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Abstract
10%NiO–La0.3Sr0.7Co0.7Fe0.3O3−δ (10%NiO-LSCF3773) was synthesized using the 
EDTAcitrate complexing method. Non-catalytic and catalytic nitrous oxide decom-
position and methane partial oxidation using 10%NiO–LSCF3773 was experimen-
tally studied, assuming that the reactions occurred separately in a membrane reactor 
at feed side and permeate side. The experimental results are in good agreement with 
the chemical equilibrium composition calculated using Aspen Plus, and the changes 
of standard Gibbs free energy of each relevant elementary reactions. The mechanism 
of the reactions was proposed to follow Eley–Rideal surface reaction. The optimal 
temperature was 800 °C, under atmospheric pressure, where (1)  NO2 formation was 
not detected (2) no production of  C2 + and  C3 + (3) complete conversion of  N2O, 
 CH4 and  O2 were achieved (4) high purity syngas was obtained with no significant 
amount of undesired products and (5) readily utilizable syngas at the ratio of two 
was achieved.
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Introduction

Nitrous oxide  (N2O) is one of the greenhouse gases that causes global warming. 
It has 300 times of the heat-trapping ability in the atmosphere more than car-
bon dioxide  (CO2) compared to the same amount within 100  years [1–3].  N2O 
comes from both man-made and natural sources. Examples of the former are pet-
rochemical industries (adipic acid, nitric acid plant, agriculture (use of nitrogen 
fertilizer), combustion processes of fossil fuels and biomass; while the latter’s 
are volcano emission and animal wastes. [1, 4–7]. The current industrial nitrous 
oxide abatement in Thailand is nitrous oxide decomposition [8]. The nitrous 
oxide is converted to nitrogen  (N2) and oxygen  (O2) at 600–800  °C, where the 
non-toxic gaseous product could be released to the environment. A part from 
being environmentally friendly, this method is costly because it requires a lot of 
external energy and does not give any valuable products.

Nitrous oxide can be utilized as oxygenated feedstock in chemical and energy 
production (i.e. fuel cells, production of syngas, carbonyl compounds, methanol, 
dimethyl ether, formaldehyde and so on) [9–13]. This work focuses on syngas 
production, as it is not only an energy source but also an importance feedstock in 
which it further conversion can give other valuable chemicals such as synthetic 
fuel, methanol, dimethyl ether, acetic acid etc. [9–14]. The nitrous oxide will be 
used as an oxidant providing a synergy of  N2O utilization and syngas produc-
tion simultaneously. Transition metals (Co, Fe, and Ni) [15–20], precious metals 
(Pd, Pt, Re, Rh) [11–13], and metal oxide compound alumina  (Al2O3), lanthanum 
cobaltite  (LaCoO3), lanthanum cobalt iron oxide  (LaCoFeO3), lanthanum ferrite 
 (LaFeO3), lanthanum manganite  (LaMnO3), ruthenium oxide  (RuO2), yttria-sta-
bilized zirconia (YSZ) [15, 16, 18, 21–27].

The methane partial oxidation by nitrous oxide was studied widely in a 
packed-bed reactor [11]. Since both methane partial oxidation and nitrous oxide 
decomposition are exothermic reaction, therefore, a large amount of heat could be 
created causing temperature runaway. The conventional packed-bed reactor also 
requires a separation unit leading to a high investment cost. Membrane reactors 
have attracted significant attention due to its ability to function as a reactor and 
separator at the same time. However, the methane partial oxidation using nitrous 
oxide has not yet been researched in a membrane reactor. The membrane reactor 
could eliminate the complexity of the separation process and to ease complica-
tion of the reaction, narrow down the product distribution, increase selectivity, 
reduce energy consumption [12, 28–33]. This work studied methane partial oxi-
dation and nitrous oxide decomposition which supposed to occur at the feed side 
and permeate side of the membrane reactor, respectively. Thermodynamics is 
useful for process assessment and optimal condition prediction, thus in this work, 
chemical equilibrium of the reactions were estimated using Aspen Plus pro-
gram. The reactions were experimented using 10%NiO–La0.3Sr0.7Co0.7Fe0.3O3−δ 
(10%NiO–LSCF) to investigate actual reactions and their surface mechanisms. Ni 
and LSCF3773 was chosen according to its economically acceptable yield and its 
oxygen storage capacity, respectively [34–37].
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Methodology

