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Abstract
The application of intraparticle diffusion models is generally difficult because of

complex mathematical structure. The linear driving force (LDF) approach reduces

the mathematical effort and provides a reasonable approximation of the intraparticle

diffusion theory. In this work, an exact analytical solution of a LDF equation based

on the Langmuir equilibrium model (LLDF) was derived. The LLDF model depends

on three unknown parameters, namely the adsorbed amount at equilibrium, the

maximum adsorbent capacity and the mass transfer coefficient. The LLDF model

was used for analyzing the adsorption kinetics of boscalid onto granular activated

carbon. The experimental results at equilibrium showed that the maximum

adsorption capacity of activated carbon for boscalid and the Langmuir equilibrium

constant of the process were 167 mg g-1 and 0.53 L mg-1, respectively. The LLDF

equation was successfully applied to the kinetic data, allowing the evaluation of the

mass transfer coefficient of boscalid (8.4 9 10-3 h-1). The LLDF model has

general validity for describing intraparticle diffusion-adsorption onto porous media

and its reliability can be assessed by a simple graphical method.
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Luigi Vanvitelli, via Vivaldi 43, 81100 Caserta, Italy

123

Reaction Kinetics, Mechanisms and Catalysis (2018) 125:1–13
https://doi.org/10.1007/s11144-018-1435-8(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-9392-9358
http://crossmark.crossref.org/dialog/?doi=10.1007/s11144-018-1435-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11144-018-1435-8&amp;domain=pdf
https://doi.org/10.1007/s11144-018-1435-8


Introduction

Adsorption has a central role in a diversity of natural processes ranging from

molecular interaction in biological systems [1, 2] to the dynamics of pollutants in

water/soil systems [3–6].

Adsorption-based methods are largely applied in the field of water decontam-

ination because of their efficiency, ease of use and low cost compared to other

procedures [7–10].

A comprehensive characterization of an adsorption process requires information

not only on the thermodynamics (especially on equilibrium conditions) but also on

the kinetics of the process. Notably, most adsorbents are porous media and this may

have a relevant effect on the adsorption kinetics since the rate of the process is

generally limited by the ability of adsorbable molecules to diffuse into the interior

of the adsorbent through the pores.

It is commonly agreed that diffusion-adsorption in a porous medium proceeds

through four consecutive steps [11]: (i) transport of the solute from the bulk phase to

the boundary layer around the adsorbent particle; (ii) diffusion of the solute from the

boundary layer to the external surface of the adsorbent (film diffusion); (iii)

diffusion of the solute through the pores to the immediate vicinity of the internal

adsorption surface (pore diffusion or intraparticle diffusion); (iv) adsorption onto

the adsorbent site. Steps (ii) and (iii) are generally the rate-limiting steps of the

overall process [12].

Basic equations of diffusion were first derived by Fick, who exploited the

analogy between diffusion and heat conduction [13]. Fick’s first law states that the

flux J of the diffusing substance is proportional to the concentration gradient oC=ox
[14]:

J ¼ �D
oC

ox
ð1Þ

Here the flux J is defined as the amount of substance diffusing along the space

coordinate x through a unit area normal to x, during the unit time t; C is the

substance concentration and D its diffusion coefficient.

Equation 1 can be used to derive the Fick’s second law, which gives the time

dependence of C at a given position x:

oC

ot
¼ D

o2C

ox2
ð2Þ

Equation 2 applies if the concentration varies only along one dimension (x, in our

case) and D is assumed independent of concentration.

If we restrict ourselves to the diffusion in a sphere (i.e. radial diffusion), we can

express the diffusion rate in terms of polar coordinates, so that Eq. 2 turns into:

oC

ot
¼ D

o2C

or2
þ 2

r
oC

or

� �
ð3Þ

Here r is the radial distance from the center of the sphere.
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By integrating Eq. 3, the amount of diffusing substance (M) entering or leaving

the sphere at time t and ? [15] is:

Mt

M1
¼ 1� 6

p2
X1
n¼1

1

n2
exp �Dn2p2t

r2

� �
ð4Þ

Here r is the radius of the sphere.

