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• Željko Čupić2
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Abstract In this paper, an already published model of the Bray–Liebhafsky

reaction was improved by removing the direct autoinhibitory step, which resulted in

a new variant of the model with more realistic kinetic scheme than the earlier

version. The obtained variant of the model retains all intermediate species (I-, HIO,

HIO2 and I2) that were present in the previous model and has one reaction less.

Stability analysis of the improved model was performed by stoichiometric network

analysis (SNA). By this method, it was shown that improved model can simulate

Andronov–Hopf and saddle-node bifurcations. In order to confirm the results of

SNA, bifurcation analysis was performed with the initial concentrations of [H2O2]0

as the control parameter. With selected set of rate constants and constant concen-

trations of external species, two Andronov–Hopf bifurcations were detected at

[H2O2]0 = 5.62 9 10-2 M and [H2O2]0 = 10.73 M, while the rate constants ought

to be changed for a saddle-node to occur. Bifurcation analysis also showed that the

interaction between intermediate species I–, HIO and HIO2 has a crucial impact on

the emergence of Andronov–Hopf bifurcation.
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Introduction

The Bray–Liebhafsky (BL) [1, 2] reaction is the decomposition (D) of hydrogen

peroxide in the presence of iodate and hydrogen ions, which can be presented by the

following simple net process

2H2O2 �!
IO�

3 ; Hþ

2H2O þ O2: Dð Þ

However, multiple intermediary species such as I2, I–, HIO HIO2 and I2O are

involved in the complex reaction network underlying this schematic representation

[1–8]. Therefore, beside simple oscillations in concentrations of these intermediary

species, complex oscillations and chaos are also obtained in this reaction system.

[9–11]

Modelling of the BL reaction is a very complicated task due to complexity of the

considered process. Several models and their variants of the BL reaction were

proposed, among which model M(1-8) [3, 4, 12–15] showed the best performances.

Numerical investigations of model M(1-8) have shown that this model can

simulate various types of periodic and aperiodic oscillatory dynamics [7, 12, 15–

17], which were all found in experiments [9, 18]. However, the direct mathematical

correlation between experimental results and numerical simulations is not simple

due to the complexity of the model in terms of reaction network and chemical

species. Thus, a better understanding of reactions and interactions between

intermediate species, which are essential for emergence of instabilities, requires

reduction of the considered model to both the number of intermediate species and

the set of reactions, which represent the unstable core.

For this purpose, stoichiometric network analysis (SNA) [19, 20] was already

applied to model M(1-8), which resulted in removing intermediate species (I2O) and

in new model [21, 22] The obtained model without one intermediate species (I2O),

is presented in Table 1.

The number of reactions (Ri) are adjusted with the number of reactions in model

M(1-8) [21, 22]. The concentration [H?] = 0.049 M and [IO3
–] = 0.0733 are

Table 1 Model M1 of the Bray–Liebhafsky reaction [21, 22]

IO�
3 þ I� � HIO þ HIO2 k1 = 55.96 min-1

k-1 = 7.91 9 107 M-1 min-1

(R1)

(R-1)

HIO þ I� � I2 þ H2O k4 = 3.00 9 1011 M-1 min-1

k-4 = 91.83 min-1

(R4)

(R-4)

HIO þ I� �! I� þ Hþ þ O2 þ H2O k5 = 1.34 9 104 M-1 min-1 (R5)

HIO2 þ H2O2 �! IO�
3 þ Hþ þ H2O k7 = 2.00 9 103 M-1 min-1 (R7)

IO�
3 þ Hþ þ H2O2 �! HIO2 þ O2 þ H2O k8 = 2.10 9 10-4 min-1 (R8)

HIO2 þ I� þ Hþ �! 2HIO k9 = 2.45 9 1010 M-1 min-1 (R9)

HIO2 þ I� þ Hþ þ H2O2 �! HIO þ HIO2 þ H2O k10 = 2.45 9 1010 M-1 min-1 (R10)

2HIO þ H2O2 �! HIO þ HIO2 þ H2O k11 = 3.15 9 1010 M-1 min-1 (R11)
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considered to be constant and they are incorporated into the values of the

appropriate rate constants.

