

Photocatalytic degradation of orange II on the novel hetero-system WS₂/TiO₂ under UV light

S. Bassaid · B. Bellal · M. Trari

Received: 12 November 2014/Accepted: 10 February 2015/Published online: 19 February 2015 © Akadémiai Kiadó, Budapest, Hungary 2015

Abstract The photodegradation of orange II (OII) is successfully achieved on the new hetero-system WS₂/TiO₂ under UV illumination. The nano sized bi-functional catalyst is prepared by sol gel and calcined at ~450 °C. The X-ray diffraction shows noticeably broad peaks and TiO₂ is therefore less crystallized with the anatase phase. The sensitizer WS₂ presents a direct optical transition at 1.72 eV. The Mott–Schottky plot (C⁻²–V) is characteristic of *n* type conduction from which a flat band potential of 0.17 V_{SCE} and a donor density of 5.30 × 10¹⁷ cm⁻³ are determined. An energy band diagram is established, predicting an electron transfer from WS₂ to TiO₂; the injection process is confirmed by the photocurrent measurements at different concentrations. Upon increasing the mass of WS₂, the activity increases and the best performance occurs on 30 % WS₂/TiO₂. A conversion of 98 % is reported in aerated solution for OII concentration of 10 ppm in less than 90 min. The oxidation follows a first order kinetic with a rate constant of $4.8 \times 10^{-2} \text{ min}^{-1}$.

Keywords Hetero-system $WS_2/TiO_2 \cdot Orange II \cdot Photocatalytic degradation \cdot Kinetic$

Introduction

Conventionally, wastewaters are treated by physical and/or biological methods that reduce the pollution level, but not enough to comply with the directives of the

Laboratory of Storage and Valorization of Renewable Energy, Faculty of Chemistry (USTHB), BP 32, 16111 Algiers, Algeria

e-mail: solarchemistry@gmail.com

S. Bassaid · B. Bellal · M. Trari (🖂)

World Health Organization [1, 2]. In this respect, the advanced oxidation process (AOP) has emerged as a promising technique for the remediation of the aquatic environment, particularly for the effluents produced by the textile industry [3–6]. The SC-liquid junction may be viewed as infinity of micro-photo-electrochemical (PEC) cells. TiO₂ is a catalyst of choice for many applications and remains very popular owing of its superior activity, chemical stability and non-toxicity. It can practically degrade many hazardous by-products including dyes, drugs and pesticides [7, 8] or produce hydrogen from water [9]. However, TiO₂ based solar devices are efficient at short wavelengths (<400 nm) where only 5 % of the solar spectrum accounts for the UV radiation. Many efforts have been focused on heterosystems which could not only extend the spectral response of wide band gap semiconductors (SCs) toward lower energies but also inhibit the charge recombination and in this way increase the photocatalytic performance [10]. TiO₂ can mediate the electron transfer and plays a crucial role when the potential of its conduction band (CB) is less cathodic than that of the photosensitizer [11].

On the other hand, the layered chalcogenides MX₂, where M is commonly a transition metal and X an element of group VI_A (X = S, Se and Te), have been actively used in PEC applications [12]. In this category, WS₂ is an attractive material for the solar energy conversion because it combines a narrow band gap, a chemical inertness over a fair pH range and occurs in *n*- as well in *p*-types [13]. In contrast to oxides that have a valence band (VB) deriving from O^{2-} : 2p parentage, WS₂-VB is made up of less electronegative S: 3p orbital. This leads to a lower gap and a CB of cationic character with a high reducing ability. The optical transition is of d-d characteristic and involves lower and upper bands of W^{4+} : 5d: orbital. Consequently, the bond W-S is unaffected and the photocorrosion is less pronounced. In addition, the position of the bands does not change with pH and can be positioned adequately with respect to those of TiO₂. The PEC properties of WS₂ and the position of the band edges, imposed by the crystal structure itself, are essential to predict the mechanistic and transport of the charges carriers. With a gap of ~ 1.8 eV, WS₂ can absorb ~ 50 % of the sunlight and possesses high absorption coefficients ($\sim 10^5 \text{ cm}^{-1}$) [14].

The main goal of this work is to report the preparation of the hetero-system TiO_2/WS_2 by sol gel and its PEC characterization. As an application, the photocatalytic performance is successfully tested toward the oxidation of orange II (OII) upon UV light on the bi-functional hetero-system under short circuited conditions. OII is a model molecule with weak biodegradability, it is widely used in the textile industry because of its coloring properties and its degradation is of potential significance. The photocatalytic activity is dependent on many parameters among which the OII concentration and WS₂ loading.

