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Abstract The inhibition of mild steel corrosion in HCl solution by naphthylamine

(NA), KI and the synergism of KI with NA was studied at different temperatures

using weight loss and electrochemical techniques. Electrochemical techniques show

that the NA–KI blend is a mixed-type inhibitor. The inhibition efficiency increases

with an increase in inhibitor concentration but decreases with a rise in temperature.

The adsorption followed the Freundlich isotherm with negative values of DG0
ads,

suggesting a stable, and spontaneous inhibition process. The maximum blend effi-

ciency was 95 % at high level of concentration and low level of temperature.
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Introduction

Mild steel is an important type of metal due to its good mechanical properties. It is

extensively used under different conditions in chemical and petrochemical

industries in handling acidic, alkaline, and salt solutions. Mild steel is used in

industries as pipelines for petroleum industries, storage tanks, reaction vessels, and

chemical batteries [1]. Acid solutions are widely used in many industrial processes

such as acid cleaning, pickling, and descaling due to their chemical properties [2–5].

Acids cause damage to the substrate because of their corrosive nature. Several

methods were used to decrease the corrosion of metals in acidic medium, but the use

of inhibitors is most commonly used [6–10]. Organic compounds are widely used as

corrosion inhibitors for mild steel in acidic media [11–13]. The rate of corrosion
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decreases by the adsorption of organic inhibitors on the metal surface. The

inhibitors cover the active sites by displacing water molecules and form a compact

barrier film on the metal surface [14]. Most acid inhibitors are expensive and known

for their specificity of action. However, the addition of other substances and the

combination of inhibitors has provided multiple effects of effective corrosion

inhibition. Interestingly, the addition of halide ions into the acidic medium in the

presence of organic inhibitors has been found to enhance the efficiency of inhibitive

effects [15, 16]. It is generally seen that the addition of halide ions to the corrosive

media has increased the ability of adsorption of the organic cations by forming the

interconnecting bridge between negatively charge metal surface and inhibitor

cations. The addition of the halide ions synergistically enhanced the inhibition

efficiency of the organic inhibitors [17]. Xianghong et al. [16] studied the

synergistic inhibition effect of 6-benzylaminopurine (BAP) and iodide ion (I-) on

the corrosion of cold rolled steel (CRS) in acidic solution. The results show that

BAP has a moderate inhibitive effect. However, the incorporation of BAP with I-

improves the inhibition performance significantly. The adsorption of BAP in the

absence and presence of I- follows the Langmuir adsorption isotherm. Oguzie [18]

investigated the corrosion inhibition of iron in H2SO4 by polyacrylic acid (PAA).

The results indicated that PAA inhibited the corrosion of iron in the acid medium.

Inhibition efficiency increased with an increase in PAA concentration and

synergistically enhanced on the addition of iodide ions. Umoren et al. [19] studied

the corrosion and inhibition behaviors of mild steel in aerated sulfuric acid in the

presence of propargyl alcohol (PA) and potassium iodide. It was found that the

inhibition efficiency increased with PA concentration. The addition of potassium

iodide in the solution increased the inhibition efficiency. The present investigation

was undertaken to examine the corrosion inhibition behavior and synergism

mechanism with I- and naphthylamine in 1 M HCl solution on mild steel surface at

different temperatures.

Experimental

Specimens of rectangular shape with dimensions of 1 cm width and a length of

3 cm, of mild steel were used. Samples were abraded in sequence under running tap

water using emery paper of grad number 220, 320, 400 and 600, then washed with

running tap water followed by distilled water, dried with a clean tissue, immersed in

acetone and benzene, kept in desiccators over the silica gel bed until use. For weight

loss tests, the dimensions of each sample were measured with a vernier to 2nd

decimal of millimeter and accurately weighed to the 4th decimal of a gram. The

metal samples were completely immersed each in 250 cm3 solution of the corrodant

contained in a conical flask. They were exposed for a period of 3 h at the desired

temperature and inhibitor concentration. Then the metal samples were cleaned,

washed with running tap water followed by distilled water dried with clean tissue

then immersed in acetone and benzene and dried again. Weight losses in mg cm-2

h-1 were determined in the presence and absence of inhibitor. In the present work,

the corrosion reaction of mild steel in 1 M HCl, at 20, 30, 40, and 50 �C, in the
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presence of 0.02, 0.04, 0.06, 0.08 and 0.1 M naphthylamine alone, 0.02, 0.04, 0.06,

0.08 and 0.1 M potassium iodide (KI) alone and 0.02, 0.04, 0.06, 0.08 and 0.1 M of

an equimolar blend of KI and NA as corrosion inhibitors were studied. The mild

steel working electrode specimens have the following chemical composition: C

0.041 wt%, Mn 0.311 %, P 0.05 %, S 0.007 % and the remainder is iron.