In a previous work [21], it was shown that this model can simulate oscillatory

dynamic states, either in the complete form M(1, -1, 4, -4, 5, 7, 8, 9, 10, 11) or

without some of the reactions, that is in the forms: M(1, -1, 4, -4, 5, 7, 8, 9, 11),

M(1, -1, 4, -4, 5, 9, 11) and M(4, -4, 5, 7, 8, 9, 11). Thus, by a systematic

contracting procedure, the variant of the model M(1, -1, 4, -4, 5, 9, 11), already

published by Guy Schmitz, is also obtained [23]. The contracted model M1 is here

reconstructed by the method proposed by Cook et al. [24] with the aim to escape a

direct autoinhibitory step that appears in reaction R11 and which cannot be

considered as part of a realistic kinetic mechanism. Moreover, the obtained domain

of instability, dynamic states, bifurcation diagrams, and type of bifurcations are

calculated and discussed for the new variant of the model. For this purpose, beside

SNA, the methods of numerical continuation [25–30] was also used.

Methods

Stoichiometric network analysis

Stoichiometric network analysis (SNA) is a powerful and efficient method for

carrying out stability and reaction route analysis of complex reaction systems

including biochemical ones. This method allows the evaluation of stability and the

derivations of analytical expressions for instability conditions without the need of

knowing the values of kinetic parameters that are usually experimentally

inaccessible.

In SNA, the kinetic equations of any stoichiometric model are represented by a

set of differential kinetic equations written in the matrix form:

dc

dt
¼ Sr ð1Þ

Here c is the concentration, while r is a reaction rate vector. The stoichiometric

matrix S is an operator whose elements are the stoichiometric coefficients Sn,m of

compounds n in reaction m.

Stability analysis in SNA is based on the determination of the steady state

stability and steady state reaction rates for the considered model. The rates at a

steady state rss are solutions of the relation

Srss ¼ 0 ð2Þ

Here S is stoichiometric matrix consisting of only independent intermediate species.

Moreover, the overall process can be represented as a linear combination of several

elementary reaction pathways with non-negative coefficients. These elementary

reaction pathways are known as extreme currents Ei and they all contribute to the

steady state values of reaction rates. The contributions of the extreme currents Ei,

denoted as the current rates ji, are the components of the corresponding current rate
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vector j, whereas the extreme currents Ei are the columns of the extreme current

matrix E. [19, 20, 31]

The basic equation of SNA, which gives a relation between steady state reaction

rates and current rates is

rss ¼ Ej ð3Þ

The steady-state stability is determined by analyzing the eigenvalues of the

Jacobian of the system, which in SNA has the form [19, 20, 31]

M ¼ �VðjÞ diag h ð4Þ

Here h stands for the vector of reciprocal steady-state concentrations of the inter-

mediate species, diag h is its diagonal matrix, while V(j) is a current rate matrix. It

is given by the expression:

VðjÞ ¼ � S diag Ejð ÞKT ð5Þ

Here K stands for a matrix of the order of reactions. If we assume the mass action

law for the reaction rates, the elements of K are the general stoichiometric coeffi-

cients of a species standing on the left side of the reaction (reactants in particular

reactions), while KT is its transpose.

The eigenvalues of M are the roots k of the characteristic polynomial

Det kI � M½ � ¼
Xn

i¼0

aik
n�i ð6Þ

If the real parts of all eigenvalues are negative, a steady state is stable. If one or

more eigenvalues have positive real parts, the steady state is unstable.

The sign of the real part of the eigenvalues of the Jacobian matrix can be

evaluated by using several criteria such as Hurwitz determinants [32, 33] or the a
approximation (a system is unstable if at least one coefficient of the characteristic

polynomial a is negative). Since our main goal is to derive an equation which

gives us an instability condition, the two mentioned criteria are impractical to use

because the equations derived for large models consist of hundreds or even

thousands of terms. A much simpler method to examine the steady-state stability

is the use of the matrix of current rates V(j). The steady state is considered

unstable if there is at least one negative diagonal minor of V(j). [19] It is possible

only if the polynomial corresponding to the determinant of the mentioned

negative diagonal minor contain, at least, one negative term. Namely, a negative

minor actually represents a destabilizing term since all the coefficients of the

current rates in the V(j) matrix are positive numbers. For a system to be able to

simulate an Andronov–Hopf bifurcation, it is usually necessary that there is at

least one negative diagonal minor of dimension (n - 1) 9 (n - 1), where

n represents the number of intermediate species. The condition for a saddle-node

bifurcation is that the expression for the determinant of V(j) contains negative

terms. Although it is an approximation, this criterion often gives very good results.

