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Abstract
Supported Co/activated carbon (Co/AC) catalysts were prepared by the incipient 
wetness impregnation method and applied to the one-pot hydroamination of iso-
phorone nitrile (IPN) into isophorone diamine (IPDA). The 20  wt% Co/AC heat-
treated in N2 exhibited superior catalytic performance to the 20 wt% Co/AC heat-
treated in H2, by which a maximum 90.2% yield of IPDA was achieved and it could 
be recycled at least four times. XRD, XPS, TEM and BET has demonstrated that the 
existence of the fcc form of Co as well as the smaller and more uniformly dispersed 
Co particles in the Co/AC catalyst heat-treated in N2 may contribute to the excellent 
catalytic performance.

Keywords  Carbon reduction · Co/AC · Hydroamination · Isophorone diamine · 
Isophorone nitrile

Introduction

Isophorone diamine (IPDA) is an important alicyclic amine derived from the down-
stream products of acetone. Because of its unique amino structure, IPDA is widely 
used as a solidifying agent for epoxy resins, showing excellent stain resistance, oil 
resistance, weatherability, color stability, low viscosity, and shrinkage [1]. It is also 
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a raw material to isophorone diisocyanate, which is another popular material in the 
fields of polyurethane and paint [2]. IPDA can be synthesized through the following 
pathway (Scheme 1): firstly, isophorone is obtained by cyclocondensation of three 
molecules of acetone [3, 4], followed by the cyanation of isophorone to obtain iso-
phorone nitrile (IPN) [5, 6]; finally, IPDA is obtained by hydroamination of IPN [7].

The hydroamination of IPN proceeds in two steps, the iminization of the carbonyl 
group and the subsequent hydrogenation of imine and cyano groups [8, 9]. Gener-
ally, the iminization of the carbonyl group is catalyzed by an acid or base catalyst 
[10], whereas it can also occur spontaneously without any catalyst [11]. However, 
metal hydrogenation catalysts (e.g., Ni, Co, Ru) are essential to hydrogenation reac-
tion of imine and cyano groups [12, 13]. For example, in the hydroamination of car-
bonyl groups, Chattejee et al. [14] applied Rh/Al2O3 to hydroamination of furfural 
into furfurylamine, in which the support Al2O3 may serve as a dual acid/base cata-
lyst for iminization of carbonyl. While Christian et al. [15] only used Raney Ni for 
hydroamination of cyclohexanone to cyclohexylamine. In the hydrogenation of the 
cyano group, Segobia et al. [16] used Ni/SiO2 for the hydrogenation of n-butyroni-
trile to n-butylamine McAllister et al. [17] utilized Pd/C to catalyze the hydrogena-
tion of 4-hydroxybenzyl cyanide to primary amine tyramine.

In our previous work, CaO plus Raney Co and Co/SiO2 were used for the 
hydroamination of IPN achieving 95.6 mol% and 70.4 mol% yield of IPDA, respec-
tively [18, 19]. Nevertheless, Raney Co is criticized for easy inactivation, high dos-
age and weak mechanical strength, which limits its industrial application [20, 21]. 
In order to further improve the yield of IPDA over a supported Co-based catalyst 

Scheme 1   Pathway of synthesis of IPDA from acetone
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for future industrial use, herein, we continued to screen the commercially available 
supports and found that Co/AC catalysts performs the best in hydroamination of IPN 
into IPDA. Meanwhile, the XRD, BET, XPS and TEM of the Co/AC catalysts were 
characterized to disclose its structure–function relationship.

Experimental section

Materials

IPN was synthesized in our laboratory with a purity of more than 98.5%. Raney Co 
was purchased from Shanghai Sun Chemical Technology Co. Ltd. Ammonia, hydro-
gen and nitrogen gases were provided by Hangzhou Jin gong Special Gas Co. Ltd., 
with purity larger than 99.99%. Other chemicals are analytical reagents and were 
purchased from Sino-pharm Chemical Reagent Co. Ltd.