Electrochemical measurements were performed using a Gamry water-jacketed glass

cell of capacity 175 ml. This contains three compartments for working, graphite bar

counter and saturated calomel electrode (SCE) as reference electrodes. Measure-

ments were performed using a Gamry Instrument Potentiostat/Galvanostat/ZRA,

these include a Gamry framework system based on the REF600, Gamry applications

that include potentiodynamic scan, and EIS are DC105 and EIS300 software. The

potentiodynamic current–potential curves were swept from—1000 to 100 VSCE at a

scan rate of 1 mV s-1. Impedance measurements were carried out using AC signals

of amplitude 10 mV peak to peak at the open circuit potential in the frequency range

0.1–1000 Hz. All impedance data were fitted to appropriate equivalent circuits

using the Gamry Echem. Analyst software. Before polarization and impedance

experiments, the open circuit potential of the working electrode was measured as a

function of time during 120 min, the time necessary to reach a quasi-stationary

value of the open circuit potential.

Results and discussion

Weight loss measurements

Corrosion rates of mild steel in the absence and presence of different concentrations

of inhibitors in acidic solution were determined by weight loss at different

temperatures. The value of corrosion rate was calculated from the following

equation:

CR ¼ weight loss ðmgÞ
area ðcm2Þ � time ðhÞ ð1Þ

From the corrosion rate, the percentage inhibition efficiency was calculated using

the following equation:

IE% ¼ CRuninibit � CRinhibit

CRuninhibit

� 100 ð2Þ

CRuninhibit and CRinhibit are the corrosion rates in the absence and presence of

inhibitor respectively. The results are listed in Table 1. The results obtained show

that the addition of the investigated inhibitors limits the dissolution of mild steel by

blocking its corrosion sites and hence decreasing the weight loss and the corrosion

rate and hence increasing the inhibition efficiency. The lower values of corrosion

rates were observed in the presence of KI ? NA blends. The increase in inhibition

efficiency of NA in the presence of KI can be attributed to the role of anions (I-),

particularly halide ions, and has been reported by some authors and was ascribed to
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a synergistic effect with maximum inhibition efficiency of 95.3 % at mixing ratio of

1 mM inhibitor to 1 mM iodide ion [16, 18]. It is thought that the anions are able to

improve the adsorption of the organic cations in solution by forming intermediate

bridges between the metal surface and the positive end of the organic inhibitor.

Corrosion inhibition synergism thus results from increased surface coverage arising

from ion-pair interactions between the organic cations and the anions [19].

Adsorption isotherms and adsorption considerations

The primary step in the action of inhibitors in acid solution is generally agreed to be

adsorption on the metal surface. This involves the assumption that the corrosion

reactions are prevented from occurring over the area (or active sites) of the metal

surface covered by adsorbed inhibitor species, whereas these corrosion reactions

occurred normally on the inhibitor-free area [20]. Accordingly, the fraction of

surface covered with inhibitor species (h = IE%/100) can follow as a function of

inhibitor concentration and solution temperature. The surface coverage (h) data are

very useful while discussing the adsorption characteristics. When the fraction of

surface covered is determined as a function of the concentration at constant

temperature, the adsorption isotherm could be evaluated at equilibrium condition.

Three adsorption isotherms were used to explain the adsorption mechanism.