Possible reactions

The possible reactions in the membrane reactor are tabulated in Table  1. Table  2 
represents relevant mathematical formulas for the changes of the standard Gibbs free 
energy calculation.

At the feed side, nitrous oxide was decomposed on the surface of the membrane 
giving gaseous oxygen and nitrogen (1). Nitrous oxide could react with oxygen giv-
ing nitrogen dioxide as the undesired product (2). Oxygen was assumed to flow 
through the membrane to the permeable side and partially oxidize methane giving 
synthesis gas (4) and other by-products via associated reactions (5–11) [38–40]. 
The chemical equilibrium properties were calculated using Aspen Plus program. 
Changes of the standard Gibbs free energy were calculated based on heat capacity 
of each reactions [41, 42] using mathematical formulas presented in Fig. 5, where i 
denotes species of substance, γi is the stoichiometric coefficient of species i, ∆Cp is 
heat capacity. ∆rH, ∆rS, and ∆rG are the different of enthalpy, entropy, and Gibbs 
free energy of reaction, respectively. T is temperature. A, B, C, D, and E are charac-
teristic constants [43–45].

Catalyst preparation and characterization

The aqueous solution of lanthanum (III) nitrate hexahydrate (La(NO3)3·H2O), 
strontium nitrate (Sr(NO3)2), cobalt Nitrate (Co(NO3)2·6H2O), and iron(III) 
nitrate (Fe(NO3)3·9H2O) were added stoichiometrically and stirred until 

Table 1  The possible reactions 
in a membrane reactor

Non-subscripted compound are in gas phase

Reaction No. of reaction

Feed side

 N2O ⇌ N2 +
1

2
O2

(1)

 N2O +
3

2
O2 ⇌ 2NO2

(2)

Membrane

 ABO3−�,(s) +
�

2
O2 ⇌ ABO3,(s)

(3)

Permeate side

 CH4 +
1

2
O2 ⇌ 2H2 + CO (4)

 C2H6 + O2 ⇌ 3H2 + 2CO (5)

 C3H8 +
3

2
O2 ⇌ 4H2 + 3CO (6)

 C2H4 + O2 ⇌ 2H2 + 2CO (7)

 C3H6 +
3

2
O2 ⇌ 3H2 + 3CO (8)

 CH4+ ⇌ C(s) + 2H2 (9)

 CO +
1

2
O2 ⇌ CO2

(10)

 H2 +
1

2
O2 ⇌ H2O

(11)
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homogeneous. EDTA-NH4OH, citric acid and ethylene glycol was added drop-
wise while stirred continuously. The pH of the solution was kept at 6 to 7 using 
 NH4OH. The resulting solution was evaporated at 80–90 °C. The residual muddy 
dark red gel was left in an oven overnight at 200  °C. The sample was calcined 
in moving air at 1100  °C for 12 h. giving LSCF3773 powder. The powder was 
mixed into Ni(NO3)2·6H2O solution. The same procedure of drying, evaporation 
and calcination were applied. The crystallinity of the catalysts were characterized 
using X-ray diffraction technique (XRD, Rigaku TTRAX III using Cu  Kα radia-
tion, λ = 1.5418 Å in a range of 30° < 2θ < 80° with a scanning step of 0.01°). The 
reducibility of the catalyst was studied by  H2-TPR technique  (H2 temperature-
programmed reduction). Interaction between  CH4 and catalyst surface was inves-
tigated by  CH4-TPSR technique  (CH4 temperature-programmed surface reaction). 
The catalysts was packed in a lab-scaled tubular reactor. 100 ml/min of 5%H2/Ar 
(for  H2-TPR) or 5%CH4/Ar (for  CH4-TPSR) was introduced into the system while 
temperature was increased at 5 °C/min from 25 to 950 °C. The consumption of 
the reactant and the formation of the product gases were measured by real-time 
quadrupole mass spectrometer gas analyzer, based on molecular weights for gases 
 CH4 (16),  CO2 (44), CO (28),  H2 (2), and Ar (40).