Catalyst preparation

The supported Co/active carbon (Co/AC) catalysts were prepared by the incipient-
wetness impregnation method. Taking 20 wt% Co/AC catalyst as an example, the 
typical preparation steps were as follows: 3 g of AC was impregnated with an aque-
ous solution of Co(NO3)2·6H2O (3.7 g of Co(NO3)2·6H2O dissolved in 6.3 g of H2O) 
at room temperature and maintained overnight. The mixture was dried at 110 °C in a 
vacuum oven for 10 h to form the Co/AC precursor. The precursor was heat-treated 
at 500 °C in N2 and H2 for 4 h. The formed catalysts were denoted as Co/AC (N2) 
and Co/AC (H2) accordingly.

Catalyst characterization

XRD, TEM, BET and XPS characterizations are similar to our previous publications 
[22, 23] and therefore included in the supporting materials for duplicate-checking 
reasons.

IPN preparation

The 10 g (0.0669 mol) IPH, 2.0 g (0.0408 mol) NaCN and 9 mL(0.116 mol) N,N-
dimethyl formamide (DMF) were added into a three-necked round-bottom flasks 
and heated to 120  °C under continuous stirring. Successively, 5  mL of NH4Cl 
(6 mol L−1) was dropwise added into the above mixture and the reaction was main-
tained for 4 h. A gas chromatography was used to detect the IPN yield (based on 
NaCN). The reaction mixture was separated by decompressing distillation process 
and the fraction of 180–200 °C was collected, followed by cooling and recrystalliza-
tion. Finally, white crystal with 98.5% purity was obtained.

Melting point: 65–66  °C; FT-IR(KBr, cm−1): 3000–2850(υC–H), 
2240–2222(υC≡N), 1715(υC=O), 1465 ~ 1340(δC–H); 1H-NMR (500  MHz, 
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CDCl3): δ = 2.69 (dt, J = 14.3, 1.9 Hz, 1H), 2.30–2.15 (m, 3H), 2.12–2.04 (m, 1H), 
1.66 (dd, J = 16.0, 9.4  Hz, 1H), 1.52 (s, 3H), 1.21 (s, 3H), 1.10 (s, 3H); MS (EI, 
70 eV) m/z (%): 165 (M+, 13), 150 (10), 94 (17), 83 (100).

Catalytic reaction

The iminization and one-pot hydroamination reactions were carried out in the same 
100 mL stainless steel autoclave equipped with a mechanical stirrer. 40 mL of meth-
anol (solvent), 2.5 g of IPN, and 0.5 g of Co-based catalysts were introduced into 
the reactor. After the reactor was sealed and purged with N2 to remove air, ammonia 
was introduced up to 0.2 MPa and then hydrogen was introduced up to 8.0 MPa with 
continuous stirring at 1500 rpm to initiate the reaction for 8 h.

Product analysis

The product analysis section is the same as that in our previous publications [19] 
and therefore included in the supporting materials for duplicate-checking reasons. 
The conversion and yield were used to evaluate the transformation of the substrate 
and the distribution of the products (conversion = (1−final amount of IPN/initial 
amount of IPN) × 100%; yield = (mole amount of each product/mole amount of ini-
tial IPN) × 100%).

Results and discussion

Effect of the supports

The commercially available chemicals, i.e., NaZSM-5, CaO, γ-Al2O3, AC, SiO2 and 
TiO2 were chosen as support for Co by the incipient-wetness impregnation method 
for hydroamination of IPN into IPDA. The Raney Co was used as a control group. 
As illustrated in Table  1, IPN is 100% converted in each entry, regardless of the 
alkalinity or acidity of the support, indicating that the iminization step may easily 
occur without any catalyst. Whereas, the catalysts show great difference in the yield 
of IPDA, among which Co/NaZSM-5 and Co/CaO display inferior yield to IPDA 
of less than 10 mol% (entries 1 and 2). This should be ascribed that NaZSM-5 has 
very small pore size of around 0.5 nm and CaO is almost nonporous, which is unfa-
vorable for dispersion of Co into nano size [24, 25]. As a consequence, these two 
catalysts exhibit poor hydrogenation effect so that a lot of iminization intermediates 
co-exist in the final product. Besides, the strong alkalinity of the support may inhibit 
the reduction of Co catalyst precursor, [26–28] resulting in poor hydrogenation abil-
ity of the catalysts and the decomposition of IPN to isophorone, as evidenced by the 
considerable amount of 3, 3,5-trimethyl cyclohexylamine in the product. Among the 
tested catalysts, Co/AC shows the best catalytic performance with yield to IPDA of 
79.7 mol%. Co/SiO2 ranks second with 69.0 mol% yield to IPDA. While Co/TiO2 
and Co/γ-Al2O3 come next with approximately 20 mol% yield to IPDA and a plenty 
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of 3-aminomethyl-3, 3,5-trimethyl cyclohexanol and other unknown substances are 
produced in the reaction. We therefore consider that AC is preferred as the support 
under the applied conditions.

