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Abstract Reactions of gallic acid (GA) with alkyl peroxy radicals (methylperoxy,

ethylperoxy, iso-propylperoxy, and tert-butylperoxy) were simulated using density

functional theory. The reaction is taking place in the way that hydrogen of hydroxy

group of GA is transferred to the oxygen of each of peroxy radical. A newly formed

radical is stabilized with delocalization of spin density over entire molecule, while

the harmful peroxy radical is neutralized. These simple reactions can occur by two

different, non-exclusive mechanisms: hydrogen atom transfer and proton coupled

electron transfer. The competition between these mechanisms depends on both the

solvent and the nature the free radicals. The main differences of these mechanisms

are described, together with corresponding thermodynamic and kinetic conse-

quences. The potency of this antioxidative action was thermodynamically and

kinetically estimated for hydrogen atom transfer (HAT) and proton coupled electron

transfer (PCET) mechanisms. The first one was estimated by calculating bond

dissociation energy (DGBDE), while the second one was examined using the acti-

vation barriers necessary for this action (transition state theory (TST)), as well as

using the zero-curvature tunneling effect (ZCT). Additionally, the analysis of single

occupied molecular orbitals (SOMOs) in transition states was used to examine

differences between HAT and PCET mechanisms.
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Introduction

The human body constantly generates free radicals and other reactive species. The

state of cells in which the reactive radical species exceed the capacity of the

endogenous antioxidative protection system is named oxidative stress [1, 2]. The

oxidative degradation of the vital biomolecules, lipids, proteins, and nucleic acids is

caused by processes which include the reactive free radical species, especially

reactive oxygen species (ROS) [3, 4]. Biomolecules can be exposed to oxidative

degradation for years, which promotes aging and increases risk for certain

neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer’s

disease, and Parkinson’s disease, and many other diseases [1, 4–8]. Modern studies

indicate that oxidative stress can be decreased using antioxidants [9–11]. The

consumption of fruits and vegetables has a preventive role, which is due to a variety

of constituents, including minerals, vitamins, fiber, and numerous phytochemicals

among which flavonoids and phenolic compounds are very important [12]. The

possible association between the consumption of food containing phenolics and a

reduced risk of developing several disorders, including cancer and cardiovascular

diseases, has been evaluated in several epidemiological investigations [13–18].

Phenolic acids are rarely found as free molecules in nature, but they most commonly

occur in plant materials as esters, amides, ethers, or as structural components of the

cellulose, proteins, and lignin [19–21]. As everyday part of a human diet, they are

involved in appreciation of good food quality, sensory qualities, color, nutritional,

and antioxidant properties of foods. Especially, phenolic acids such as vanillic acid,

2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, and gallic acid (GA) have

an important role. Their antioxidative efficiency has been related to the number of

hydroxy groups in the molecule, and also to their hydrogen atom donating abilities

[22].

GA can be found in gallnuts, witch hazel, tea leaves, oak bark, etc., as free and as

a part of hydrolysable tannins [22–26]. GA is commonly used in pharmaceutical and

chemical industry, as well as foodstuff. Besides being used as a standard for

determination of the total phenol content in various analytes, it is also used as

starting material in the organic synthesis. It also has great importance and

application in medicine, acting as an antioxidant and helping in protection human

cells against oxidative damage. It shows cytotoxicity against cancer cells,

antiallergic, antitumor, antifungal, anti-inflammatory, antiseptic, antivirus and

antiasthmatic effects. GA and its derivatives inhibit insulin degradation, and is

particularly effective in treating albuminuria and diabetes, psoriasis and external

hemorrhoids, coronary heart disease, cerebral thrombosis, gastric ulcer, snail fever,

viral hepatitis, senile dementia and other diseases where oxidative stress is involved

[27].

216 Reac Kinet Mech Cat (2018) 123:215–230

123



Antioxidant reactions of phenolic compounds take place in highly complex

environments. This is a consequence of the presence of numerous different free

radicals and antioxidants present in biological media. The concentrations and

reactivity of mentioned species, as well as the polarity and the pH value of the

environment have significant influence in these reactions. Therefore, in different

media, various radicals can react via several mechanisms. The antiradical properties

of antioxidants are based on their ability to donate hydrogen atom to a free radical.