Based on the above considerations, in a system where the adsorption rate is

governed by pore diffusion and assuming that the adsorbent particles are spherical

we may rewrite Eq. 4 as:

q

qe
¼ 1� 6

p2
X1
n¼1

1

n2
exp �Dn2p2t

r2

� �
ð5Þ

Here Mt and M? have been replaced with the adsorbed amount at time t (q) and at

equilibrium (qe), respectively.

A great deal of effort have been directed at deriving an approximated form of

Eq. 5 easily applicable to the experimental data for ascertaining whether the

adsorption process is diffusion-controlled. A simplified pore diffusion model (see

Eq. 6) was derived from Eq. 5 by [15] for the reaction still far from equilibrium:

q

qe
¼ 6ffiffiffi

p
p

ffiffiffiffiffiffiffiffiffiffiffiffi
Dt

r2

� �s
ð6Þ

Equation 6 was later slightly modified by Weber and Morris [16] and thereafter

extensively used for modelling adsorption kinetic data [17–21].

According to Eq. 6, when pore diffusion dominates, a linear relationship between

q and Ht should be observed in the early stage of the experiment; in that case,

D could be calculated from the slope of the line. It is worth noting that this method

is sensitive to the lack of experimental data in the initial phase of reaction and/or the

use of too large an acquisition time, possibly leading to an incorrect measure of

D and/or a misleading interpretation of the results, especially for fast reactions.

An alternative way for interpreting the adsorption kinetics of pore diffusion-

controlled processes is the surface diffusion approach [22], according to which the

mass transfer occurs in the adsorbed state. In this view, the adsorbate gradient is the

driving force for the mass transfer and therefore the flux J can be expressed in terms

of q by the following equation:

J ¼ qSDs

oq

or
ð7Þ

Here qS is the particle density and Ds the surface diffusion coefficient.

Equation 7 can be substantially simplified by assuming the solid-phase concen-

tration gradient to be linear, as in the so-called linear driving force (LDF) model

[23]. In so doing, Eq. 7 reduces to:

123

Reaction Kinetics, Mechanisms and Catalysis (2018) 125:1–13 3



J ¼S kS qS � qð Þ ð8Þ

kS ¼
DS

r
ð9Þ

Here qS is the adsorbed amount at the outer surface of the adsorbent particle in

equilibrium with the bulk solution concentration at time t, q is the mean adsorbed

amount inside the particle at the same time, whereas the diffusional parameter ks is

defined as in Eq. 9. Moreover, by applying the mass conservation principle, we

obtain:

J ¼ �VL

AS

dc

dt
¼ mA

AS

dq

dt
ð10Þ

Here mA and AS are the mass and the external surface area of the adsorbent,

respectively; VL is the liquid phase volume.

By combining Eqs. 8 and 10, considering that qS = mA/VA (VA = adsorbent

volume), we finally get the LDF equation:

dq

dt
¼ kD qs � qð Þ ð11Þ

kD ¼ AS

VA

ks ð12Þ

Here kD is the LDF mass transfer coefficient.

Equation 11 has been largely used for studying gas adsorption [24–26] and, to a

lesser extent, adsorption from aqueous solutions [27, 28]. The applicability of

Eq. 11 to experimental data depends on the specific isotherm describing the

adsorption equilibrium at the outer surface of the particle. When the latter

equilibrium is described by a linear isotherm, the adsorbed equilibrium amount at

the outer surface, qs, is given by:

qs ¼ KC ð13Þ

Here K is the linear adsorption equilibrium constant and C is the solute concen-

tration in equilibrium with qs.

Substitution of Eq. 13 into 11 produces, after integration [29]:

q ¼ C0K

1þ KX
1� exp � 1þ KXð ÞkDtð Þð Þ ð14Þ

Here C0 is the solute concentration at t = 0, X is the adsorbent dosage (mA/VL).

The simplistic approach of Eq. 14 may be improved and extended by assuming a

non-linear relationship between the surface and the liquid phase concentration at

equilibrium.

This work examines the case where the equilibrium is described by the Langmuir

model. An exact analytical solution of the resulting Langmuir-based linear driving

force equation (LLDF) is derived and discussed. The derived equation is tested for

its effectiveness to fit the adsorption kinetic data of the chemical compound boscalid
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onto a high-porosity granular activated carbon (GAC). Boscalid, a carboxamide

fungicide, was selected for this work, because is an understudied emerging water

pollutant [6, 30–32]. In 2009, during a monitoring campaign of USA surface water

and groundwater, it was detected more frequently than atrazine and metolachlor,

two herbicides that are typically the most frequently occurring pesticides in many

large-scale water quality studies [33].