Langmuir [16], Frendlich [5] and Flory–Huggins [21]. The best fitting obtained with

Frendlich adsorption isotherm, which can be represented by the following equation:

h ¼ K C1=n ð3Þ

K, is the equilibrium constant and is a function of energy of adsorption and tem-

perature and is a measure of adsorptive capacity, C is inhibitor concentration, n is

Table 1 Corrosion rate data at different condition

Inhibitor T (�C) Corrosion rate (mg cm-2 h-1)

0 0.02 0.04 0.06 0.08 0.1

NA 20 0.56 0.44 (0.21)a 0.37 (0.33) 0.27 (0.51) 0.20 (0.64) 0.09 (0.84)

30 5.41 4.49 (0.17) 3.89 (0.28) 2.86 (0.47) 2.05 (0.62) 1.46 (0.73)

40 22.54 19.15 (0.15) 17.13(0.24) 13.29 (0.41) 10.14 (0.55) 8.11 (0.64)

50 50.43 44.88 (0.11) 40.34 (0.2) 32.77 (0.35) 25.71 (0.49) 22.18 (0.56)

KI 20 0.56 0.37 (0.33) 0.3 (0.45) 0.23 (0.57) 0.18 (0.66) 0.12 (0.77)

30 5.41 4.13 (0.23) 3.67 (0.32) 2.75 (0.49) 2.09 (0.61) 1.74 (0.67)

40 22.54 17.93 (0.20) 16.81 (0.25) 13.91 (0.38) 10.68 (0.52) 9.11 (0.61)

50 50.43 42.09 (0.17) 40.13 (0.21) 33.54 (0.33) 28.28 (0.43) 23.02 (0.54)

NA–KI 20 0.56 0.252 (0.61) 0.14 (0.80) 0.11 (0.85) 0.06 (0.89) 0.03 (0.95)

30 5.41 3.40 (0.44) 2.75 (0.57) 1.83 (0.70) 1.13 (0.79) 0.91 (0.91)

40 22.54 15.32 (0.41) 14.2 (0.51) 11.94 (0.61) 7.66 (0.66) 5.86 (0.83)

50 50.43 36.81 (0.33) 35.8 (0.46) 29.24 (0.58) 24.2 (0.52) 15.63 (0.74)

a Values between brackets represent inhibitor efficiency
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positive generally not integer constant determines intensity of adsorption [22], and

(h) is surface coverage. Furthermore, this relationship describing the non-ideal and

reversible adsorption not restricted to the formation of monolayer. This empirical

model can be applied to multilayer adsorption, with non-uniform distribution of

adsorption heat and affinities over the heterogeneous surface [23]. The linear form

of Freundlich isotherm is:

ln h ¼ lnK þ 1

n
lnC ð4Þ

Eq. 4 can be drawn as ln h against ln C. Fig. 1 illustrates the Freundlich adsorption

isotherm for NA–KI blend, the system which gave the highest inhibition efficiency.

Table 2 collects the Freundlich adsorption isotherm constants. The values of K

decreased with the rise of temperature, while values of 1/n were higher than unity. If
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Fig. 1 Linear fitting of Frendlich adsorption isotherm of NA–KI blend on mild steel surface in 1 M HCl
acid at different conditions

Table 2 Adsorption parameters for the corrosion inhibition of mild steel in 1 M HCl at different

conditions

T (oC) Freundlich adsorption isotherm Kinetic–thermodynamic isotherm

K (M) n DGads (kJ mol-1) K (M) y DGads (kJ mol-1)

20 0.16 0.16 -5.33 0.89 1.58 -9.49

30 0.13 0.09 -5.01 0.77 1.37 -9.44

40 0.11 0.09 -4.81 0.59 1.12 -9.07

50 0.08 0.08 -4.14 0.44 1.06 -8.57

Standard error 0.017 0.016 0.25 0.09 0.11 0.21
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1/n = 1 then the partition between the two phases are independent of the concen-

tration. If a value of 1/n is below one, it indicates a normal adsorption. On the other

hand, 1/n being above one indicates cooperative adsorption [24]. Some researchers

have looked into the action of an adsorptive inhibitor from a purely mechanistic

kinetic point of view [25]. This relation can be expressed as follows:

h
1 � h

¼ K 0Cy ð5Þ

Or this equation can be written in linear form as;

ln
h

1 � h

� �
¼ lnK 0 þ y lnC ð6Þ

where K 0 is a constant, and y is the number of inhibitor molecules occupying one

active site. Fig. 2 shows that a plot of ln h
1�h

� �
versus lnC gives a straight line of

slop y and intercept of ln K 0. The equilibrium constant corresponding to adsorption

isotherm is given by Kads ¼ K 01
y. Values of y[ 1 imply the formation of multilayer

of inhibitor on the surface of the metal. Values of y\ 1 mean the molecules of a

given inhibitor will occupy more than one active site. As shown in Table 2, the

kinetic-thermodynamic model data were in a good agreement with that obtained by

Freundlich adsorption isotherm model. The value of y was more than unity indi-

cating the formation of more than monolayer on the metal surface, and the values of