In these reactions, a newly formed radical is generated from the antioxidant

molecule, and that newly formed species is more stable and less reactive than the

initial free radical. There are numerous mechanisms of the antioxidant actions, and

some of them are: hydrogen atom transfer (HAT), proton coupled electron transfer

(PCET), single electron transfer followed by proton transfer (SET-PT), sequential

proton loss electron transfer (SPLET), radical adduct formation (RAF), and

sequential proton loss hydrogen atom transfer (SPLHAT) [28–32].

Understanding of the leading reaction mechanism involved in the antioxidant

action is a challenging task. It is well known that reactions involving HAT

mechanism between two oxygen atoms have much lower activation energies and

higher rate constants than HAT mechanism between two carbon atoms [33]. HAT

mechanism involves transfer of a proton with one of its bonding electrons.

However, in the case of PCET mechanism, the proton is transferred from phenolic

compound to the radical’s lone pair. On the other hand, electron moves from the

2p lone pair of the phenol to the singly occupied molecular orbital (SOMO) of

phenoxy radical [34, 35]. However, there are different approaches for determination

which of these two mechanisms reaction obeys, including position of the orbitals

between reacting species, tunneling effect, solvent polarity, etc. [36, 37].

In addition to our former thermodynamic investigation of antioxidative properties

of GA, here we present a thermodynamic and mechanistic study of the reaction

between the different peroxy radicals and GA. Since peroxy and methylperoxy (MP)

radicals were used in our previous study [38–42], one of the aims of this work was

to check the compatibility of thermodynamic and mechanistic approaches for

antioxidative action of GA towards some alkyl peroxy radicals (ROO�). These

radicals are soluble in membranes and considered to be the major generators of lipid

peroxides [43]. They cause many kinds of diseases, including liver injury and cancer

[44]. Akaike et al. found that ROO� was generated by heme–iron-catalyzed

decomposition of t-BuOOH, and that scavenging activity of various antioxidants

towards these radicals can be estimated by electron spin resonance spectroscopy and

chemiluminescence [45, 46]. Recently, it was shown that the tert-butylperoxy

radical (tBP) has potent bactericidal action, and that the radical scavenging activity

of various antioxidants can be quantitatively estimated on the basis of the inhibitory

activity against the ROO� induced cytotoxicity toward Staphylococcus aureus

[45, 47]. However, there are no reports on the estimation of the free scavenging

activity of gallic acid against ROO�.
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Methodology

Geometry optimizations for all participants under investigation and frequency

calculations have been carried out using a M05-2X method [48] combined with the

6-311??G(d,p) basis set. To account for the solvent effects, two solvents were

investigated (water and benzene) using SMD model as implemented in Gaussian 09

[49, 50]. All geometries were fully optimized without imposing any restriction. The

nature of the revealed stationary points on potential energy surface was confirmed

by analyzing the results of the frequency calculations: no imaginary frequencies for

equilibrium geometries, and one imaginary frequency for transition states.

In the case of the transition states, it was verified that the imaginary frequency

corresponds to the expected motion along the reaction coordinate by intrinsic

coordinate calculations (IRC). These calculations proved that each transition state

(TS) connects two corresponding energy minima: reactant complex (RC) and

product complex (PC). Natural bond orbital (NBO) analysis was performed for all

participants in simulated reaction of the ROO� and GA [51, 52].

Transition state theory (TST) affords one of the simplest theoretical approaches

for estimating the rate constants (k), which requires only structural, energetic, and

vibrational frequency information for reactants and transition states [53]. The main

advantage of using conventional TST is that it requires very limited potential energy

information (only on reactants and the transition state), which makes it practical for

a wide range of chemical reactions. Despite its relative simplicity, this theory has

been proven to be sufficient to reproduce experimental rate constants of free radical

scavenging reactions [54].