It is noted that 1.3 g Raney Co achieved 80 mol% yield of IPDA (entry 7), which 
is comparable to 20 wt% Co/AC (N2) of 1.0 g. Bearing in mind that Co metal dosage 
in Raney Co is six times higher than that of Co/AC (N2), we consider the latter has 
strikingly improved metal utilization.

Catalytic performance and recyclability of Co/AC

Further optimization on reaction conditions for Co/AC (N2) shows that the heat-
treatment temperature, catalyst dosage and loading affect the catalytic performance 
remarkably (Table 2 and Tables S1–S4). A higher catalyst dosage seems essential 
to the reaction. This is mainly because that NH3 is more strongly adsorbed on the 
active sites of the Co surface than H2, which decreases the hydrogenation activity 
of the catalyst, as proved by our previous DFT calculation [29]. However, when the 
dosage is larger than 1.0  g, the yield of IPDA increases slower, and the increase 

Table 1   Performance of different catalysts

Reaction conditions: IPN, 2.5 g; methanol, 40 mL; NH3 pressure, 0.2 MPa; H2 pressure, 8 MPa; sup-
ported Co catalyst with loading amount of 20 wt%, 1.0 g; temperature, 80 °C; reaction time, 8 h; stirring 
speed, 1500 rpm
a 1.3 g of Raney Co

Entry Catalyst Conversion (%) Yield (%)

Others

1 Co/NaZSM-5 100 22.3 – 46.9 8.9 3.2 18.7
2 Co/CaO 100 19.1 – 52.1 3.5 0.2 25.1
3 Co/Al2O3 100 11.5 2.3 23.4 20.1 7.9 34.8
4 Co/AC (N2) 100 7.4 1.1 7.0 79.7 – 4.8
5 Co/SiO2 100 1.5 4.1 10.3 69.0 12.4 2.7
6 Co/TiO2 100 – – 32.5 26.1 27.6 13.8
7a Raney Co 100 4.9 3.9 1.6 80.4 2.3 6.9

Table 2   Performance of Co/AC catalysts for IPN hydroamination to IPDA

Reaction conditions: IPN, 2.5 g; methanol, 40 mL; NH3 pressure, 0.2 MPa; H2 pressure, 8 MPa; tempera-
ture, 80 °C; reaction time, 8 h; stirring speed, 1500 rpm

Entry Catalysts Heat-treatment 
temperature (°C)

Loading (wt%) Dosage (g) Conversion (%) Yield (%)

1 Co/AC (N2) 500 20 1.3 100 81.1
2 Co/AC (N2) 500 20 2.5 100 90.2
3 Co/AC (H2) 500 20 1.3 100 67.4
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of IPDA yield may be limited while the dosage of catalyst is higher than 2.5 g, at 
which a highest IPDA yield of 90.2 mol% is achieved at 500 °C for catalyst heat-
treatment and 20 wt% for catalyst loading.

The Co/AC catalyst reduced by H2 was also conducted. Results shows that the 
yield of IPDA is very low at loading of 5 wt% and 10 wt%, whilst increases dramati-
cally and peaks at 67.4 mol% when the loading is 20 wt% (entry 3). By comparison, 
the Co/AC (N2) is more preferable as it obtained 14.3 mol% higher in IPDA yield 
than that of Co/AC (H2) at the same reaction conditions.

For concise, only the recyclability of 20  wt% Co/AC (N2) was investigated, as 
depicted in Fig. 1. The conversion of IPN substantially maintains unchanged and the 
yield only shows marginal decline after four-time reused. The slight decline may be 
ascribed to the negligible loss of the active metal during the recycle process, show-
ing that the catalyst is very stable for the hydroamination of IPN.