Table 2  Equations for 
calculation of the changes of the 
standard Gibbs free energy

Equation No.

Cpo = A + BT + CT2 + DT3 + ET4 (12)

ΔrH
o = ΔrH

o
0
+

T

∫
T0

ΔCpodT
(13)

ΔrH
o = ΔrH

o
0
+

⎡⎢⎢⎢⎣

ΔA
�
T − T0

�
+

ΔB

2

�
T2 − T2

0

�
+

ΔC

3

�
T3 − T3

0

�

+
ΔD

4

�
T4 − T4

0

�
+

ΔE

5

�
T5 − T5

0

�
⎤⎥⎥⎥⎦

(14)

ΔrS
o = ΔrS

o
0
+

T

∫
T0

ΔCpo

T
dT

(15)

ΔrS
o = ΔrS

o
0
+

⎡
⎢⎢⎢⎣

ΔA ⋅ In

�
T

T0

�
+ ΔB

�
T − T0

�
+

ΔC

2

�
T2 − T2

0

�

+
ΔD

3

�
T3 − T3

0

�
+

ΔE

4

�
T4 − T4

0

�
⎤
⎥⎥⎥⎦

(16)

ΔrS
o
0
=

ΔrH
o
0
−ΔrG

o
0

T0

(17)

ΔCpo =
∑
i

�i(Cp
o)i (18)

ΔrH
o
0
=
∑
i

�i
�
Δf H

o
0

�
i

(19)

ΔrG
o
0
=
∑
i

�i
�
Δf G

o
0

�
i

(20)

ΔrG
o
0
= ΔrH

o − T × ΔrS
o (21)
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Experimental set‑up

The schematic diagram of the rig was presented in Fig.  1. 2  g of 
10%NiO–LSCF3773 was packed into a quartz tubular reactor with an inside 
diameter of 10 mm. The reactor was placed in the middle of an electrical furnace 
(Chavachote, Thailand) with 30  cm heating zone. The catalyst was reduced in 
40%H2 in Ar at 500 °C for 2 h before the reaction for all experiments. For nitrous 
oxide decomposition, total flow rate of 100 ml/min of  N2O (99.95%, company) 
balanced in Ar (99.995%, BIG) at 1:1 ratio was fed into the system using mass 
flow controllers (Brooks instrument flow, 0–220  ml/min). A mixture of 50  ml/
min of  CH4 (40%CH4/Ar, company), 25 ml/min of  O2 (40%O2/Ar, company), and 
25  ml/min of Ar was introduced into the reactor for methane partial oxidation 
at 2:1 molar ratio of  CH4 to  O2. All the experiments were isothermally operated 
under atmospheric pressure at temperature range of 500–1000  °C using type K 
thermocouple and PID temperature controller. Gas compositions were analyzed 
using gas chromatography method (Shimadzu GC-2014ATP).

Conversions percentages were estimated using the following equations;

Here i denotes to  N2O,  CH4, and  O2 and  ni is mole or mole flow rate of species i.