The rate constants for the reactions of CR3OO� and GA were calculated using

TST, implemented in TheRate program [55] and 1 M standard state is calculated as

follows:

kTST ¼ kBT

h
exp

�DG6¼

RT

� �
: ð1Þ

Here kB and h stand for the Boltzmann and Planck constants, DG =is the free energy

of activation, which is calculated as the difference in energies between transition

states and reactants. In the case of HAT/PCET mechanism, reaction path degen-

eracy (r) and transmission coefficient c(T) were taken into account, implying that

the Eyring equation was transformed into:

kZCT ¼ rcðTÞ kBT

h
exp

�DG 6¼

RT

� �
: ð2Þ

The transmission coefficient c, corrections for tunneling effects (defined as the

Boltzmann average of the ratio between the quantum and classical probabilities),

was calculated using the zero-curvature tunneling (ZCT) approach [56].
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Results and discussion

In our previous work, we investigated thermodynamic properties of the reactions of

GA with �OH, -�O2, and �OOCH3 radicals [38]. It was found that position 4 is the

most reactive site of GA, while positions 3 and 5 are mutually identical. In

extension, here we examine reactions of GA with ROO� such as: methylperoxy

(MP), ethylperoxy (EP), iso-propylperoxy (iPP) and tert-butylperoxy (tBP) radicals

(Scheme 1), by applying the kinetic approach. The atom labeling presented in

Scheme 1 is used through the whole manuscript. In all investigated cases, the

transfer of hydrogen atom/proton is the process of interest. This transition is taking

place from hydroxy group of GA to the oxygen of each of corresponding radicals. In

this way, reactive peroxy radicals are neutralized, and new, more stable radical

products are formed from GA. The rate constants kTST and kZCT for all reaction of

peroxy radicals and GA were calculated using Eqs. 1 and 2. The bond dissociation

energies (DGBDE) as well as the activation energies and the rate constants at 298 K

are presented in Tables 1 and 2.

Hydrogen atom transfer-thermodynamics

Among the three hydroxy groups of GA, 4-OH group is the most responsible for the

antiradical activity [38–42]. It is well known that DGBDE for the HAT mechanism

can be calculated using the following equation:

DGBDE ¼ GðGA�O�Þ þ G CR3OOHð Þ � G GA�OHð Þ � G CR3OO�ð Þ

Here G(GA–O�), G(CR3OOH), G(GA–OH), and G(CR3OO�) are the free energies of

the gallic acid radical, molecule formed when corresponding peroxy radical accepts

hydrogen atom from the gallic acid, gallic acid, and different free radical species,

respectively. Lower values of DGBDE mean higher ability of GA to donate a

hydrogen atom to corresponding radical species.

The results with all free radicals indicate that all reactions with p-OH group of

GA both in water and benzene are exergonic. As regards, H transfer from m-OH of

GA all reactions are endergonic in both solvents, except for the case of MP radical

Scheme 1 Atomic numbering of gallic acid and examined alkyl peroxy radicals
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(Table 1). This indicates that the HAT reaction mechanism of GA with all ROO� is

thermodynamically possible for p-OH group of GA in both solvents, while this

mechanism is not preferable for m-OH. These results are in accordance with the

results of previous investigation [38, 57].

To explain the differences in the reactivity of the individual OH sites the

assessment of the spin density distribution was undertaken on the radicals of GA

(positions 3 and 4). The lower DGBDE values implicate easier formation of the

radicals and more delocalized spin density. The spin density values in water,

obtained by the NBO analysis, as well as SOMOs of GA are depicted in Figs. 1 and

S1. The results show that the radical formed from GA in position 4 is more stable.

This is consequence of delocalization of the unpaired electron over oxygen and

ortho and para carbons of aromatic core of GA (Fig. 1). In addition, appearance of

low values of spin density in the GA–4O� on the two adjacent OH groups, as well as

carboxyl group, suggests that unpaired electron is additionally delocalized,

explaining higher stability compared to GA–3O�.

Kinetics of HAT and PCET mechanism

There are several approaches examining g differences between HAT and PCET

mechanisms, including different positioning of the reacting species and different

electronic characters [58]. In this study, we considered differences between HAT

and PCET mechanisms examining geometry orientations of all alkyl peroxy radicals

toward GA in transition states as given. Potential energy surfaces and the optimized

structures of stationary points along reaction pathways of HAT mechanism in water,

and PCET mechanism in benzene are presented in Fig. 2, while the optimized

structures of all other transition states are provided in Figs. S2 and S3.