Experimental

The hetero-system TiO_2/WS_2 is synthesized by sol gel; titanium iso-propoxyde { $Ti(OC_3H_7)_4$, Aldrich, 97 %}, ethanol (Fluka, 98 %) and methanol (Fluka, >99.5 %) are used as starting reagents. An equimolar mixture of ethanol/methanol

is introduced in a Pyrex beaker (250 mL capacity) and Ti(OC₃H₇)₄ is added dropwise. Then, the desired amount of WS₂ is added. The proportions of the sensitizer (WS₂) with respect to the mass of TiO₂ (prepared alone in a first part) were 10 % (0.167 g), 20 % (0.334 g) and 30 % (0.501 g). The resulting mixture is heated during 3 h at 75 °C, after which hot water is added dropwise. After gelling, the samples were dried overnight at 110 °C and then heat-treated in air for 2 h at 450 °C with a heating rate of 3 °C/min. To confirm the formation of the phases, X-ray diffraction (XRD) is performed with a Siemens diffractometer (Model D-5000) using Cu K_α radiation. BET surface areas are determined from nitrogen adsorption at 77 K using a Micromeritics apparatus (Coulter SA 3100 and Belsorpmini porosimeter); the samples are outgassed at 140 °C (4 h) to vacuum (10⁻⁴ Pa) in order to have a clean surface.

The optical absorption spectra are recorded with a double beam spectrophotometer (Specord 200 Plus) equipped with an integrating sphere, PTFE is used as reference. The point of zero zeta potential (pzzp) of WS₂ is determined from the equilibrium pH of an aqueous solution containing a powder suspension; a value of ~ 1 is obtained.

WS₂ is mechanically soft with poor sintering. It is cold pressed into circular pellets ($\emptyset = 13$ mm, thickness ~1 mm) under a pressure of 4 tons cm⁻² and heated at 300 °C in evacuated Pyrex ampoule, the compactness approximates 70 %. Ohmic contact onto the back pellets is made by soldering copper wires with silver paint. The working electrodes (WE) are prepared by encapsulating the pellets in glass holders. Electrochemical (EC) and PEC characterizations are carried out in a closed cell with a three electrode arrangement using Pt sheet (1 cm²) as auxiliary electrode. All potentials are given with respect to a saturated calomel electrode (SCE) and controlled with a PGZ301 potentiostat (Radiometer analytical). WS₂ is illuminated with a tungsten lamp (200 W) through an optical window. The differential capacitance is measured at a frequency of 10 kHz.

The photocatalytic tests are done in batch mode. 50 mg of TiO_2/WS_2 are dispersed by magnetic stirring in 100 mL of OII solution (10 mg/L). The temperature is regulated at 25 °C with a thermostated bath. The powder suspension is achieved by magnetic stirring; ~2 h is required to reach the dark adsorption equilibrium. The light source consists of a high pressure mercury lamp (HPK 125 W Phillips), mounted on the central axis of a quartz reactor. The aliquots are withdrawn at regular times, subjected to a vigorous centrifugation (3000 rpm, 15 mn) to remove the solid particles and filtered through a 0.45-mm Millipore filter. The disappearance of OII is followed by UV–Visible spectrophotometry (Shimadzu 1800, $\lambda_{max} = 484$ nm) using 1 cm quartz cell. The photocatalytic yield is calculated from the relation:

$$\eta = 100 \times (C_0 - C_t)/C_0 \tag{1}$$

Here, C_0 is the initial concentration and C_t the concentration after irradiation for time (*t*). No OII is degraded in the dark and all solutions are made up with CO₂ free distilled water.

Results and discussion

Structure and optical properties of WS₂

TiO₂ presents three crystallographic varieties, the anatase is the most photoactive and is thermally stable up to ~500 °C, above which it converts irreversibly to the rutile variety. After calcination at 450 °C, the system is mixed phases and the XRD patterns show the peaks of WS₂ and TiO₂ anatase (Fig. 1). WS₂ is an excellent solid lubricant, which adopts the MoS₂ molybdenite structure, intermediate between the ionic rutile SnO₂ and covalent CdI₂ [15]. It has two-dimensional structure with S– W–S sandwich sheets connected to each other by Van der Waals type interactions. It crystallizes in platelet morphology, which forms layered crystal with a grey color, the structural refinement is performed with the space group P6₃/mmc (No 194) in agreement with the JCPDS card No 21-1272. The structure is highly anisotropic; it is described as a cubic unit cell containing sulfur atoms at the corners and W₄S tetrahedron unit in the center.