K were comparable. From the values of the equilibrium constants obtained from

different isotherms, the values of free energy of adsorption, DGads, can be obtained

using the following equation [26]:
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Fig. 2 Linear fitting of kinetic–thermodynamic adsorption model of NA–KI blend on mild steel surface
in 1 M HCl acid at different conditions
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K ¼ 1

55:55

� �
exp �DGads

RT

� �
ð7Þ

The value of (55.5) is the water concentration in the solution expressed in M. R and T

are the gas constant and absolute temperature, respectively. The values ofDGads, heat of

adsorption are given in Table 2. The values of DGads for NA–KI inhibitor were in the

range of (-4.14 to -9.49 kJ mol-1). The negative values of DGads ensure the spon-

taneity of the adsorption process and stability of the adsorbed layer on the metal surface.

Generally, a value of DGads up to -20 kJ mol-1 is consistent with electrostatic inter-

action between the charged molecules and the charged metal (physisorption) while

those around -40 kJ mol-1 or higher than that are associated with chemisorption as a

result of sharing or transferring of electrons from the organic molecules to the metal

surface to form a coordinate type of bond [27]. Therefore, in the present work, the value

of DGads has been considered within the range of physical adsorption.

Activation parameters and temperature considerations

A plot of ln (corrosion rate) versus 1/T for mild steel in 1 M HCl in the absence and

presence of various concentrations of NA–KI blend is shown in Fig. 3. As shown in

this figure, straight lines were obtained according to the Arrhenius-type equation:

lnðkÞ ¼ lnA� E

RT
ð8Þ

Here, A is a constant and depends on metal type and electrolyte, E is the apparent

activation energy, R is the universal gas constant, and T is the absolute temperature.

Plot of ln (corrosion rate/T) versus 1/T for mild steel corrosion in the absence and
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Fig. 3 Arrhenius linear plots for corrosion of mild steel in 1 M HCl in presence of NA–KI blend

Reac Kinet Mech Cat (2015) 115:463–481 469

123



presence of various concentrations of the blend is shown in Fig. 4. As shown in this

figure, straight lines were obtained according to the Eyring equation [28]:

k ¼ kBT

h
exp �DHz

RT
þ DSz

R

 !
ð9Þ

Here, k is second order rate constant, kB is Boltzman constant, h is Planck constant,

DH? is the change in the enthalpy of activation and DS? is the change in entropy of

activation. The calculated values of E, DH?, DS? are given in Table 3. The cor-

rosion reaction rate is equal to the rate constant multiplied by reactants concen-

trations. In present work, the corrosion of metal with its environment is a

heterogeneous reaction (solid–liquid reaction). The concentration of solid is con-

stant and can be combined with equation constant. The reaction rate can be equal to

the rate constant. Eqs. 8 and 9 can be rewritten as:

lnðkÞ ¼ lnA� E

RT
ð10Þ

Corrosion rate ¼ kBT

h
exp �DHz

RT
þ DSz

R

 !
ð11Þ

The data in the table show that the values of E of the corrosion of mild steel in the

acidic medium in the presence of NA–KI blend are higher than those in the unin-

hibited medium. The increase in the E values, with an increasing inhibitor con-

centration indicates the increase in the energy barrier for the corrosion reaction, with

the increasing concentrations of the inhibitor. The increase in the activation energies

with increasing concentration of the inhibitor is attributed to physical adsorption of
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Fig. 4 Transition state linear plots of mild steel in 1 M HCl in presence of NA–KI blend
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inhibitor molecules on the metal surface [29], with an appreciable increase in the

adsorption process of the inhibitor on the metal surface with an increase in the

concentration of inhibitor. The adsorption of the inhibitor molecules on the surface

of the mild steel blocks the charge transfer during a corrosion reaction, thereby

increasing the activation energy [30]. In other words, the adsorption of the inhibitor

on the metal surface leads to the formation of a physical barrier that reduces the

metal reactivity in the electrochemical reactions of corrosion [31]. The increase of E

in the presence of the inhibitor indicates that physical adsorption or weak chemical

bonding between the NA-KI blend molecules and the steel surface might occur.