It was found that the barrier is slightly higher in benzene than in polar media for

reaction of MP with 3-OH group, while in the case of EP, iPP, tBP the barriers are

slightly lower in benzene (Table 2). Comparing the reactivity of the GA (both 3 and

4 positions in both solvents), it was found that the energy barrier for H transfer from

phenolic site 4 is significantly lower than for 3. The difference is about 20 kJ/mol in

the case of HAT and about 10 kJ/mol for PCET. The obtained results strongly

suggest a higher reactivity of the para hydroxy group.

Table 1 The calculated DGBDE

(kJ/mol) for the reactions of GA

with alkyl peroxy radicals

Water

DGBDE

Benzene

DGBDE

GAOH-3 ? MP - 0.61 4.11

GAOH-3 ? EP 1.02 5.66

GAOH-3 ? iPP 3.43 7.90

GAOH-3 ? tBP 4.98 10.3

GAOH-4 ? MP - 18.5 - 20.4

GAOH-4 ? EP - 16.8 - 18.8

GAOH-4 ? iPP - 14.4 - 16.6

GAOH-4 ? tBP - 12.8 - 14.2
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Fig. 1 Spin density distribution in GA radicals in water

Fig. 2 Reaction pathway for the H-atom transfer from the C4–OH position of GA to the MP radical, in
water (HAT) and benzene (PCET). The distances between C=O, O–H and H–O9 bonds are given in pm
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On the basis of the obtained results from Table 2, it is evident that Gibbs

activation energies and rate constants for HAT mechanisms are not heavily

influenced by the solvent polarity. In addition, we were not able to locate transition

states responsible for PCET mechanism in water, as polar solvent. As a consequence

of the previously mentioned lower activation barriers for position 4, kTST values are

larger in comparison to those in position 3, implying that reaction in position 4 is

significantly faster. Studies of kinetic solvent effects (KSEs) for the reaction in

water and for related reaction in benzene, demonstrated that HAT in water and

benzene exhibited gentle influence of KSEs, for example for MP

kTST = 8.59 9 105 in water, while kTST = 6.79 9 105 in benzene. It means that

the reactions which are taking place via the HAT mechanism are somewhat slower

in a non-polar solvent. Similarly to the case of HAT, position 4 of GA is more

reactive via PCET mechanism (Table 2). In contrast to the HAT mechanism, here

the KSEs play an important role, since the reaction by PCET mechanism takes place

only in the non-polar solvent (Table 2). The influence of the branched alkyl group

of investigated peroxy radicals on the rate of chemical reaction showed that there is

a slight decrease in the rate of the reaction with increase in the branching of alkyl

group, in the case of both mechanisms.

Insight into kZCT and c points out tunneling effects as the responsible one for

making the reaction between GA and alkyl peroxy radicals faster, in both positions

and in both solvents (Table 2). Namely, values for MP radical reaction in position 4

of kZCT = 8.54 9 108 in water, and kzct = 5.17 9 107 in benzene clearly show that

tunneling effect is playing very important role. It is worth pointing out that the

tunneling effect is responsible for the increase in reactions rate constants in all

positions, and all solvents (Table 2; Figs. 3, S4 and S5). This effect rapidly

decreases with the increase in the temperature. Since the abstraction reaction

involves the motion of a light particle (hydrogen atom) that can easily tunnel

Fig. 3 Dependence of lnkTST and lnkZCT (M-1 s-1) on reciprocal temperature 1/T (K) in the HAT (top)
and PCET (bottom) pathways of GA with alkyl peroxy radicals, in benzene
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through the reaction barrier, this action is to be expected (reaction of ‘‘pure’’ HAT

mechanism). In addition, the reactions in position 4 of GA are distinctly exergonic

(Table 2), while the activation energies are low and corresponding rate constants

high. As in the case of the HAT reactions for the trapping of peroxy radicals by GA,

reactions in positions 3 and 4 of PCET reaction in benzene have pronounced

tunneling effect, too. In addition, transmission coefficients (c) are obviously much

higher in the case of PCET, implying different pathways for proton and electron

motion [58]. The tunneling effect can be attributed to the formation of a compact

H-bonded complex via two H bonds between the donor and acceptor and the short

path length for hydrogen transfer indicating that the H transfer proceeds via a PCET

mechanism [58–60]. Nevertheless, although tunneling effect is more pronounced in

the case of PCET mechanism, the values for kZCT show the same trends as kTST

values, and point out HAT as preferable reaction pathway. It is worth pointing out

that with the increase in branching of alkyl group of radical, i.e. increase in electron

donating ability of alkyl moiety, the tunneling effect is becoming more pronounced.

