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Abstract
In the present paper, the mathematical modeling of highly sensitive enzyme bio-
sensor kinetics is discussed. The standard method of inverting a Laplace trans-
form according to the Heaviside expansion theorem is applied to solve the coupled 
nonlinear time-dependent reaction–diffusion equations for the Michaelis–Menten 
expression that describes the concentrations of the substrate and product within the 
enzymatic layer. The analytical expressions for the concentration of the substrate 
and product have been derived for all values of the rate constant. A numerical simu-
lation is also reported using the MATLAB software program. Our analytical results 
are compared with our simulation results. The analytical results show good agree-
ment with those obtained using numerical method.
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Introduction

Analytical chemistry, specifically electroanalytical chemistry, plays an important 
role in the fields of biochemistry, pharmaceuticals, chemistry, environment science 
and food production. In recent decades, biosensors have emerged from the laborato-
ries into the everyday lives of many millions of people around the world. An electro-
analytical biosensor based on the enzyme-catalysis is an analytical device that uses 
biological enzymes to detect the presence of chemical molecules.

In the biosensor field, electrochemical techniques, such as cyclic voltammetry 
(CV), and electrochemical impedance spectroscopy (EIS), have been proven to be 
advantageous for developing new methods for the determination of pharmaceuti-
cal [1, 2], environmental [3] and food [4] samples. Therefore, several researchers 
have pursued the investigation of the equivalent circuit model for the interface that 
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consists of the electrode geometry and electrolyte parameter. Recently, an ultrasensi-
tive enzyme biosensor was developed [5–11].

Preparing a novel ultrasensitive biosensor may be very expensive, as it may 
require many laboratory experiments. Therefore, it is wise to conduct computa-
tional experiments prior to physical experiments, which necessitates mathematical 
modeling and simulations of the biosensor. In chemical engineering, modeling and 
simulation are important tools for engineers and scientists to better understand the 
behavior of chemical processes [12–17]. Modeling methods are very useful for the 
design and optimization of chemical plants, for process control, and for training of 
operators and operational planning [18–22].

Mathematical models of enzyme biosensor responses can be created by solving 
partial differential equations (PDE) of the substrate diffusion and the biocatalyti-
cal conversion with the initial and the boundary conditions. Theoretical modeling 
of time dependent nonlinear differential equations for the electrochemical enzyme 
biosensors implies the use of a nonlinear term related to the Michaelis–Menten 
kinetic scheme, which can be solved analytically and numerically. For this purpose, 
this paper derives an analytical expression for the concentrations of the substrate 
and product for application in highly sensitive enzyme biosensors using the stand-
ard method of inverting a Laplace transform according to the Heaviside expansion 
theorem.

Kinetics and mathematical model

Kinetics model

Electrochemical biosensors are constructed, for many cases, using a three-electrode 
system with a modified enzyme as the working electrode, Ag/AgCl as the reference 
electrode and platinum as the counter electrode. The use of electrochemical imped-
ance spectroscopy (EIS) in this field may be applied to discriminate and quantify 
the different processes that determine a biosensor performance, such as the Ohmic 
resistance Rs, charge transfer resistance Rct, diffusion resistance Zw, and capaci-
tance Cdl (Fig. 1). However, the kinetic model for an enzyme action, first elucidated 
by Michaelis and Menten (Eq. 1) suggests the binding of the free enzyme (E) to the 
reactant or substrate (S) forming an enzyme–substrate complex (ES). This complex 
undergoes a transformation, which releases the product (P) and enzyme (E) [23–25]. 
Note that substrate binding is reversible, but product release is not (Fig. 1).

Here  k1,  k2 and  k3 are the rate constants.

(1)E + S

k1
→

←−−
k2

ES
k3
→E + P
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Mathematical model of highly sensitive biosensor

In biosensors, coupling of the substrate transport with the diffusion is described by 
Fick’s law with the enzyme-catalyzed reaction in the enzyme layer, which leads to the 
following equations:

 Here x represents space between 0 and d , with d is the thickness of the enzyme 
layer; cs(x, t) and cp(x, t) are the molar concentrations of the substrate S and the prod-
uct P in the enzyme layer, respectively; Vm is the maximal enzymatic rate; kM is the 
Michaelis constant; d is the thickness of the enzyme layer; and Ds and Dp are the 
diffusion coefficients.