[14, 34–37]
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In order to compare the derived instability conditions, which are given as the

functions of the current rates, with experimental and numerical results, they have to

be expressed as the functions of reaction rates. To achieve this, matrix V has to be

calculated again but now using relation [38]

VðrssÞ ¼ � S diag rssð ÞKT ð7Þ

However, the preliminary identification of negative minors from the current rate

matrix in the form 5 remains necessary. The form given in Eq. 7 is useful only for

comparison with experiments.

Cook method

Direct autocatalytic steps can often be found in the models of the oscillating reactions,

but they cannot be considered as a realistic kinetic mechanism. Thus, replacing them

with a realistic mechanism is an essential part of modelling oscillating reactions.

For achieving this goal, a procedure proposed by Cook et al. [24] can be used.

The procedure consists of replacing direct autocatalytic steps

A þ 2B�!kRA
3B RAð Þ

with a realistic sub-scheme, i.e., a set of elementary steps which preserve overall

stoichiometry. In their paper, they proposed several such schemes, but for the

purpose of this paper, we used the following sub-scheme:

A þ X�!kRB
3B ðRBÞ

2B �

kRC

kR�C

X RCð Þ R � Cð Þ

Reactions RC and R–C describe fast equilibrium whereas much slower process RB

is the rate limiting step in this sequence. Hence, the concentration [X] in the steady

state is determined by the equilibrium reactions RC and R–C as K[B]2:

X½ � ¼ kRC B½ �2

ðkRB A½ � þ kR�CÞ
� kRC

kR�C

B½ �2 ¼ K B½ �2 ð8Þ

Here K = kRC/kR–C. Therefore, the rate of the overall process has the form kRB-

K[A][B]2. Taking kRA = kRBK, the rate laws of two processes are equal. Thus, the

cubic autocatalytic reaction is decomposed in its bimolecular steps and reaction

kinetics is preserved. It is done by means of intermediate X, as a new species in

submodel [RB, RC, R–C].

Numerical continuation

Numerical continuation is a method of computing approximate solutions of a system

of parameterized nonlinear equations which can be represented in a form

Reac Kinet Mech Cat (2016) 118:39–55 43

123



f c; kð Þ ¼ 0 ð9Þ

Here c represents concentration vector of size n 9 1, while k represents control

parameters, which in our case are rate constants. By solving system 9 for various

values of the chosen control parameter while others are kept constant, the depen-

dence of the solution on the control parameter is obtained. By evaluating the

eigenvalues of the Jacobian matrix for each value of control parameter, the stability

of the system is evaluated. For the detection of bifurcation points which can be found

in the considered system, test functions are used. A unique feature for all test

functions is that they equal to zero in the bifurcation point. Bifurcations points are

detected by monitoring the values of test functions for each value of the control

parameter and detecting the point at which the test function changes its sign. [28, 29]

For the purpose of this research, we developed a program in MATLAB

programming package which conducts bifurcation analysis by using numerical

continuation based on the pseudo-arc length scheme.

Results and discussion

Contraction of the model M1

After the successful removal of I2O from the initial model M(1-8) by systematic

contracting procedure performed by SNA, we obtained a model with a direct

autoinhibitory step R11, which can be a source of instability as any feedback

reaction, but which cannot be considered as a realistic kinetic mechanism and,

therefore, must be substituted by two or more simpler reactions. In order to solve

this problem, we accepted the procedure which Cook et al. applied on the

autocatalyst in order to replace autocatalysis with a bimolecular steps (Section 2.2).

With approximations described in Section 2.2, this procedure can be obviously valid

for any process of the form

A + nB�!kRA ðn+1ÞB ð10Þ

Here n = 1, 2, 3,…. Thus, it can be also applied on autoinhibition.

According to procedure explained in Section 2.2, reaction R11 can be replaced

with following reactions

HIO2 þ I� þ Hþ þ H2O2 �! HIO þ HIO2 þ H2O R10ð Þ

2HIO � HIO2 þ I� + Hþ R12ð Þ; R-12ð Þ

These have similar roles to reactions RB and RC together with R–C. Reaction R10,

already included in model M1, should be a slow, rate determining step in accor-

dance with the known facts about kinetics of iodide reaction with hydrogen per-

oxide. The stoichiometry of the fast equilibrium R12, R-12 also corresponds to well

known process, which was an integral part of several previously published models

of the BL reaction. Thus, from model M1, we can see that reaction R10 is already
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present in it while reaction R11 needs to be replaced with equilibrium reaction R10,

R-12. Also, the new reaction R-12 is identical to reaction R9, which should be

replaced with it. Hence, in the new reduced model M2, (Table 2) submodel con-

sisting of reactions R9, R10 and R11 is replaced with submodel consisting of

reactions R10, R12 and R-12. In this procedure, when the direct autoinhibitory step

is replaced with bimolecular steps in the submodel, we introduced iodide ion as new

intermediate species. However, this is an already existing intermediate in the model

such that number of intermediate species did not change.