(22)Xi =

(
ni,in − ni,out

ni,in

)
× 100%

Fig. 1  Rig’s diagram for nitrous oxide decomposition and methane partial oxidation
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Result and discussion

Characterization techniques

X‑ray diffraction

Fig. 2 shows diffractograms of (a) NiO, (b) LSCF3773, and (c) 10%NiO–LSCF3773. 
The XRD pattern of 10%NiO–LSCF3773 has perovskite structure and NiO as major 
and minor crystalline phase, respectively. The Ni-based LSCF catalyst shown the 
mixed XRD diffraction peaks at 2θ = 23.20, 33.04, 37.32, 40.74, 43.36, 47.42, 53.94, 
58.96, 62.92, 69.22, 75.46, 78.84 and 80.16, the diffractograms also confirmed the 
presence of NiO (ICDD card No.03-065-5745; 37.32, 43.36, 62.92, 75.46, and 80.16 
corresponding to (111), (200), (220), (311), and (222) planes) with a cubic crystal 
structure. However, there was no peak shift in XRD pattern when more doped Ni 
content on LSCF, which noticed that the introduction of Ni loading did not alter the 
crystal structure of prepared-catalyst.

H2 Temperature‑programmed reduction  (H2‑TPR)

Reduction property of the synthesized NiO-based LSCF catalyst were evaluated 
using  H2-TPR.  H2 consumption profiles of the catalysts were compared and shown 
in Fig. 3. The TPR profile of pure NiO showed two main reduction peaks centered at 
390 and 500 °C, indicating reduction of  Ni3+ ions to  Ni2+ ions and reduction of  Ni2+ 
ions to  Ni0 ions, respectively [46–50]. For LSCF, the lowest temperature of reduc-
tion at 270 °C was attributed to surface oxygen reduction [51], while bulk oxygen 
reduction took placed during higher temperatures at 505, 625, and 735 °C. The bulk 
oxygen reduction indicate three stages of reduction (1) reduction of  Co3+/Fe4+,  Fe5+ 

Fig. 2  The XRD patterns; (a) NiO, (b) LSCF, and (c) 10%NiO–LSCF
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ions to  Co2+/Fe3+ ions at about 505 °C, (2) reduction of  Co2+/Fe3+ ions to  Co0/Fe2+ 
ions at 625 °C, and (3) reduction of  Co0/Fe2+ ions to  Co0/Fe0 ions at 735 °C [51–53]. 
The reduction temperatures of 10%NiO–LSCF showed more similarity to that of 
LSCF rather than of NiO. This is because the NiO level was not high enough to 
dominate the crystal structure [46, 54–56]. The  H2 consumption could be interpreted 
as oxygen vacancy/oxygen lattice/oxygen storage capacity/oxygen deficiency, which 
was 11,188 µmol/gsolid, 5754 µmol/gsolid, and 6442 µmol/gsolid, for NiO, LSCF3773 
and 10%NiO–LSCF3773, respectively. The 10%NiO was in situ reduced before each 
run at 500 °C, achieving  Ni0 ions which acts as an active site for the partial oxida-
tion of methane.

CH4 Temperature‑programmed surface reaction  (CH4‑TPR)

CH4 dissociation on the surface of 10%NiO-LSCF was characterized by  CH4-TPR 
technique, shown in Fig.  4. Four regions of temperature range can be considered 
according to its mechanisms.

No  CH4 consumption was detected at temperature lower than 450  °C, in this 
region I.

During temperature from 450 to 600 °C, referred to as region II in Fig. 4,  CH4 
dissociation and combustion were presumably occurred on Ni active site (Eq. 23), 
and adsorbed oxygen on the surface 

(
O∗

(ads)

)
 (Eq. 24) via Eley–Rideal mechanism,.

A slight  CH4 consumption and rapid  H2 formation were correspondingly 
observed at the beginning of this region. Meanwhile, adsorbed oxygen on LSCF’s 

(23)CH4,(g) + Ni∗
(s)

→ 2H2,(g) + C × Ni∗
(ads)

(24)CH4,(g) + 4O∗

(ads)
→ CO2,(g) + 2H2O(g) + ∗(s)

Fig. 3  H2-TP–R profiles of synthesized catalysts; (a) NiO, (b) LSCF, and (c) 10%NiO–LSCF



846 Reaction Kinetics, Mechanisms and Catalysis (2019) 127:839–855

1 3

surface was reduced by  CH4, giving  H2O and  CO2 as gaseous products. During 
the process, the oxygen vacancies was achieved (Eq. 24). These oxygen vacancies 
are to be re-oxidized by gaseous  N2O during the  N2O decomposition.