Catalyst characterization

Physical characterizations have been conducted in order to disclose the reason 
why Co/AC (N2) showed superior catalytic performance to Co/AC (H2). The 
XRD patterns of Co/AC heat-treated in N2 are presented in Fig. 2. The peak at 
2θ = 26.6° is assigned to C (002) crystal plane of graphite carbon (PDF#26-1079). 
The three diffraction peaks at 2θ = 36.5°, 42.4° and 61.6° in each pattern corre-
spond to CoO (111), (200), and (220) crystal planes (PDF#48-1719). Besides, 
the three diffraction peaks at 2θ = 44.2°, 51.5° and 75.9° belong to face-centered 
cubic (fcc) Co (111), (200) and (220) (PDF#15-0806) [30, 31] and the diffrac-
tion peaks at 2θ = 41.59° and 47.39° are ascribed to hexagonal close-packed (hcp) 
Co (100) and (101) (PDF#05-0727) [31, 32]. It can be seen from Fig. 2a that Co 
species exist in the state of Co(II) and almost no atomic Co is detected while 
heat-treated at 300  °C or 400  °C in N2. In contrast, almost all the Co species 
turns into metallic Co while heat-treated at 500  °C and 600  °C, indicating that 
Co ions in Co/AC precursor can be reduced into metallic Co by carbon during 
the heat-treatment over N2, which is also demonstrated by our previous work 
[33] as well as other publications [34–36]. It is well known that Co generally 

Fig. 1   Recyclability of 20 wt% 
Co/AC catalyst for IPN 
hydroamination. Reaction con-
ditions: IPN, 2.5 g; methanol, 
40 mL; NH3 pressure, 0.2 MPa; 
H2 pressure, 8 MPa; catalyst, 
1.3 g; temperature, 80 °C; reac-
tion time, 8 h; stirring speed, 
1500 rpm
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Fig. 2   XRD patterns of Co/AC: a Co/AC (N2) catalyst heat-treated at different temperature, b Co/AC 
(N2) catalysts with different Co loading and c Co/AC (H2) catalysts with different Co loading
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shows hydrogenation activity at its metallic state. This should be the reason why 
the Co/AC (N2) heat-treated at 300 °C or 400 °C only obtained poor IPDA yield 
(Table S1). Moreover, the diffraction peak of Co (111) crystal plane for Co/AC 
heat-treated at 600 °C is narrower and sharper than that for Co/AC heat-treated at 
500 °C. This implies that larger particle size of metallic Co is formed at 600 °C, 
which decreases the metal dispersion and the catalytic activity accordingly. This 
is also in agreement with the hydroamination reaction data that 500  °C is the 
optimal heat-treatment temperature.

Fig. 2b presents the XRD patterns at different loading of Co. Co in all five cata-
lyst precursors are reduced to metallic Co after heat-treatment in N2 at 500 °C. Sig-
nificantly, the crystal form of Co in 5 wt% and 10 wt% Co/AC exist in the mixture 
forms of Co (hcp) and Co (fcc), while only Co (fcc) form exists in 15 wt%, 20 wt% 
and 25 wt% Co/AC. As reported [10], Co (fcc) crystal exhibits preferable catalytic 
activity comparing with Co (hcp). Consequently, 5 wt% and 10 wt% Co/AC shows 
inferior catalytic performance. Besides, the lower loading of Co generally leads to 
smaller particle size of the nano-metals, which is much easier to be oxidized during 
the reservation and therefore exhibits poor hydroamination activity [35].

The XRD patterns of Co/AC (H2) are also depicted in Fig. 2c. Different from the 
Co/AC (N2) catalysts, all the Co/AC (H2) catalysts contain the mixture of fcc and hcp 
crystal forms of Co, indicating that the reduction condition would affect the crystal 
form much [37]. As a consequence, Co/AC (N2) exhibit superior catalytic activity 
to Co/AC (H2) since the hcp form of Co is less active in hydroamination reactions. 
Moreover, the particle sizes of Co metal calculated by the Scherrer equation [based 
on Co (111)] show that the 25 wt% and 20 wt% Co/AC (H2) are about 25.4 nm and 
20.7 nm, respectively, which are slightly larger than 19.8 nm and 17.7 nm for the 
corresponding particle sizes in the Co/AC (N2) catalysts. The smaller particle size of 
Co in Co/AC (N2) also supports its better catalytic performance.