Replacing reaction R11 with the set of reactions R10, R12 and R-12 requires

adjustments in the values of rate constants in order to maintain the reaction rates.

Due to the contribution of the decomposed autoinhibitory step R11, reactions R10

and R-12 would have to appear twice in the reaction scheme (since reaction R-12 is

identical to the reaction R9), and this is equivalent to having the same reactions with

doubled reaction rates, or doubled rate constants. Thus, values of k10 and k-12 are

twice as high as their values in model M1 (namely, k–12 = 2k9). On the other hand,

in order to preserve existing kinetics, it is required that reaction rate of R12 should

be equal to the reaction rate of R11. Thus, k12 has the same value as k11 in model

M1, but the rate of reaction R12 is larger than rate of reaction R11 since the last one

is multiplied by hydrogen peroxide concentration, which is usually less than 1 M.

However, low hydrogen peroxide concentration is not a necessary condition for

oscillations, but rather the frame for the equivalency between two models.

Therefore, replaced submodel R9, R10, R11 should be equivalent to the new one

R10, R12, R-12 with a chemically realistic stoichiometry.

Model M2 consist of seven reactions, among which three are reversible. The first

five reactions are the same as in model M(1-8), while the last two reactions are

obtained during the process of contraction.

The dynamics of the Model M2 can be represented by a set of ordinary

differential kinetic equations:

d½I��
dt

¼ � r1 þ r�1 � r4 þ r�4 þ r5 � r10 þ r12 � r�12 ð11Þ

Table 2 Model M2 of the Bray–Leibhafsky reaction

IO�
3 þ Iþ þ 2Hþ

�HIO þ HIO2 k1 = 55.96 min-1

k-1 = 7.91 9 107 M-1 min-1

(R1)

(R-1)

HIO þ I� þ Hþ
� I2 þ H2O k4 = 3.00 9 1011 M-1 min-1

k-4 = 91.83 min-1

(R4)

(R-4)

HIO þ H2O2 �! I� þ Hþ þ O2 + H2O k5 = 1.34 9 104 M-1 min-1 (R5)

HIO2 + H2O2 �! IO�
3 þ Hþ + H2O k7 = 2.00 9 103 M-1 min-1 (R7)

IO�
3 þ Hþ þ H2O2 �! HIO2 þ O2 þ H2O k8 = 2.10 9 10-4 min-1 (R8)

HIO2 þ I� þ Hþ þ H2O ! HIO þ HIO2 þ H2O k10 = 4.90 9 1010 M-1 min-1 (R10)

2HIO�HIO2 þ I� þ Hþ k12 = 3.15 9 1010 M-1 min-1

k-12 = 4.90 9 1010 M-1 min-1

(R12)

(R-12)
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d½HIO�
dt

¼ r1 � r�1 � r4 þ r�4 � r5 þ r10 � 2 r12 þ 2 r�12 ð12Þ

d½HIO2�
dt

¼ r1 � r�1 � r7 þ r8 þ r12 � r�12 ð13Þ

d½I2�
dt

¼ r4 � r�4 ð14Þ

Here ri are defined as

r1 ¼ k1½I�� ð15Þ

r�1 ¼ k�1½HIO�½HIO2� ð16Þ

r4 ¼ k4½I��½HIO� ð17Þ

r�4 ¼ k�4½I2� ð18Þ

r5 ¼ k5½HIO�½H2O2�0 ð19Þ

r7 ¼ k7½HIO2�½H2O2�0 ð20Þ

r8 ¼ k8½H2O2�0 ð21Þ

r10 ¼ k10½HIO2�½I��½H2O2�0 ð22Þ

r12 ¼ k12½HIO�2 ð23Þ

r�12 ¼ k�12½HIO2�½I�� ð24Þ

Here, as in all previous variants of model M(1-8), the concentrations of H? and

IO3
- are considered to be constant and their values are incorporated in the values of

appropriate rate constants. For the purpose of the numerical simulations, stability

analysis and bifurcation analysis, the concentration of [H2O2] is considered to be

constant and equal to the initial [H2O2]0. Therefore, there is [H2O2]0 instead of

[H2O2] in expressions for r5, r7, r8 and r10.