According to Eq. 8, it can be seen that the lower pre-exponential factor A and the

higher E lead to the lower corrosion rate. For the present study, the value of A in the

presence of NA–KI is higher than that of in the absence of NA–KI. Therefore, the

decrease in steel corrosion rate is mostly decided by the apparent activation energy

[19]. The inhibition efficiency decreases with increase in temperature which indi-

cates desorption of inhibitor molecules as the temperature increases [32]. The values

of DH behave in a similar way of E. As observed, for all cases E[DH by a value

which approximately equal to RT. From the thermodynamic and kinetic point of

view, the unimolecular reactions are characterized by following equation [33]:

E � DH ¼ RT ð12Þ

The values of DS are higher for inhibited solutions than those for the uninhibited

solutions. This suggested that an increase in randomness occurred on going from

reactants to the activated complex. This might be the results of the adsorption of

organic inhibitor molecules from the acidic solution which could be regarded as a

quasi-substitution process between the organic compound in the aqueous phase and

water molecules at the electrode surface [34].

Synergistic effect and blending considerations

The synergistic inhibition effect was evaluated using a parameter, Sh, obtained from

the surface coverage values (h) of the anion, cation and both. Sahin et al. [35]

calculated the synergism parameter, Sh, using the following equation:

Table 3 Activation parameters for the corrosion inhibition of mild steel in 1 M HCl at different

conditions

C (M) Arrhenius equation Eyring equation

A (mg cm-2 h-1) E (kJ mol-1) DH? (kJ mol-1) DS? (J mol-1 K)

0 8.5 9 1020 117.9 249.4 153.8

0.02 5.7 9 1022 130.2 276.5 380.8

0.04 1.3 9 1025 144.4 322.7 424.9

0.06 3.2 9 1025 147.1 323.6 431.6

0.08 1.1 9 1027 157.2 355.8 460.5

0.1 1.4 9 1028 164.8 372.6 482.2

Standard error 0.9 9.4 25.5 60.1
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Sh ¼
1 � h1þ2

1 � h�1þ2

ð13Þ

Here h1¼2 ¼ ðh1 þ h2Þ � ðh1 h2Þ, h1 = surface coverage by the anion, h2 = surface

coverage by the cation and h�1þ2 measured surface coverage by both the anion and

the cation. Table 4 shows the synergism parameter (Sh) for different concentrations

of the additive at different temperatures. As can be seen from this table, in most

cases, the values of SH are nearly more than unity, which suggests that the enhanced

inhibition efficiency caused by the addition of iodide ions to the used NA. The

synergistic effect of halide ions with NA is probably due to co-adsorption between

these two molecules which may be either competitive or cooperative adsorptions

[36]. In competitive adsorption, the anion and cation are adsorbed at different sites

on the metal surface while in cooperative adsorption; the anion is adsorbed on the

metal surface and followed by the adsorption of the cation on a layer of anion. This

result confirms the adsorption consideration, i.e. that the adsorption process is co-

operative. This can be explained on the basis that halide ions have a greater ten-

dency to be adsorbed on the surface, and this could be responsible for the synergistic

effect of iodide ions in combination with NA. It was suggested that [37], two

possible mechanisms account for the adsorption of such ion pairs on the metal

surface. On one mechanism, the ion pairs are formed in the bulk of the solution and

then adsorbed from the solution onto the metal surface as follows:

Ys þ Xs ! ðYXÞs ! ðYXÞads ð14Þ

In the second mechanism, the halide ions are first adsorbed on the metal surface

and the inhibitor is then drawn into the double layer by the adsorbed halide ion, such

that the ion pair formation occurs directly on the metal surface:

Xs ! Xads

Ys þ Xads ! ðYXÞads
ð15Þ

where Ys, Xs and (YX)s represent inhibitor, halide ion and the ion-pair in the bulk

solution, while Yads, Xads and (YX)ads refer to the same species in the adsorbed state.