Model derivation

Let us assume that (i) a rapid equilibrium (pre-equilibrium hypothesis) is established

between the solute in solution and the adsorbate located at the outer surface of the

adsorbent, and that (ii) this equilibrium is described by the Langmuir isotherm. It

follows that qs can be expressed at any time by:

qs ¼
qmKLC

1þ KLC
ð15Þ

Here qm and KL are the maximum adsorption capacity of the adsorbent and the

Langmuir equilibrium constant, respectively, whereas C the solute concentration in

equilibrium with qs.

If the adsorbing substance is initially present only in the liquid phase, the

adsorption amount q at any time is given by:

q ¼ C0 � C

X
ð16Þ

Here C0 and X are the initial solute concentration and the adsorbent dosage,

respectively.

Substituting Eqs. 15 and 16 into Eq. 11 gives a formulation of the LDF model in

terms of liquid phase concentration (C) instead of q:

dC

dt
¼ �XkD

qmKLC

1þ KLC
� C0 � C

X

� �
ð17Þ

or

dC

dt
¼ �KLkD

C2 þ qmX � C0 þ 1
KL

� �
C � C0

KL

1þ KLC

0
@

1
A ð18Þ

By rearranging and separating the variables, we get:

KLC þ 1

C2 þ qmX � C0 þ 1
KL

� �
C � C0

KL

dC ¼ �KLkDdt ð19Þ

Using the partial fraction method [34], Eq. 19 can be integrated for the boundary

conditions, C = C0 at t = 0 and C = C for t = t, leading to:
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KL �
1þ KLC2

C2 � C1

� �
ln

C � C1

C0 � C1

þ 1þ KLC2

C2 � C1

ln
C � C2

C0 � C2

¼ �KLkDt ð20Þ

Here C1 and C2 denote the roots of the polynomial in the denominator of Eq. 19.

By inspecting Eq. 18, one observes that the equilibrium conditions, i.e. dC/

dt = 0, are satisfied when the numerator on the right side equals zero, implying that

the solute concentration at equilibrium, Ce, is one of the roots of the polynomial

(e.g. C1):

C1 ¼ Ce ð21Þ

Furthermore, from Eq. 16, we have that

Ce ¼ C0 � qeX ð22Þ

C2 ¼ C0 � q2X ð23Þ

Here qe and q2 are the adsorbate concentration associated with Ce and C2,

respectively.

Therefore, by substituting Eqs. 16 and 21–23 into Eq. 20, and after rearranging,

we obtain:

ln
qe � qð Þ
qe

þ qe � qm

qe � q2
ln

q2 � qð Þ
qe � qð Þ

qe

q2
¼ �kDt ð24Þ

This is an exact solution of the Langmuir-based Liner Driving Force model

(LLDF). Here q2 is given by [34]:

q2 ¼
qm

qe

C0

X
ð25Þ

It is interesting to note that from the definition of qe, q2 and qm, we get the

following inequality:

qe � qm � q2 ð26Þ

Equation 26 permits us to identify two suitable conditions under which the LLDF

model reduces to the so-called pseudo-first order (PFO) model widely used in

adsorption studies [35–38]:

q ¼ qe 1� exp �k1tð Þð Þ ð27Þ

Here k1 is the PFO kinetic rate constant.

1Þ q2 [ [ q ð28Þ

Under this condition, Eq. 24 reduces to:
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ln
qe � qð Þ
qe

þ qe � qm

qe � q2
ln

qe

qe � qð Þ � �kDt ð29Þ

When this is solved for q, it gives the PFO equation

q ¼ qe 1� exp �k1;1t
� �� �

ð30Þ

Here the kinetic rate constant k1;1 is equal to:

k1;1 ¼
qe � q2

qm � q2
kD ð31Þ

2Þ qe ffi qm ð32Þ

Under this condition, Eq. 24 reduces to:

q ¼ qe 1� exp �kDtð Þð Þ ð33Þ

Equation 33 suggests that the LLDF model is well approximated by the PFO

model (with kinetic rate constant kD) when the adsorbate concentration at

equilibrium is close to the maximum adsorption capacity of the adsorbent (e.g. at

very high initial solute concentration, C0).