For highly sensitive enzyme biosensors, the amount of substrate is small. Thus, the 
amount of the substrate cs is negligible compared to the magnitude of The Michaelis 
constant, kM . Then, Eqs. 2 and 3 will be reduced to the following form:

(2)
�cs(x, t)

�t
= Ds

�2cs(x, t)

�x2
−

Vmcs(x, t)

kM + cs(x, t)

(3)
�cp(x, t)

�t
= Dp

�2cp(x, t)

�x2
+

Vmcs(x, t)

kM + cs(x, t)

(4)
�cs(x, t)

�t
= Ds

�2cs(x, t)

�x2
−

Vm

kM
cs(x, t)

Fig. 1  Kinetic reaction–diffusion in the biosensor process
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With

Dimensionless form of the problem

The following parameters are used to convert the above Eqs.  4 and 5 into their 
normalized forms. We make the above nonlinear partial differential equations in a 
dimensionless form by defining the following parameters:

Then, Eqs. 4 and 5 reduce to the following dimensionless form:

The dimensionless initial and boundary conditions are:

Analytical solution of the reaction–diffusion problem for highly 
sensitive biosensor

By applying Laplace transformation to the partial differential Eqs. 7 and 8 and using 
the conditions Eq. 9, the following transformed differential equations are obtained. The 
expansion method and inversion of the Laplace transform are used to solve this system.

Analytical solution of kinetic of substrate concentration

The Laplace transform reduces the partial differential equation in Eq.  7 to the an 
ordinary differential equation (Eq. 10):

(5)
�cp(x, t)

�t
= Dp

�2cp(x, t)

�x2
+

Vm

kM
cs(x, t)

(6)

⎧
⎪⎨⎪⎩

cs = 0, cp = 0, t = 0; 0 ≤ x ≤ d
𝜕cs(x,t)

𝜕x
= 0, cp = 0, t > 0; x = 0

cs = c0
s
, cp = 0, t > 0; x = d

X =
x

d
, T =

Dst

d2
,CS =

cs

c0
s

,CP =
cp

c0
s

,Ds = Dp = D, a =
Vmd

2

DkM

(7)
�CS(X, T)

�T
=

�2CS(X, T)

�X2
− aCS(X, T)

(8)
�CP(X, T)

�T
=

�2CP(X, T)

�X2
+ aCS(X, T)

(9)

⎧⎪⎨⎪⎩

CS = 0,CP = 0, T = 0; 0 ≤ X ≤ 1
𝜕CS(X,T)

𝜕X
= 0,CP = 0, T > 0; X = 0

CS = 1,CP = 0, T > 0; X = 1
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With boundary conditions:

The general solution of this equation is:

With boundary conditions at X = 0 and X = 1 , the solution becomes:

We observe that the solution becomes a new function F(X, s):

The standard method of inverting a Laplace transform makes use of the residue the-
orem [26]. According the Heaviside expansion theorem [27], the inverse transform of 
F(s) are given by the residue theorem. That is, let:

Here, we have:

On the other hand, the solution of inverting a Laplace transform is:

If Sn : is a simple pole of F(s), then �n(t) is given by:

(10)�2CS(X, s)

�X2
− (s + a)CS(X, s) = 0

(11)

⎧
⎪⎨⎪⎩

�C
S
(X,s)

�X
= 0, X = 0

C
S
=

1

s
, X = 1

(12)CS(X, s) = A1(s)e
√
s+aX + A2(s)e

−
√
s+aX

(13)CS(X, s) =

�
1

s

1

e
√
s+a + e−

√
s+a

��
e
√
s+aX + e−

√
s+aX

�

(14)F(X, s) = CS(X, s) =
e
√
s+aX + e−

√
s+aX

s(e
√
s+a + e−

√
s+a)

(15)F(X, s) =
P(X, s)

Q(X, s)

(16)P(X, s) = e
√
s+aX + e−

√
s+aX

(17)Q(X, s) = s
�
e
√
s+a + e−

√
s+a

�

(18)f (t) = L−1{F(s)} =

∞∑
1

�n(t)

(19)�n(t) =
P
(
Sn
)

Q
�
(
Sn
)eSnt
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Here Q′(
sn
)
 , denoted dQ

dt
 , is evaluated at the singular point of interest.