Fig. 3 displays the TEM images of 20 wt% Co/AC heat-treated at 500 °C in N2 
and H2. Results show that the averaged particles sizes of these two catalysts are 
11.6  nm and 17.8  nm. Although the sizes are varied from the XRD calculations, 
they have the same trend and also indicate the better activity of the former catalyst. 
The space of the lattice fringe for the Co/AC (N2) is measured as 0.205  nm and 
0.170 nm through Fourier transformation (Fig. 3b), in accordance with the fcc Co 
(111) and fcc Co (200), respectively [38]. By contrast, the space of the lattice fringe 
for the Co/AC (H2) is measured as 0.204 nm and 0.198 nm (Fig. 3d), in accordance 
with the fcc Co (111) and hcp Co (111), respectively [38]. The results are in good 
agreement with the XRD analysis.

Fig. 4 presents the Co 2p3/2 and Co 2p1/2 spin–orbit components of 20 wt% Co/
AC (N2) heat-treated at 500 °C by XPS. The doublet peaks at the binding energy 
(BE) of 778.2 eV and 793.6 eV are attributed to Co0 2p3/2 and 2p1/2, indicating that 
Co can be reduced to metallic state after heat-treated at 500 °C in N2 [39, 40], which 
is in accordance with our XRD analysis. Actually, oxidized Co is also observed, 
as evidenced by the existence of the doublet peaks at the binding energy (BE) of 
780.2 eV and 795.6 eV, which belong to CoO 2p3/2 and 2p1/2, respectively [32, 41, 
42]. This may be ascribed to the incomplete reduction or the re-oxidation of Co dur-
ing the reservation of the catalyst.
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Fig. 3   TEM images: a and b 20 wt% Co/AC (N2) catalysts heat-treated at 500 °C, c and d 20 wt% Co/
AC (H2) catalysts reduced at 500 °C

Fig. 4   Decomposed Co 2p XPS spectrum of 20 wt% Co/AC (N2) catalysts
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The nitrogen sorption isotherms and pore-size distribution curves of the support 
and the Co catalysts with or without heat-treatment at 500 °C in N2 are depicted in 
Fig. 5. All the three materials display typical type IV isotherm, indicating the exist-
ence of mesopores in the used commercially available AC [43, 44]. It can also be 
supported by the BJH pore diameter distribution derived from the desorption data 
with the average pore size of about 2.3 nm (Fig. 5b). From the inset table in Fig. 5a, 
one can see the same trend between the specific surface area and the pore volume of 
samples: it decrease first after impregnation of the metal precursor and then increase 
after heat-treatment. This could be ascribed that Co(NO3)2 comes inside and blocks 
the pores in the Co/AC precursor [27, 32], and part of carbon is consumed so that 
the specific surface area and pore volume are enlarged through the catalyst reduc-
tion in the followed heat-treatment process [35, 45], which might be beneficial for 
the mass diffusion during the hydroamination process. However, the specific surface 
area and pore volume of Co/AC are still smaller than those of AC. This is reason-
able, as 20 wt% of Co residues in the mesopores. In addition, the particle size of 
Co is larger than 10 nm in terms of XRD and TEM analysis while BET shows the 
average pore diameter of AC is merely 2.3 nm, implicating that Co particles mainly 
distribute on the exterior surface of the AC support.

Conclusions

Supported Co/AC catalysts were prepared by the incipient wetness impregnation 
and the followed heat-treatment in N2 and H2 atmosphere, which were applied to the 
one-pot hydroamination of isophorone nitrile into isophorone diamine. The effect 
of heat-treatment temperature, metal loading and catalyst dosage was investigated. 
Results showed that the 20  wt% Co/AC (N2) exhibited superior catalytic perfor-
mance to the 20 wt% Co/AC (H2), by which a maximum 90.2% yield of IPDA was 
achieved and it could be recycled at least four times. XRD, XPS, TEM and BET has 

Fig. 5   BET characterization of 20  wt% Co/AC (N2) catalysts: a nitrogen adsorption–desorption iso-
therms and b pore size distribution curves of the samples
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demonstrated that Co/AC precursor can be reduced into metallic Co by carbon dur-
ing the heat-treatment over N2 and the specific surface area and pore volume are also 
enlarged during that process. Meanwhile, the existence of fcc form of Co as well as 
the smaller and more uniformly dispersed Co particles in the Co/AC catalyst heat-
treated in N2 may contribute to the excellent catalytic performance.
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