All these facts suggest that the reaction pathway of HAT mechanism in position 4

is predominant in both solvents [61]. Therefore, this process exposes the highest rate

constant values, which can be attributed to the involvement of O4 from gallic acid

radical in the relatively strong hydrogen bonds with H3 and H5, contributing to the

weakening of the O4–H4 bond. The reaction of MP is slightly favored, by both

thermodynamic and kinetic parameters. Inspection of the rate constant values in

benzene for PCET mechanism indicated that, again, position 4 is also more probable

reacting site. However, if one compares these parameters with those obtained for

HAT, it is obvious that HAT is more probable mechanism.

Taking into account pKa value of carboxylate group of GA (4.4) [62], and that

GA is deprotonated in aqueous solution (87.3%) [57, 63], it means the carboxylate

anion of GA might play an important role is antioxidative action under

physiological conditions (pH 7.4). Therefore, radical scavenging action of GA

carboxylate anion against all investigated peroxy radicals has been investigated

(Table S2). Based on the obtained values of activation energies, it is clear that

corresponding reaction with all investigated radicals are slightly faster than those

with GA itself.

HAT versus PCET

The values of the partial negative charge and the spin density in benzene, obtained

by NBO analysis, on corresponding oxygen atoms for the RCs, TSs, and PCs are

presented in the Table 3. On the basis of the obtained results, one can see that

during the reaction the partial negative charge on peroxy O9 increases, and has the

highest value in PCs. In the contrast to this, the partial negative charge on the

phenolic oxygen O4 decreases in all cases. The partial positive charges on phenolic

hydrogens are around 0.5, with small variations during the reactions. On the other

hand, the spin density value on O9 is about 0.7 in all RCs, while the spin density

values on all other atoms are practically equal to zero. The spin density is shared

between O9 and the phenolic oxygen O4 in TSs (Table 3). Finally, in all PCs, the

spin density is distributed over the GA moiety, while its value on O9 is decreased to
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zero. This finding confirms that every PC consists of alkyl peroxide and the

corresponding GA–4O� species. Spin delocalization in this product is in agreement

with the fact that more stable radical is formed. During all reaction pathways, the

spin density on the phenolic hydrogens (H4) remains close to zero. All these facts

indicate that the spin density on the transferred hydrogen cannot be generally used

to distinguish HAT from PCET mechanism [35], but some other results point out

differences between PCET and HAT mechanism.

Mayer et al. used DFT to examine the self-exchange reactions of the phenoxy

radical/phenol, methoxy radical/methanol and the benzyl radical/toluene systems

[64]. They identified the geometrical differences of HAT and PCET in transitions

states. The identification was based on the analysis of the SOMO of the transition

state. The HAT mechanism is characterized by a significant SOMO density along

the donor ���H��� acceptor transition vector. On the other hand, SOMO of PCET

transition state involves p type orbitals, which are orthogonal to the transition

vector.

The analysis of SOMOs shapes in the corresponding HAT and PCET transition

states provides deeper insight into the differences between these mechanisms

(Fig. 4). SOMOs of all TSs of HAT and PCET are mostly localized over aromatic

ring of GA. On the other hand, differences are obvious along the O4���H4���O9

vectors. Namely, in all HAT transition states, SOMOs are also localized along this

transition vector, implying that the transfer of hydrogen atom is taking place. On the

Fig. 4 The shape of SOMOs in different transition states of HAT and PCET mechanisms in position 4, in
benzene
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other hand, the SOMOs of PCET in TSs involve the p orbitals in the H acceptor

(O4), and they are not localized along O4���H4���O9 transition vector. Here, the

transfer of a proton and electron follows different pathways, indicating that the

proton is transferred from the OH group in position 4 of GA to oxygen’s lone pair of

radical, while the electron moves from the 2p lone pair of the GA–4OH to the

SOMO of alkyl peroxy radical. These findings are in good agreement with literature

data [65].