Recall that:

Therefore, the Q simple zero is located at:

• The first simple pole when S = 0

• The second pole: e
√
s+a + e−

√
s+a = 0

When sn =
−�2(2n+1)2−4a

4

Applying Eq. 19 gives:

We can use these results to invert a Laplace transform for the analytical solution 
of the substrate concentration. The analytical solution is given by:

With: �n = �(n + 1∕2)

Analytical solution of the kinetic product concentration

After adding Eqs. 7 and 8:

We need to introduce a new function CM(X, T) as:

We obtain a system of ordinary differential equations:

By applying the Laplace transformation in Eq. 26:

(20)
P(s)

Q
�
(
sn
) = lim

s→sn

P(s)[
Q(s)−Q(sn)

s−sn

] = lim
s→sn

(s − sn)
P(s)

Q(s)

(21)�0(t) = lim
s→0

(s − 0)
P(s)

Q(s)
est =

e
√
aX + e−

√
aX

(e
√
a + e−

√
a)

(22)�n(T) =
�(2n + 1)(−1)−n

(
cos

�(2n+1)

2
X
)

−(�2(2n + 1)2 + 4a)∕4
e

−�2(2n+1)2−4a

4
T

(23)CS(X, T) =
e
√
aX + e−

√
aX

�
e
√
a + e−

√
a
� − 2

∞�
1

(−1)−n
�ne

−aT

�2
n
+ a

cos(�nX)e
−�2

n
T

(24)
�(CS(X, T) + CP(X, T))

�T
=

�2(CS(X, T) + CP(X, T))

�X2

(25)CM(X, T) = CS(X, T) + CP(X, T)

(26)
�CM(X, T)

�T
=

�2CM(X, T)

�X2
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With

The analytical solution of Eq.  27 with the initial and boundary conditions of 
Eq. 28 in the form:

The analytical solution of Eq. 29 using the same method for solving Eq. 14 (case 
a = 0) is given by:

Using Eqs. 23, 25 and 30, we have:

After rearrangement, the solution of the dimensionless product concentration is 
given by:

Results and discussion

Analytical solution validation

The analytical solutions are validated for a specific set of values. In this paper, the 
analytical data are validated through the numerical data obtained from the numeri-
cal modeling with the MATLAB program. The function pdex4 in MATLAB, 
which is a function of solving the initial boundary value problems for parabolic 
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partial differential equations [28], is used to solve Eqs. 7 and 8 for the corresponding 
boundary conditions in Eq. 9.

Fig.  2 shows the response of the enzyme biosensor for various substrate and 
product concentrations, accepting two cases a = 0.1 and a = 1 with different times 
of t = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. In all the cases, the percentage of 
deviation for the analytical solution from the numerical result are calculated to be 
less than 1%. This conforms that the modeled data with analytical solution are very 
much similar to numerical data.

Reaction–diffusion effect

The mathematical model presented here in Eq. 23 for the substrate and Eq. 32 for 
the product utilizes well-developed enzyme-catalyzed reaction diffusion equations, 
which were applied to a highly sensitive enzyme biosensor. The mathematical solu-
tion results in Eqs. 23 and 32 indicate that the factor a =

Vmd
2

DkM
 is the principal factor 

that controls the biosensor response.
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Fig. 2  Mathematical modeling response of the enzyme biosensor with a dimensionless substrate, a with 
a = 1, b with a = 0.1 and a dimensionless product, c with a = 1, d with a = 0.1
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In the case of biosensors, the diffusion modulus or Damkohler number (a) com-
pares the rate of the enzyme reaction (Vm

kM
) with the diffusion ( D

d2
) through the enzyme 

layer [29].
Figs. 3 and 4 show the concentration profiles for different values of the Dam-

kohler number. Small values of the Damkohler number indicate that the surface 
reaction dominates and that a significant amount of the reactant diffuses well 
into the membrane without reacting.

It can be seen from Fig. 3 that with the decrease in the Damkohler number, 
there is an increase in the dimensionless substrate concentration degradation.
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Fig. 3  Mathematical modeling kinetics of the dimensionless substrate concentration in a highly sensitive 
enzyme biosensor
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As shown in Fig.  4, concentration of the product decreases when there is a 
decrease in the Damkohler number.

Conclusions

The mathematical model of a highly sensitive enzyme biosensor can be success-
fully used to investigate the response of biosensors when the enzyme reacts with its 
substrate to produce new product. An approximate analytical expression of substrate 
and final product has been derived using the standard method of inverting a Laplace 
transform according to the Heaviside expansion theorem to solve the coupled non-
linear time-dependent reaction–diffusion equations for the Michaelis–Menten 
expression that describes the concentrations of the substrate and the product within 
the enzymatic layer. Our results are compared with the numerical simulations in 
MATLAB, showing a good agreement is found between the two sets of results. The 
analytical method is an extremely simple approach and is promising to better under-
stand the ultrabiosensor model.
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