Stability analysis of the model M2

As has just been explained, in model M2, there are four intermediate species: I-,

HIO, HIO2 and I2, which is one fewer than in model M(1–8) and seven reactions

among which three are reversible. For stability analysis, we are dealing with ten

forward reactions, since any reverse one had to be presented as two forward ones.

The first step in stability analysis is to construct matrices S and K, in which

columns represents reactions while rows represent intermediate species
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Then matrix E is calculated for the model M2

By employing Eq. 3, relations between current rates and reaction rates rss at

steady state are obtained. Indeces SS indicating that reaction rate values are taken in

the steady state are excluded from all equations below for simplicity, but this fact

must be kept in mind.

r1 ¼ j1 þ j6 ð28Þ

r�1 ¼ j1 þ j7 ð29Þ

r4 ¼ j2 ð30Þ

r�4 ¼ j2 ð31Þ

ð25Þ

ð25Þ

ð27Þ
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r5 ¼ j3 þ j6 ð32Þ

r7 ¼ j5 þ j6 ð33Þ

r8 ¼ j5 þ j7 ð34Þ

r10 ¼ j3 þ j7 ð35Þ

r12 ¼ j4 ð36Þ

r�12 ¼ j4 ð37Þ

By using Eq. 5, matrix V(j) was calculated:

ð38Þ

Analysis of diagonal minors of dimensions i 9 i of matrix V(j) showed that

there are four of them that negative determinant terms. They are given in Table 3,

where particular numbers i correspond to the rows and columns of negative minors.

The steady state is considered unstable if there is at least one negative diagonal minor

of V(j). [19] It is possible only if the polynomial corresponding to the determinant

of the mentioned negative diagonal minor contain at least one negative term. Namely, a

negative minor actually represents a destabilizing term since all the coefficients of the

current rates in the V(j) matrix are positive numbers. For a system to be able to

simulate an Andronov–Hopf bifurcation, it is usually necessary that there is at least one

negative diagonal minor of dimension (n - 1) 9 (n - 1), where n represents the

number of intermediate species. The condition for a saddle-node bifurcation is that the

expression for the determinant of V(j) contains negative terms. Although it is an

approximation, this criterion often gives very good results. [14, 34–37]

Table 3 Negative diagonal minors of matrix V(j) for model M2. Dimensions of minors are given in the

first column and the corresponding combination of rows-columns of matrix V(j) is indicated by a plus

sign in other columns

Dimensions of minors 1 (I–) 2 (HIO) 3 (HIO2) 4 (I2)

2 9 2 ? ?

3 9 3 ? ? ?

3 9 3 ? ? ?

4 9 4 ? ? ? ?

In the first row of Table 3, columns and rows of matrix V(j) are identified by ordinal numbers together

with corresponding intermediary species denoted on the borders of matrix V(j) (38)
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As we already said in Section 2.1, the steady state is unstable if at least one of the

polynomials corresponding to the determinants of the negative diagonal minors of

matrix V(j) can be negative in the considered region of parameters. [19] However,

the Andronov–Hopf bifurcation can be obtained only if there is at least one negative

diagonal minor of dimension (n - 1) 9 (n - 1), where n represents the number of

intermediate species. In our case, there are two of them. Moreover, since the

considered model has four intermediate species, we are looking for negative

diagonal minors of dimension 4 9 4 as a condition for the appearance of a saddle-

node bifurcation.

Now, if we continue with the analysis of diagonal minors, we can see that the

smallest one is of dimension 2 9 2 and represents the interaction between HIO and

HIO2. This minor is also incorporated into negative diagonal minors of dimension

3 9 3 and 4 9 4 and thus it represents the core of instability in model M2. The

polynomial corresponding to minor 2 9 2 is negative if

j1j2 þ 2j1j3 þ 9j1j4 þ j1j5 þ j2j4 þ 2j1j6 þ j2j5 þ j1j7 þ j2j6 þ j3j5 þ j2j7 þ j3j6