During temperature from 600 to 900  °C, shown as region III in Fig. 4, CH4 
was significantly consumed while all the gaseous products,  H2, CO,  CO2 and  H2O 
were found. Two main redox mechanisms were proposed as below:

(1) CH4 partial oxidation/combustion occurred on the oxygen surface of LSCF, 
giving  H2,  H2O, CO,  CO2 and oxygen vacancies as products, shown below as 
Eq. 25. 

(2) Langmuir–Hinshelwood surface reaction between the coked Ni site (
(C × Ni∗)(ads)

)
 (obtained from Eq. 23) and surface oxygen 

(
O∗

(ads)

)
 was occurred, 

producing gaseous products of CO and  CO2. The oxygen vacancy 
(
∗

(s)

)
 was 

obtained as the result of coke combustion, between the adsorbed coke (
(C ⋅ Ni∗)(ads)

)
 and the lattice oxygen 

(
O∗

(ads)

)
 , represented by Eq.  26, where the 

coked-Ni site 
(
(C × Ni∗)(ads)

)
 was regenerated back to its original form of active 

Ni 
(
Ni∗

(s)

)
 . This regenerated Ni 

(
Ni∗

(s)

)
 could react cyclically with  CH4 giving 

more  H2 and coked-Ni 
(
(C × Ni∗)(ads)

)
 , according to Eq. 23. The coked-Ni (

(C × Ni∗)(ads)
)
 would consequently reduce the LSCF surface by reacting with 

lattice oxygen 
(
O∗

(ads)

)
 . The oxygen vacancy 

(
∗

(s)

)
 was then achieved via Eq. 26. 

(25)CH4,(g) + O∗

(ads)
→

[
H2,(g)

H2O(g)

]
+

[
CO(g)

CO2,(g)

]
+ ∗(s)

(26)C × Ni∗
(ads)

+ O∗

(ads)
→

[
CO(g)

CO2,(g)

]
+ Ni∗

(s)
+ ∗(s)

Fig. 4  CH4-TPSR profiles of 10%NiO–LSCF catalyst
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(3) In the 4th region where the temperature was higher than 900 °C,  CH4 concentra-
tion returned back to its initial level due to the absence of the adsorbed oxygen 
on the surface of LSCF before started to slightly decrease again by  CH4 cracking 
over the coked-Ni active site. This resulted in an increase in  H2 formation, where 
the CO,  CO2 and  H2O concentration, more or less, remain unchanged. However, 
 H2O, CO, and  CO2 re-adsorption could be suggested.

The results conclude that  CH4 combustion was dominant when the temperature 
was lower than 600 °C. The desired  CH4 partial oxidation occurred at temperature 
between 600 and 900 °C, while the  CH4 cracking took part at 900 °C and beyond.

Chemical equilibrium estimation and effect of operating temperature

Changes of the standard Gibbs free energy 
(
ΔrG

0
)
 of the possible reactions listed 

in Table 1 were calculated using formulas in Table 2 shown below in Fig. 5. The 
selected temperature for the study was ranged from 500 to 1000 °C.

The result showed that the  NO2 formation (reaction 2) was theoretically not pos-
sible for all temperature range while  CH4 cracking could occur at temperature higher 
than 700 °C, approximately. From 500 to 600 °C, combustion of methane would be 
evidenced (reactions 4, 10, 11). Methane partial oxidation (reaction 4) would occur 
during temperature from 700 to 1000 °C. Coke formation could be deposited on the 
surface of the catalyst at temperature higher than 700 °C.

