prepared BPEI-CDs was 
characterized using with a variety of different techniques, including FT-IR, XRD, 
HRTEM and AFM. The BPEI-CDs was used as basic catalyst for Knoevenagel 
reactions with aromatic aldehydes and malononitrile. It was found that the unsub-
stituted aldehyde and substituted with electron-withdrawing groups are more 
active than those containing electron-releasing groups. It was also found that the 

Table 2  Comparison of present work (catalyst BPEI-capped CDs) with other studies in the literature

a SOCMs: Silicate–organic composite materials
b AAPTMS: N-(2-amino ethyl)-3-amino propyl trimethoxysilane
c Magnetite-polyoxometalate hybrid nanomaterial was prepared by grafting of  H3PW12O40 on the 
diamine-functionalized  Fe3O4 magnetite nanoparticles
d Fe3O4 magnetic nanoparticles coated by (3-aminopropyl)triethoxysilane with β-naphthol and benzalde-
hyde
e N-GO by grafting of ethylenediamine on the surface of GO
f CN-Mic: Microporous graphitic carbon nitride material

Entry Catalysts Reaction conditions: Amount of 
catalysts, Solvent, Temperature, 
Time

Conversion 
(selectiv-
ity)%

Ref

1 BPEI-capped CDs 25 mg, EtOH, 60 °C, 2 h 100 (100) This work
2 (HDTMAþ)-[Si]-MCM-41a 100 mg, Benzene, RT, 6 h 94 (100) [27]
3 AAPTMS@K10b 50 mg, Solvent free, RT, 12 h 99 (99) [29]
4 Fe3O4@SiO2@NH-NH2-PWc 40 mg, EtOH, RT, 18 h

40 mg, EtOH, Reflux, 2 h
90 (-)
80 (-)

[39]

5 Fe3O4/Betti  based 50 mg, EtOH, 25 °C, 1.2 h 95 (-) [40]
6 N-GOe 100 mg,  CH3CN, 40 °C, 4 h 96.5 (97.3) [41]
7 CN-Micf 100 mg,  CH3CN, 90 °C, 4 h 87.1 (97.1) [42]
8 Zeolite Imidazolate Framework 

ZIF-8
20 mg, Toluene, RT, 6 h 100 (–) [32]

9 UiO-66-NH2 60 mg, MeOH, 40 °C, 1 h 95 (–) [30]
10 UiO-66-NH2 144 mg, DMF, 40 °C, 40 min 98 (100) [31]
11 Zeolite Imidazolate Framework 

ZIF-9
28 mg, Toluene, RT, 6 h 49 (–) [33]

12 Znβ (Zn exchanged β zeolites) 100 mg, Solvent free, 140 °C, 6 h 16.1 (–) [26]
13 Cu-BTC 200 mg, Xylene, 80 °C, 0.5 h 100 (100) [43]
14 Fe-BTC 200 mg, Xylene, 130 °C, 3 h 100 (99) [43]
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catalyst can be easily recovered from reaction mixtures and reused at least three 
times without significant loss in catalytic activity.
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