The optical properties of WS₂ are typical of insulators and therefore not different from those of other sulfides. The fundamental absorption, which corresponds to electron excitation, is used to determine both the nature of the optical transition and its value. The relation between the gap (E_g), the absorption coefficients (α) and the incident energy (hv) is given by:

$$(\alpha hv)^{n} = C(hv - E_{g}) \tag{2}$$

In Eq. 2, *C* is a constant. For crystalline SCs, the exponent *n* depends on the type of transition, for direct allowed, n = 1/2 and for indirect allowed transition, n = 2. The extrapolation of the linear part $(\alpha hv)^n$ to the energy axis shows that the inter band transitions are directly and indirectly allowed (Fig. 2). Due to the grey color,

Fig. 1 X-ray diffraction pattern of the hetero-system TiO₂/WS₂ (10 %)

Fig. 2 Direct and indirect optical transitions of WS_2 obtained from the diffuse reflectance spectrum

Fig. 3 The photocurrent-potential characteristics of WS₂ in aerated OII solution at different concentrations using Na₂SO₄ as support electrolyte at 25 °C, scanning rate 10 mV/s, *a* 0 ppm; *b* 5 ppm; *c* 10 ppm; *d* 15 ppm; *e* 20 ppm. *Inset* the J(V) plot of WS₂ in the dark in Na₂SO₄ electrolyte

 E_g can be reasonably taken at 1.72 eV, which is attributed to the transition 5d: W⁴⁺: $e_g \rightarrow t_{2g}$. A further transition at 1.91 eV, directly allowed is presumably due to the charge transfer S²⁻: $3p \rightarrow W^{4+}$: e_g . Such energy is smaller than that observed in oxides because of the higher energetic position of S²⁻: 3p orbital by ~1 eV above O²⁻: 2p orbital and the weak ionicity of the W–S chemical bond.

EC and PEC characterizations

The current density-potential J(V) characteristics of WS₂ are done in OII solution (10 ppm, pH ~7) using Na₂SO₄ (10⁻³ M) as support electrolyte (Fig. 3, Inset). The plot exhibits a plateau region with a dark current less than 5 μ A cm⁻² that becomes cathodically large at potentials negative of ~ -0.9 V owing to hydrogen evolution. The reduction of S²⁻ to elemental sulfur appears at ~ -0.5 V in close agreement with the redox potential of S/S²⁻ couple (-0.75 V). The photocurrent (J_{ph}) starts to flow at ~0 V (photocurrent onset potential: V_{on}, figure not shown) and increases toward anodic potentials, indicating *n*-type conductivity. One of the most important parameters to determine in the PEC conversion is the flat band potential (V_{fb}) under the operating conditions, it is given by the relation:

$$\frac{1}{C^2} = \left(\frac{2}{\varepsilon \varepsilon_0 e N_A}\right) \left(V - V_{fb} - kT/e\right) \tag{3}$$

Here *e* is the electronic charge, ε the dielectric constant of WS₂ (= 8) [16], ε_o the dielectric constant of vacuum (8.85 × 10⁻¹² F m⁻¹) and *kT* the thermal energy (~26 meV at 25 °C). The intercept of the fitted line at C⁻² = 0 (Fig. 4) and the slope give the potential V_{fb} (-0.77 V) and the electron density (N_D = 5.30 × 10¹⁷ cm⁻³). The difference between the potentials V_{on} and V_{fb} indicates the presence of surface states within the gap region, while the positive slope confirms the *n* type behavior. WS₂ is lightly doped and the depletion width δ (~20 nm), extends over many crystallographic unit cells:

$$W = \left(\frac{2\varepsilon\varepsilon_0 \Delta V}{eN_D}\right)^{0.5} \tag{4}$$

This is advantageous in photocatalysis, where most electron/hole (e^{-}/h^{+}) pairs generated within the depletion length contribute to the photoactivity. The potential

$$E_{CB} = 4.75 + |e|V_{fb} - E_a$$
(5)

The E_{CB} value is -0.87 V (3.88 eV); hence the VB is located at (0.85 V/ 5.6 eV = $E_{CB} + E_g$). Such a result confirms the cationic character of the electronic bands of WS₂, made up of W⁴⁺ 5*d* orbital. This study underlines once more the role played by the crystal structure, which determines not only the position of the electronic bands, but also the width of the gap through the ionicity of the chemical bond. The electronic band are determined by *d* levels, the lower filled e_g levels providing VB though being non-bonding, whereas CB consists mainly of empty t_{2g} levels. Such electronic structure is compatible with the chemical inertness and gives WS₂ its semi-conductivity. The *d*–*d* transitions are not allowed by the Laporte rules. However, they are observed because the CB has not pure *d* character but is rather a hybridization of W⁴⁺: 5*d* and S²⁻: 3*p* orbitals. The CB of the anatase has not been measured because of its poorly sintered character, its value (-0.75 V) is taken from Ref. [17].