þ 4j4j5 þ 2j3j7 þ 5j4j6 þ 7j4j7 þ j5j6 þ j5j7 þ 2j6j7 þ j26 þ j27 � j3j4\0

ð39Þ

Since there are linear relations between current rates and reaction rates 15–24,

this inequality can also be expressed as a function of rss [38]

4 r12r7 þ r4r7 þ r5r7 þ r�1r10 þ 6 r�1r12 þ r�1r4 þ r4r�12 þ r�1r5 þ r5r�12 þ r�1r7

þ 3 r�1r�12 � 2 r10r12\0

ð40Þ

Expressions for minors of dimension 3 9 3 (M123 and M234) as a function of rss

are given in Eqs. 41 and 42:

2r10r12 þ 2r4r10 þ 2r7r12 þ 2r4r7 þ 5r4r�12ð Þr1

þ 2r10r12 þ 4r4r10 þ 10r4r12 þ 2r4r5 þ 2r4r7 þ 10r4r�12 � r7r�12ð Þr�1

þ 3r7r12 þ r5r�12 � 2r10r12ð Þ2r4 þ ð2r10r12 þ 2r4r10 þ 2r4r5 þ 3r4r�12Þr7

� r5r�12ðr1 þ r�1 þ r7Þ\0

ð41Þ

r�4 ðr5 þ r7 þ r10 þ 6r12 þ 3r�12Þ r�1 þ r5 ðr7 þ r�12Þ þ ð2r7 � r10Þ 2 r12ð Þ\0

ð42Þ

Furthermore, the condition for the appearance of a saddle-node bifurcation

resulting from minor 4 9 4 can be expressed as

r�4 2r12ðr1r10 þ r1r7 þ r7r10 þ r�1r10Þ � r�12ðr1r5 þ r5r7 þ r�1r5 þ r�1r7Þð Þ ¼ 0

ð43Þ

Since r-4 cannot be zero, condition 43 can be written in a form
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2r12

r�12

¼ r5ðr1 þ r�1 þ r7Þ þ r�1r7

r10ðr1 þ r�1 þ r7Þ þ r1r7

ð44Þ

By setting proper values of the parameters, condition 43 can be satisfied and a

saddle-node bifurcation will occur, while the best parameter to adjust in order for

this to be achieved is rate constant k12.

Bifurcation analysis of the model M2

In order to confirm the results of SNA analysis of the model M2, the bifurcation

analysis was carried out. To perform bifurcation analysis, Eq. 2, which governs the

concentrations of intermediate species in steady-state had to be solved. In the case

of model M2, those equations are:

�r1 þ r�1 � r4 þ r�4 þ r5 � r10 þ r12 � r�12 ¼ 0 ð45Þ

r1 � r�1 � r4 þ r�4 � r5 þ r10 � 2 r12 þ 2r�12 ¼ 0 ð46Þ

r1 � r�1 � r7 þ r8 þ r12 � r�12 ¼ 0 ð47Þ

r4 � r�4 ¼ 0 ð48Þ

Bifurcation analysis of the considered model was carried out with the initial

concentration of hydrogen-peroxide [H2O2]0 as a bifurcation parameter. The value

of the [H2O2]0 was varied in range 1 9 10-2 M\ [H2O2]0\ 15 M, while other

rate constants were kept constant and for each value of hydrogen peroxide, steady-

state concentrations of intermediate species were calculated. The stability of the

system was determined by evaluating the eigenvalues of the Jacobian matrix for

each value of the chosen rate constants, while the emergence of the bifurcation

points was detected by evaluating appropriate test functions. The bifurcation

diagram for parameters given in Table 2 is presented in Fig. 1.

By varying [H2O2]0, two Andronov–Hopf bifurcations were detected at values

AH1([H2O2]0 = 5.6289 9 10-2 M) and AH2([H2O2]0 = 10.7387 M). In order to

determine which diagonal minor from Table 3 represents the most accurate expression

Fig. 1 Bifurcation diagram obtained by solving Eqs. 45–48 with chosen initial concentrations of
hydrogen-peroxide [H2O2]0. In Fig. 1 dots denote stable-steady state, line denote unstable steady-state,
filled triangles denote Andronov–Hopf bifurcations (AH1 and AH2) while circles denote amplitude of the
oscillations—minimum and maximum values of iodide concentration in it. The abscissa and ordinate are
given on a logarithmic scale
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for the appearance of the Andronov–Hopf bifurcation under the considered conditions,

we calculated their values for [H2O2]0 in the range of 1 9 10-2 M\ [H2O2]0\ 15 M

and determined the values of [H2O2]0 for which they have negative values. By

comparing the values of [H2O2]0 at which diagonal minors become negative and then

positive again with the values of [H2O2]0 at which two Andronov–Hopf bifurcation were

detected, we determined which diagonal minor is most important for the appearance

of the considered bifurcation. The results are presented in Fig. 2.