Figs. 6 and 7 present conversions of reactants and products of  N2O decomposi-
tion and  CH4 partial oxidation, which supposed to occurred at the feed side and per-
meate side of the membrane reactor, respectively.

Fig.  6a shows the highest  N2O conversion of 68.71 was in the non-catalytic 
reaction and complete  N2O conversion (99.13%) when using 10%NiO–LSCF as a 

(27)CH4,(g) + C × Ni∗
(ads)

→ 2C × Ni∗
(ads)

+ 2H2,(g)

Fig. 5  Changes of the standard Gibbs free energy of each reactions
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catalyst. The conversion was close to the theoretical when using the 10%NiO–LSCF 
catalyst.

Fig.  6b represents non-catalytic nitrous oxide decomposition. The highest  N2O 
conversion was obtained at 1000  °C giving  N2 and  O2 of 56.39 and 17.93 mol%, 
respectively, although both products began to be detectable at 800  °C. The 

Fig. 6  a Conversion of the reactant  (N2O) as a function of temperature. Mole fraction product of  N2O 
decomposition using b no catalyst (homogeneous) and c 10%NiO–LSCF catalyst compared with equi-
librium mole fraction using Aspen Plus program (line) run WHSV = 50 ml/g/min at 1 atm from 500 to 
1000 °C

Fig. 7  a The temperature dependence of methane conversion. Mole fraction product at the permeate side 
of the membrane process using b no catalyst (homogeneous) and c 10%NiO–LSCF catalyst compared 
with equilibrium mole fraction using Aspen Plus program (line) run is WHSV = 50 ml/g min at 1 atm 
from 500 to 1000 °C
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productivities were increased with increasing temperature. The ratio of  N2 to  O2 was 
around 2.3–2.4 to 1 which disagreed with theoretical ratio from stoichiometry (2 to 
1). There was no  NO2 detected for all temperature range. In addition, NO was not 
measured in the experiment, although NO formation as an intermediate could be 
suggested via  N2O oxidation/decomposition.

Fig. 6c shows that complete  N2O conversion started to be achievable at 600 °C, 
giving 66.59 mol% of  N2 and 32.78mol% of  O2. Ratio of  N2 to  O2 was 2:1 during 
temperature from 600 to 800  °C, agreeing with its stoichiometry theoretically. At 
temperature higher than 800 C, the ratio was found to increase by the influence of 
oxygen inhibition, explained in the later part. The following reaction pathway could 
be suggested.

N2O was adsorbed and dissociated on the oxygen vacancy, achieved by  CH4 par-
tial oxidation via reaction (23)–(26), giving  N2 and surface oxygen 

(
O∗

(ads)

)
 , repre-

sented by Eq. 28. The resulting surface oxygen 
(
O∗

(ads)

)
 , was reacted further with 

gaseous  N2O via Eley–Rideal surface mechanism via Eq. (29), where more  N2 and 
adsorbed oxygen molecule 

(
O∗

2 (ads)

)
 were obtained. Afterwards, the adsorbed oxy-

gen molecule 
(
O∗

2 (ads)

)
 could be; (i) desorbed giving gaseous  O2 while leaving the 

oxygen lattice vacant again 
(
∗

(s)

)
 , demonstrated in Eq.  30, (ii) react with oxygen 

vacancy 
(
∗

(s)

)
 via Langmuir–Hinshelwood surface reaction, providing more surface 

oxygen 
(
O∗

(ads)

)
 , shown in Eq. 31.

However, the gaseous oxygen produced via Eq. 30 could be re-adsorbed on the 
oxygen vacancy 

(
∗

(s)

)
 , represented by Eq. 32. The surface oxygen was obtained.