Table 4 Synergistic parameter

of NA–KI blend at different

conditions

T (�C) Sh

0.02 0.04 0.06 0.08 0.1

20 1.36 1.84 1.38 1.11 0.81

30 1.14 1.14 0.96 0.78 0.91

40 1.13 1.13 0.91 0.54 0.85

50 1.11 1.18 0.96 0.68 0.77

Standard error 0.055 0.17 0.11 0.12 0.03
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Open circuit potential (OCP) consecrations

The OCP of mild steel was monitored in the presence of inhibitor for 120 min.

Fig. 5 shows the variation of the OCP of the mild steel with time in the absence and

presence of NA–KI inhibitor. In absence and presence of NA–KI, the steady-state

values of OCP are always more negative than the immersion potential (OCP at

t = 0), suggesting that before the steady state condition is achieved under the pre-

immersion, air formed oxide film has to dissolve [38]. This steady state potential,

which is quickly achieved (after about 10 min of immersion), corresponds to the

free corrosion of the bare metal [39]. Fig. 6 presents the effect of the presence of the

NA, KI and NA–KI inhibitors on the variation of the OCP of mild steel in 1.0 M

HCl solutions. This preliminary result suggests that these inhibitors can retard both

reactions under open circuit conditions, including the oxidation of the oxide-free

iron and the discharge of the hydrogen ions to produce hydrogen gas on the surface

of the mild steel [40].

Polarization and electrochemical consecrations

The higher corrosion inhibition values were obtained at 20 �C in presence NA–KI

blend. Fig. 7 shows the polarization curves for mild steel in 1 M HCl solution in the

presence and absence of different concentrations of NA–KI blend. The polarization

parameters are listed in Table 5, where, icorr, ba, bc obtained via Tafel extrapolation

method i.e. extrapolating both cathodic and anodic linear regions back to the

corrosion potential. The presence of inhibitor shifts the polarization curves to lower
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Fig. 5 Open circuit potential variation with time for corrosion of mild steel in 1 M HCl in presence of
NA–KI blend at 20 �C
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values of current densities. In other words, the mild steel corrosion is retarded by

NA–KI addition. As is evident from Fig. 7, the polarization curves shift to positive

potentials compared with the blank. The positive shift of Ecorr values indicates that

inhibitor is adsorbed on anodic sites and, consequently, affects mainly the anodic
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Fig. 6 Open circuit potential variation with inhibitor concentration at 20 �C for mild steel in 1 M HCl
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Fig. 7 Polarization curves for corrosion of mild steel in 1 M HCl in presence of NA–KI blend at 20 �C
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dissolution of mild steel. The inhibitor can be classified as anodic or cathodic type

when the change in Ecorr value is larger than 85 mV [41]. Since the largest

displacement exhibited by the inhibitor is 35 mV (Table 5), then these molecules

can be considered as mixed-type inhibitor. Apparently, icorr decreases in the

presence of NA–KI, and decreases with increasing the inhibitor concentration.

Correspondingly, IE% increases with the inhibitor concentration, due to the increase

in the blocked fraction of the electrode surface by adsorption. The values of were

IE% in good agreement with weight loss values. In addition, there are no significant

changes in Tafel slopes of ba and bc, which indicates that the presence of inhibitor

does not change the mild steel corrosion mechanism [42].

Electrochemical impedance spectroscopy (EIS) considerations

EIS is a powerful, nondestructive electrochemical technique for characterization of

electrochemical reactions at the metal–film interface and the formation of corrosion

products. The Nyquist plots are shown in Fig. 8, where it can be seen that the

impedance spectra are similar, exhibiting a single semicircle at high frequency. The

high frequency capacitive loop is attributable to charge transfer of the corrosion

process, and the diameter of the semicircle increases with increasing inhibitor

concentration. As is clear from Fig. 8, the impedance spectra do not present perfect

semicircles. The ‘‘depressed’’ semicircles have a center below the real axis, and can

be seen as depressed capacitive loops. Such phenomena often correspond to surface

Table 5 Polarization parameters for the corrosion inhibition of mild steel in 1 M HCl at 20 �C

Inhibitor C (M) icorr

(mA cm-2)