Materials and methods

Materials

Boscalid and all other reagents were purchased from Sigma-Aldrich.

The granular activated carbon (GAC) used for the adsorption experiments was

provided by Chemviron Carbon (UK). The GAC particle size ranged 1–2 mm, and

the BET surface area was 774 m2/g. Further details on GAC composition are

reported elsewhere [20].

Adsorption experiments

Adsorption measurements were performed at 25 �C by batch experiments. Twenty

millilitres of boscalid aqueous solution with concentration ranging from 1 to

4.0 mg L-1 were put into polypropylene tubes with 5 mg of GAC. The samples

were stirred at 60–210 rpm on an orbital shaker till the equilibrium was attained

(8 days). At programmed times (from 1 min to 8 days after the onset of the

experiments), small aliquots of the supernatant were collected and analysed by

HPLC. HPLC measurements were performed on a chromatographic Waters system

consisting of a 515 HPLC Pump and a 2487 dual k absorbance detector, equipped

with a C18 reversed-phase column TC-18(2) Agilent (4.6 9 250 mm). Boscalid

was eluted by a CH3CN(60%)/H2O(40%) isocratic method with a flow rate of

1 mL min-1 and detected at the wavelength of 260 nm. Boscalid adsorption was
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estimated by mass balance analysis, by comparing its concentration in solution

before and after contact with GAC.

Results and discussion

Effect of agitation speed on the rate of adsorption

As mentioned in the introductory section, the rate of disappearance of the solute

from the solution in the presence of porous media is predominantly governed by

film diffusion and intraparticle diffusion. In order to apply the LLDF model, film

diffusion contribution must be negligible. An increase in the agitation speed reduces

the bounding layer surrounding the adsorbent particle, thus shortening the ‘‘film

diffusion’’ step. As expected, increasing the agitation speed (rpm) significantly

enhanced the initial reaction rate v0 (Fig. 1). Interestingly, the increase in the

adsorption rate declined progressively with rising agitation speed and stabilized at

rpm C 190; at this point, film diffusion was no longer relevant and intraparticle

diffusion became the sole rate-controlling step of the adsorption process. Based on

these results, an agitation speed of 210 rpm was chosen for kinetic experiments.

Application of the LLDF model

Equation 24 contains three unknown parameters, namely qm, qe and kD. The

simultaneous estimation of these parameters can be obtained only by implicit least-

squares method (e.g. by using Origin� 9.0 software), since Eq. 24 is not invertible

with respect to q. Alternatively, one can preliminarily determine qm and qe from the

adsorption isotherm and then apply Eq. 24 for estimating kD. In this work, the latter

method was chosen for analysing the adsorption data of boscalid onto GAC.

Fig. 2 shows the adsorption kinetics of boscalid onto GAC at different initial

solute concentrations.

Fig. 1 Dependence of the initial adsorption rate (v0) on the agitation speed (rpm); initial boscalid aqueous
concentration = 3 mg L-1; adsorbent dosage = 20 mg L-1
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As can be seen, after an initial phase of fast uptake, the adsorption process

gradually declined until the equilibrium was reached (within 8 days for all the

experimental conditions tested). The adsorption amount values at equilibrium (qe)

were plotted against Ce (Fig. 3) and fitted by the Langmuir model (Eq. 15) for

determining the adsorption isotherm parameters KL and qm. The results of the fitting

procedure were satisfactory, as inferred from the high value of R2 and the moderate

low errors associated with KL and qm (Table 1), suggesting that the Langmuir model

adequately describes the adsorption equilibrium of boscalid onto GAC.

The values obtained for KL and qm were used to calculate, for each q value

reported in Fig. 2, the left side of Eq. 24 (hereafter referred as LSLLDF), and the

entire data set generated by this procedure was merged and plotted against t (Fig. 4).