Oxygen inhibition, where full surface coverage was achieved by oxygen re-
adsorption, could occur if  k1,  k4 and/or  k5 is larger than  k2 and/or  k3. This would 
be evident by  N2 to  O2 ratio higher than 2. However, as the ratio of  N2 to  O2 was 
approximately 2 to, this implies that  k1,  k4 and/or  k5 is less than  k2 and/or  k3, mean-
ing that reactions 28, 31 and/or 32 is the rate limiting step. At temperature from 900 

(28)N2O(g) + ∗(s)
k1
��������→ N2,(g) + O∗

(ads)

(29)N2O(g) + O∗

(ads)

k2
��������→ N2,(g) + O∗

2(ads)

(30)O∗

2(ads)

k3
���������→ O2,(g) + ∗(s)

(31)O∗

2(ads)
+ ∗(s)

k4
��������→ 2O∗

(ads)

(32)O2,(g) + 2∗(s)
k5
��������→ 2O∗

(ads)
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to 1000  °C, the unwanted  NO2 formation was utilized the surface oxygen, allow-
ing Eq.  32 to go more forward. This leads to the decrease of  O2, resulted in the 
higher ratio of  N2 to  O2. Mechanism of  NO2 formation was proposed below, where 
the  N2O adsorption/dissociation (reaction 28) occurred, then followed by the below 
Eley–Rideal surface reactions.

Fig.  6 (line) shows the equilibrium molar fraction of  N2 and  O2 at 0.67 and 
0.33, calculated using Aspen Plus program, for all temperatures.  NO2 was not 
found. The results agreed with the calculation reported in Fig. 5, where reaction 1 
was spontaneous and reaction  2 was thermodynamically limited. The catalytic 
conversion of  N2O and its productivities (Fig.  6c) were found to approach the 
equilibrium approximation as shown in (Fig. 6 (line)) especially during tempera-
ture from 500 to 900 °C.

Fig.  7 shows  CH4 partial oxidation using no catalyst (b), in the presence of 
10%NiO-LSCF (c), and (line) equilibrium concentration calculated using Aspen 
Plus program. From Fig. 7a, it can be seen that maximum  CH4 conversion in non-
catalyst, achieved at 1000 °C, was 53.51.  CH4 consumption began to be observa-
ble at 800 °C, giving conversions of 2.87. In using 10%NiO–LSCF catalyst, com-
plete conversion of  CH4 was obtained at 1000 °C, which gives conversion that are 
close to the theoretical.

From Fig. 7b, less than 3mol% fraction of  H2,  CO2,  H2O,  C2H4, and  C2H6 were 
produced at this temperature. Reverse water gas shift reaction (RWGS), which 
is the combination of reaction (10) and 11, was evident as  H2O production was 
noticed. The Boudouard reaction, the combination of reactions 4, 9, and 10, was 
not observed, as there was no  CO2 formation, therefore, coke formation did not 
occurred at this temperature range. On the other hand,  CO2 was detected at higher 
temperature ranging from 900 to 1000 °C, suggesting the possibility of the Boud-
ouard reaction, therefore, coke formation was also predicted. In addition,  H2, CO, 
 CO2, and  H2O molar fraction were increased with increasing temperature. This 
indicated that complete combustion, reverse water gas shift and the Boudouard 
reaction were presumably taken place. However,  C2 + was increased at tempera-
ture from 800 to 900 °C, then decreased again at 900 to 1000 °C. This implied 
that reactions 5 and 7 were driven backward at temperature lower than 900 °C, 
and moved forward at temperature higher than 900 °C.