Additionally, delocalization of SOMO is significantly weaker in transition states

of PCET than in those for HAT mechanism. These differences rationalize the higher

activation energies for the reactions via PCET mechanism (Table 2). Namely,

PCET is energetically disfavored for about 24 kJ/mol in all cases.

Conclusion

In this paper, we presented thermodynamic and kinetic approach for the

antioxidative action of gallic acid with some alkyl peroxy radicals, via HAT and

PCET mechanisms, in polar and non-polar solvents. Based on the obtained results, it

can be concluded that PCET mechanism is not possible in water for the examined

system. Furthermore, DGBDE as well as kTST rate constants are undoubtedly showing

that HAT is predominant mechanism in both solvents. Thermodynamic and kinetic

data clearly point out position 4 as more reactive site of the GA. In addition, the

large tunneling effect is sharpening the potential barriers for both mechanisms.

Moreover, the obtained kZCT values are in agreement with those for kTST also

implying that HAT is prevailing mechanism. Furthermore, it is shown that

differences between HAT and PCET mechanisms cannot be distinguished using

NBO charges and spin densities. Instead, for this purpose, SOMOs are used to

interpret these differences. The obtained results showed that, unlike HAT TSs

structures, there is no SOMO localization over O4���H4���O9 transition vector in

PCET transition states. Consequently, HAT activation barriers are favored by about

24 kJ/mol, in all cases. This additionally points out HAT as preferred mechanistic

pathway under examined reaction conditions.
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9. Lleó A, Greenberg SM, Growdon JH (2006) Current pharmacotherapy for Alzheimer’s disease. Annu

Rev Med 57:513–533

10. Moosmann B, Behl C (2002) Antioxidants as treatment for neurodegenerative disorders. Expert Opin

Investig Drugs 11:1407–1435

11. Troadec JD, Marien M, Darios F, Hartmann A, Ruberg M, Colpaert F, Michel PP (2008) Nora-

drenaline provides long-term protection to dopaminergic neurons by reducing oxidative stress.

J Neurochem 7:200–210

12. Tomás-Barberán FA, Espin JC (2001) Phenolic compounds and related enzymes as determinants of

quality in fruits and vegetables. J Sci Food Agric 81:853–876

13. You BR, Kim SZ, Kim SH, Park WH (2011) Gallic acid-induced lung cancer cell death is accom-

panied by ROS increase and glutathione depletion. Mol Cell Biochem 357:295–303

14. You BR, Moon HJ, Han YH, Park WH (2010) Gallic acid inhibits the growth of HeLa cervical cancer

cells via apoptosis and/or necrosis. Food Chem Toxicol 48:1334–1340

15. Elango S, Balwas R, Padma VV (2011) Gallic acid isolated from pomegranate peel extract induces

reactive oxygen species mediated apoptosis in A549 cell line. J Cancer Ther 2:638–645

16. Lecumberri E, Dupertuis YM, Miralbell R, Pichard C (2013) Green tea polyphenol epigallocatechin-

3-gallate (EGCG) as adjuvant in cancer therapy. Clin Nutr 32:894–903

17. Saxena HO, Faridi U, Srivastava S, Kumar JK, Darokar MP, Luqman S, Chanotiya CS, Krishna V,

Negi AS, Khanuja SPS (2008) Gallic acid-based indanone derivatives as anticancer agents. Bioorg

Med Chem Lett 18:3914–3918

18. Zeng L, Holly JM, Perks CM (2014) Effects of physiological levels of the green tea extract epi-

gallocatechin-3-gallate on breast cancer cells. Front Endocrinol (Lausanne) 5:61

19. Andreasen MF, Christensen LP, Meyer AS, Hansen A (2000) Content of phenolic acids and ferulic

acid dehydrodimers in 17 rye (Secale cereale L.) varieties. J Agric Food Chem 48:2837–2842

20. Lam TBT, Kadoya K, Iiyama K (2001) Bonding of hydroxycinnamic acids to lignin: ferulic and

p-coumaric acids are predominantly linked at the benzyl position of lignin, not the â-position, in grass
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