Ecorr (mV)

versus SCE

-bc

(mV dec-1)

ba

(mV dec-1)

IE (%)

NA 0 0.511 -500 140 75 –

0.02 0.321 -490 144 77 37

0.04 0.299 -488 142 65 42

0.06 0.212 -484 135 80 59

0.08 0.153 -480 142 78 71

0.1 0.078 -475 145 75 85

KI 0.02 0.313 -488 141 85 39

0.04 0.278 -485 133 73 46

0.06 0.201 -479 137 79 61

0.08 0.162 -465 149 75 68

0.1 0.101 -468 147 66 80

NA–KI 0.02 0.226 -475 135 70 56

0.04 0.126 -470 133 65 75

0.06 0.099 -466 140 67 81

0.08 0.054 -450 139 76 89

0.1 0.025 -445 144 60 95

Standard error 0.03 4.49 1.67 2.31 6.28
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heterogeneity which may be the result of surface roughness, distribution of the

active sites or adsorption of inhibitors [43]. The impedance function of the CPE is as

follows:

ZCPE ¼ ZoðjxÞ�n ð16Þ

where Z0 is the CPE constant, x is the angular frequency (rad/s), j2 = -1 is the

imaginary number, and n is the CPE exponent. The equivalent circuit model used

for this system is shown in Fig. 9. This consists of CPE in parallel to a charge-

transfer resistor (Rct) and in series with a solution resistor (Rs). The value of the

corresponding fitted parameter for Rct, is presented in Table 6. The inhibition ef-

ficiencies (IE%) were calculated by:
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Fig. 8 Fitted Nyquist plots for corrosion of mild steel in 1 M HCl in presence of NA–KI blend at 20 �C

Fig. 9 Equivalent circuits for corrosion of mild steel in 1 M HCl in presence of NA–KI blend at 20 �C
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IE% ¼ Rct � R0
ct

Rct

� 100 ð17Þ

Rct and R0
ct are charge transfer resistance in presence and absence of inhibitor. The

Rct values increase with the increase in concentration of NA–KI blend, indicating an

insulated adsorption layer’s formation [44]. This also indicate that NA–KI blend

inhibit the corrosion of mild steel in 1 M HCl solution by adsorption mechanism

[45] and the thickness of adsorbed layer increases with increase of inhibitor con-

centration. The double-layer capacitance Cdl values were calculated by via Eq. 18

[46] and listed in Table 6.

Cdl ¼ ðYoR1�n
ct Þ

1
n ð18Þ

The thickness of adsorbed protective layer increases with increasing inhibitor

concentration. This process results in a noticeable decrease in Cdl. This trend is in

accordance with the Helmholtz model, given by [47]:

Cdl ¼ e e0

A

d
ð19Þ

where d is the thickness of the protective layer, e is the dielectric constant of the

medium, eo is the vacuum permittivity, and A is the effective surface area of the

electrode. The value of Cdl is always smaller in the presence of the inhibitor than in

its absence, as a result of the adsorption of the inhibitor.

Mechanism of corrosion and corrosion inhibition considerations

In hydrochloric acid solution, the following mechanism is suggested for the

corrosion of mild steel. The anodic dissolution mechanism of mild steel is [48]:

Fe þ Cl� ! ðFeCl�Þads
ðFeCl�Þads $ ðFeClÞads þ e�

ðFeClÞads ! ðFeClþÞ þ e�

ðFeClþÞ $ Feþ2 þ Cl�

ð20Þ

The cathodic hydrogen evolution mechanism is:

Table 6 EIS parameters for the

corrosion inhibition of mild steel

in 1 M HCl/NA–KI blend at

20 �C

C (M) Rct (X cm2) Cdl (lF cm2) IE (%)

Nil 43.23 188.12 –

0.02 97.61 156.08 55.71

0.04 104.53 140.27 58.64

0.06 111.66 122.58 61.28

0.08 122.78 110.97 64.79

0.1 147.23 98.18 70.63
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Fe þ Hþ $ ðFeHþÞads
ðFeHþÞads þ e� ! ðFeHÞads
ðFeHþÞads þ e� þ Hþ ! Fe þ H2 ðrate determining stepÞ

ð21Þ

The adsorption of an organic inhibitor on a mild steel surface is regarded as a

substitutional adsorption process between the organic molecule in the aqueous so-

lution (Org(sol)), and water molecules adsorbed on the metallic surface (H2O(ads))

[49]:

OrgðsolÞ þ xH2OðadsÞ $ OrgðadsÞ þ xH2OðsolÞ ð22Þ

Here x is the size ratio representing the number of water molecules replaced by one

molecule of organic inhibitor. The adsorption of organic compounds can be de-

scribed by two main types of mechanisms: physical adsorption and chemisorption.