From Fig. 7c,  H2O and  CO2 were detected at temperature lower than 700 °C 
and found to decrease with increasing temperature. Small amount (less than 
1mol%) of  H2O and  CO2 were found at temperature higher than 700 °C. On the 
other hand,  H2 and CO were increased with increasing temperature. The reaction 
temperatures of the  CH4 partial oxidation,  CH4 combustion and  CH4 cracking 
shown in Fig. 7c were correspondingly agreed with those shown in Fig. 4. The 
catalytic experimental result was found to approach the equilibrium composition, 

(33)N2O(g) + O∗

(ads)

k6
��������→ 2NO(g) + ∗(s)

(34)NO(g) + O∗

(ads)

k7
��������→ NO2,(g) + ∗(s)
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shown in Fig. 7c, and corresponded with calculation of Gibbs free energy changes 
tabulated in Fig. 5. The negative value of ∆Go of reaction 4 became larger with 
increasing temperature, while that of reactions 10 and 11 became smaller. This 
means that reaction  4 was more spontaneous at higher temperature leading to 
higher yield of  H2 and CO, while reaction 10 and 11 were more thermodynami-
cally limited resulting in less amount of  CO2 and  H2O production. At temperature 
higher than 700 °C, the possible mechanism was proposed as follows;

The surface oxygen or lattice oxygen 
(
O∗

(ads)

)
 , produced from reaction (28), 

assumed to diffuse through the membrane from the feed side and reacted with  CH4, 
giving adsorbed CO 

(
CO∗

(ads)

)
 and gaseous  H2 as shown in Eq. 35. The adsorbed CO (

CO∗

(ads)

)
 was afterwards desorbed to gaseous CO and left the active site 

(
∗

(s)

)
 free 

again, represented by Eq. 36:

CO2 and  H2O splitting were occurred on the oxygen vacancy 
(
∗

(s)

)
 as shown in 

Eq. (37) and (38), producing CO and  H2 as gaseous products. On the other hand, the 
oxygen vacancy 

(
∗

(s)

)
 was simultaneously re-oxidized by  CO2 and  H2O becoming the 

adsorbed oxygen 
(
O∗

(ads)

)
;

From Fig. 7c, no significant amount of  C2 + and  C3 + were found for all tempera-
ture range, indicating the occurrence of reaction (5), (6), (7), and (8) where  C2 + and 
 C3 + were reacted with oxygen giving  H2 and CO. The result agreed with the stand-
ard Gibbs free energy changes, calculated and shown in Fig.  5. From Fig.  5, the 
standard Gibbs free energy changes of reaction (9) was positive at temperature from 
500 to 600 °C, and became negative at temperature higher than 600 °C. This means 
that coke formation via reaction (9) was not occurred at 500 to 600 °C, but instead 
was likely to occur at temperature higher than 600 °C.

Figure 8 compared syngas productivities and its ratio between obtained from cat-
alytic process using 10%NiO–LSCF, and from the chemical equilibrium calculation. 
The experimental result was found to be in good agreement with the calculation. 
Syngas ratio was approaching 2 at temperature from 700 to 1000 °C.

(35)CH4,(g) + O∗

(ads)

k8
��������→ CO∗

(ads)
+ 2H2,(g)

(36)CO∗

(ads)

k9
��������→ CO(g) + ∗(s)

(37)CO2,(g) + ∗(s)
k10
�����������→ CO(g) + O∗

(ads)

(38)H2O(g) + ∗(s)
k11
�����������→ H2, (g) + O∗

(ads)



852 Reaction Kinetics, Mechanisms and Catalysis (2019) 127:839–855

1 3

Conclusion

10%NiO–LSCF was a promising catalyst for high purity syngas production via 
methane partial oxidation using nitrous oxide as an oxidant in a membrane reac-
tor. Surface mechanisms of the reactions, at both feed side and permeate side were 
proposed, based on the experimental results. The catalytic experimental result was 
in good agreement with the chemical equilibrium properties, calculated using Aspen 
Plus. The optimal operating temperature for the reaction carried out in a membrane 
reactor is 800  °C under atmosphere pressure. At this temperature,  NO2 formation 
was not occurred, and full conversion of  N2O decomposition at the feed side, and 
methane partial oxidation at the permeate side were achieved. Heavier hydrocar-
bons, i.e.  C2 + and  C3 + , should not be found. High purity syngas could be obtained 
at the ratio of  H2 to CO equal to 2.
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