Fig. 2 Adsorption kinetics of boscalid onto GAC at different initial aqueous concentrations; agitation
speed = 210 rpm; adsorbent dosage = 20 mg L-1

Fig. 3 Adsorption isotherm of boscalid onto GAC; T = 25 �C
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According to Eq. 24, a plot of LSLLDF vs t should produce a straight line with

slope - kD. The fair linear correlation between LSLLDF and t (Fig. 4) suggests that

the LLDF model is suitable for modelling the adsorption kinetics of boscalid onto

GAC. The value of kD, determined from the slope of the line in figure, was

0.0084 h-1. In line with former work [20], these results suggest that adsorption onto

GAC is mainly controlled by diffusion processes due to the high porosity of this

material. In order to verify this hypothesis, the kinetic experimental data were fitted

with the integrated Langmuir kinetic model [34], rearranged in the following form:

1

q2 � qeð ÞX ln
1� q

qe

1� q
q2

 !
¼ �kat ð34Þ

Here ka is the microscopic adsorption rate constant. The Langmuir kinetic model

assumes that the rate of adsorption is not diffusion-limited. If this assumption were

valid, the left side of Eq. 34 (denoted by LSLang in Fig. 5) should be linearly cor-

related to t, with a slope = - ka. Fig. 5 shows the application of Eq. 34 to the

experimental data.

As can be seen, the Langmuir kinetic model gives less satisfactory results

compared to the LLDF model because data points are more scattered (see also R2

values in Table 1), especially at late reaction time, resulting in a poorer description

of the adsorption kinetic profiles (see, as an example, Fig. 6). This reinforces the

Table 1 Equilibrium and kinetic parameters of boscalid adsorption onto GAC

Langmuir isotherm LLDF model Langmuir kinetics

KL (L mg-1) qm (mg g-1) R2 kD (h-1) R2 ka (L mg-1 h-1) R2

0.53 ± 0.22 167 ± 41 0.89817 0.0084 ± 0.0001 0.96409 0.84777 ± 0.00005 0.84777

Fig. 4 Plot of LSLLDF versus time using the theoretical values of qe as determined by the Langmuir
isotherm; KL = 0.53, qm = 167 mg g-1
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hypothesis that the adsorption of boscalid onto GAC is governed by pore diffusion

and not by surface reaction.

Conclusions

A simple Langmuir-based equation (LLDF) can be derived from the LDF model and

successfully applied to modelling experimental kinetics data from the adsorption of

boscalid onto GAC. The LLDF model depends on three unknown parameters,

namely the adsorbed amount at equilibrium (qe), the maximum adsorbent capacity

(qm) and the mass transfer coefficient (kD).

Fig. 5 Plot of LSLang against time using the theoretical values of qe as determined by the Langmuir
isotherm; KL = 0.53, qm = 167 mg g-1

Fig. 6 Comparison between experimental adsorption data (filled circles) and theoretical data based on
LLDF (solid line) and Langmuir kinetic (dashed line) models, respectively; initial boscalid aqueous
concentration = 3 mg L-1; adsorbent dosage = 20 mg L-1
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The applicability of the LLDF model can be verified from the linearity of the plot

of LS(t) against t.

References

1. Smirnov IYu, Levin VN, Zdyumaeva NP (2004) Protein adsorption on erythrocytic membranes and

its effect on erythrocyte rheology in athletes during competition exercise. Hum Physiol

30(3):364–368

2. Yin G, Janson JC, Liu Z (2000) Characterization of protein adsorption on membrane surface by

enzyme linked immunoassay. J Membr Sci 178(1–2):99–105

3. Fernandes MC, Cox L, Hermosı́n MC, Cornejo J (2003) Adsorption–desorption of metalaxyl as

affecting dissipation and leaching in soils: role of mineral and organic components. Pest Manag Sci

59:545–552

4. Gimsing AL, Borggaard OK, Bang M (2004) Influence of soil composition on adsorption of gly-

phosate and phosphate by contrasting Danish surface soils. Eur J Soil Sci 55:183–191

5. Liu XG, Dong FS, Xu J, Yuan SK, Zheng YQ (2014) Dissipation and adsorption behavior of the

insecticide ethiprole on various cultivated soils in China. J Integr Agr 13(11):2471–2478

6. Salvestrini S, Canzano S, Iovino P, Leone V, Capasso S (2014) Modelling the biphasic sorption of

simazine, imidacloprid, and boscalid in water/soil systems. J Environ Sci Heal Part B 49:578–590

7. Akhtar J, Amin NAS, Shahzad K (2016) A review on removal of pharmaceuticals from water by

adsorption. Desalin Water Treat 57(27):12842–12860
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