In general, the physical adsorption requires the presence of both electrically charged

surface of the metal and charged species in the bulk of the solution. The

chemisorption process involves charge sharing or charge-transfer from the inhibitor

molecules to the metal surface. This is possible in the case of a positive as well as a

negative charge of the surface [50]. As mentioned before, physical adsorption is the

result of electrostatic attractive forces between inhibiting organic ions or dipoles and

the electrically charged surface of the metal. The surface charge of the metal is due

to the electric field existing at the metal/solution interface [51]. The surface charge

can be defined by the position of the corrosion potential (Ecorr) with respect to the

respective potential of zero charge (PZC) Eq=0 [20]. When the difference

w = [(Ecorr - Eq=0) is negative, the electrode surface acquires a negative net charge

and the adsorption of cations is favored. On the contrary, the adsorption of anions is

favored when w becomes positive. It was reported that the pzc of iron in hy-

drochloric acid solution is -530 versus SCE. Therefore, the value of w is ?30 mV

versus SCE, so the metal surface acquires slight positive charge [52]. The adsorp-

tion of cationic NA species does not take place and the adsorption of chloride ions

occurs and the surface becomes negatively charged. Due to the electrostatic at-

traction, the protonated NA molecules are physically adsorbed on the metal surface

and thereby give some inhibition by NA molecules. The presence of KI improves

the inhibition efficiency. In the presence of air, iodide ions in acid solutions tend to

be oxidized by dissolved oxygen to yellowish triiodide ion. The oxidation reactions

of iodide ions by dissolved oxygen are as follows:

2 I � ! I2 þ 2e E0 ¼ 0:534 VSHE ð23Þ

I2 þ I � ! I�3 ð24Þ

3 I � ! I�3 þ 2e E0 ¼ 0:535 VSHE ð25Þ

The iodine (I2) formed in reaction 20 will combine rapidly with iodide ions in

solution, forming triiodide ions I�3
� �

as shown in Eq. 24 [53]. The I�3 ions are

soluble and exhibit a yellow color. The overall reaction of the electrochemical

reaction (Eq. 23) and the chemical reaction (Eq. 24) expressed by Eq. 25 [54]. The
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existence of the oxidation reactions (Eqs. 23 or 21) caused by the reduction of

dissolved oxygen in the solution:

O2 þ 4Hþ þ 4e ! 2H2O E0 ¼ 1:229 VSHE ð26Þ

Reactions 25 and 26 are thermodynamically feasible [55–57]. While iodide ion is

negatively charged, as a result the specific adsorption of iodide ion occurs onto mild

steel surface, causing negatively charged surface of steel. By means of electrostatic

attraction, NA cation easily reaches mild steel surface, so iodide ion acts as an

adsorption mediator for bonding metal surface and inhibitors. This gives rise to the

formation of an adsorption composite film in which iodide ion are sandwiched

between metal and positively charged part of inhibitor. This film acts as a barrier

facing corrosion process.

Conclusion

Naphthylamine (NA) is effective inhibitor of corrosion of mild steel in 1 M HCl

solution, especially at 20 and 30 �C. From the electrochemical and weigh loss

methods, the inhibition efficiency increases with the increase of inhibitor

concentration, but decreases with the increase in temperature. The adsorption

model of NA–KI blend obeyed the Freindlich adsorption isotherm. The negative

sign of DG0
ads indicate that the adsorption process is a spontaneous, exothermic, and

physical adsorption process. The values of E of the corrosion of mild steel in the

acidic medium in the presence of NA–KI blend are higher than those in the

uninhibited medium. This indicates the increase in the energy barrier for the

corrosion reaction, with the increasing concentrations of the inhibitor. Polarization

studies showed that NA–KI blend act as a mixed – type inhibitor.
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