From the results presented in Fig. 2 and obtained with the rate constants given in

Table 2, we can see that diagonal minor M23, although included in the diagonal

minor M123 and M234, cannot become negative in the analyzed range of [H2O2]0.

Therefore, the considered steady state cannot be unstable under the analyzed set of

rate constants and initial concentrations of invariable species.

Diagonal minor M234 becomes negative at H2O2]0 = 3.4745 9 10-2 M, but it is

still negative after AH2([H2O2]0 = 10.7387 M). On the other hand, diagonal minor

Fig. 2 Values of the diagonal
minors M23 (a), M123 (b), M234

(c), and M1234 (d) calculated for
values of [H2O2]0 in the range
1 9 10-2 M\ [H2O2]0\ 15 M
and rate constants given in
Table 2. In Fig. 2 dots denote
positive value of diagonal
minors; line denotes negative
value of diagonal minors; filled
triangles denote Andronov–
Hopf bifurcations. The abscissa
is given on a logarithmic scale
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M123 becomes negative at [H2O2]0 = 5.5748 9 10-2 M and then positive at

[H2O2]0 = 10.7164 M, and they are at good agreement with the values for AH1 and

AH2. Therefore, diagonal minor M123 gives the most accurate expression for the

appearance of the Andronov–Hopf bifurcation in model M2. On the other hand,

values of the minor M1234 are positive for the selected set of rate constants and any

positive value of [H2O2]0. Hence, for a saddle-node bifurcation to occur, rate

constants have to be used as control parameters.

For all values of [H2O2]0 that satisfy condition 41, oscillatory dynamics must be

obtained. As an example, we present results of a numerical simulation for

[H2O2]0 = 0.35 M and the rate constants given in Table 2 (Fig. 3).

Fig. 3 Temporal evolution of
the intermediate species I2,
HIO2, HIO and I- of the model
M2. Simulations were carried
out for the concentration of
[H2O2] = 0.35 M
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Conclusion

The improved model of the BL reaThe procedure proposed by Cook et al. in order

to replace autocatalysis with bimolecular steps in the case of autocatalysis is applied

here on the already contracted model M1 of the Bray–Liebhafsky reaction with the

aim to substitute the direct autoinhibitory reaction with two or more simpler

reactions, e.g. with some more realistic ones. Thus, starting from contracted model

M1 having formally eight reactions, where two of them are reverse ones, we

obtained the improved model M2 with formally seven reactions, where three of

them are reverse ones and without the direct autoinhibitory step. In this procedure,

we did not introduce new intermediate species, but solved the problem by means of

the already existing intermediate, iodide ion.

The improved model of the BL reaction (M2) was analyzed with SNA and it was

found that this model can simulate Andronov–Hopf and saddle-node bifurcations.

The bifurcation analysis of this model was carried out with the initial concentration

of hydrogen-peroxide [H2O2]0 as the bifurcation parameter. By varying the control

parameter in the range 1 9 10-2 M\ [H2O2]0\ 15 M while the values of all

other parameters (rate constants and constant concentrations of external species)

were fixed, two Andronov–Hopf bifurcations were detected. By analyzing negative

diagonal minors, it was found that the core of instability is ordered by the

concentrations of the following three intermediate species: I-, HIO and HIO2.
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Tourbillion in the phase space of the Bray–Liebhafsky nonlinear oscillatory reaction and related

multiple-time-scale model. MATCH Commun Math Comput Chem 69:805–830

18. Buchholtz FG, Broecker S (1998) Oscillations of the Bray–Liebhafsky reaction at low flow rates in a

continuous flow stirred tank reactor. J Phys Chem A 102:1556–1559. doi:10.1021/jp973362a

19. Clarke BL (1980) Stability of Complex Reaction Networks. In: Prigogine I, Rice SA (eds) Advances

in Chemical Physics. John Wiley & Sons Inc, New York, pp 1–215

20. Clarke BL (1988) Stoichiometric network analysis. Cell Biophys 12:237–253. doi:10.1007/

BF02918360
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