Photocatalysis

Dyes affect dramatically the aquatic life by reducing the light flux, thus inhibiting the photosynthesis; they are discharged in water and recovered by conventional methods. The adsorption is a displacement of the pollution otherwise the catalyst should be regenerated or replaced by a new one and this requires a further investment. By contrast, environmental photoelectrochemistry is an emerging technique for the water treatment [18], where the dye is converted to less harmful forms (ideally into CO₂ and H₂O). A literature survey has led to the conclusion that AOP occurs via radicals $O_2^{\bullet-}$ and/or OH^{\bullet} generated respectively from photoelectrons in WS₂-CB and/or photoholes in WS₂-VB and the presence of molecular oxygen is crucial for the photodegradation. It has been observed that OII is not converted by photolysis; therefore any change in the OII concentration is due to the photocatalytic process (see below). According to the PEC characterization, the energetic diagram of the hetero-system WS₂/TiO₂ (Fig. 5) provides insights on the feasible reactions; the higher occupied molecular orbital (HOMO, 0.17 V) and the lower unoccupied molecular orbital (LUMO, -1.86 V) of OII are taken from Ref. [19]. The absorption spectrum of OII shows two main bands at 430 and 485 nm, which corresponds to the $n \rightarrow \pi_*$ transition of the azo and hydrazone forms, respectively [20].

The thermodynamic requirement is such that the potential of $O_2/O_2^{\bullet-}$ couple (-0.52 V) [21] is less negative than WS₂-CB. However, the difference between the $O_2/O_2^{\bullet-}$ couple and WS₂-CB is large for a direct electron exchange and a low activity is expected since the electron transfer should occur iso-energetically. Some strategies have been attempted to overcome such drawback and a growing interest

Springer

¹ The activation E_a (~0.1 V) is determined from the conductivity measurements on sintered pellets.

Fig. 5 The energy band diagram of the hetero-system n-WS₂/n-TiO₂ in the orange II solution at pH ~ 6

has been paid to hetero-systems [22, 23]. As mentioned above, coupled SCs enhance the photocatalytic efficiency by extending the spectral photoresponse toward longer wavelengths and hinder the loss of (e^{-}/h^{+}) pairs [24].

WS₂-CB is pH insensitive whereas TiO₂-CB changes usually by -0.06 V pH⁻¹, we have exploited this property to have an optimal band bending at neutral pH. Owing to the adequate position of its CB, TiO2 provides a bridge between WS2 and the O_2/O_2^{\bullet} couple since WS₂-CB (-0.87 V) is more cathodic than TiO₂-CB (-(0.75 V) [17]. Moreover, the synthesis of TiO₂ in the presence of WS₂ in suspension byn the sol-gel method leads to intimate contact, which facilitates the electrons transfer. The photoactivity is dependent on the morphology of the bi-functional catalyst. Then, the question arises about the effect of decreasing the dimension of the crystallite on the OII oxidation. The strategy is that the charge carriers should have a lifetime as long as possible to reach the interface particularly for small polaron SCs with a low carrier mobility; this can be achieved by decreasing the path the carriers have to diffuse to reach the interface, and nano sized dimension is desirable for that purpose [25]. In this respect, the sol-gel has gained a growing popularity in the solid state chemistry for preparing particles with high surface-tovolume ratio [26]. In addition, the porous nature of TiO₂ reduces the over-voltages by increasing the active surfaces; the specific surface area determined by BET isotherms works out to be 110 m² g⁻¹.

The ability of excited OII to inject electrons into WS₂-CB with visible light is measured through the J(V) curves (Fig. 3). At high potentials (>V_{fb}) in the plateau region, the limiting current is diffusion controlled and depends only on the OII concentration i.e. the mass transport of the electro-active species toward the interface and the system is under kinetic control. Another possibility to explain the photocurrent increase can be due to the hole injection from WS₂-VB to HOMO, but this hypothesis has not been checked in our case. The dark adsorption favors the OII oxidation and is a first step in the photocatalytic process. The adsorption of azo dyes occurs through the sulfonic groups; the primary amines groups are likely responsible for OII binding to favour its access to catalytic sites onto TiO_2 by electrostatic interactions. However, the OII adsorption is weak, less than 5 % as shown by measuring of the concentration before and after keeping the powder overnight in OII solution (10 ppm).

WS₂ is photoexcited and the electrons are injected to TiO₂-CB and subsequently transferred to dissolved oxygen which is reduced preferentially because of its redox potential (-0.50 V). Therefore, if the solution is purged with nitrogen, OII degradation is strongly inhibited. The mechanistic pathway generally accepted is the following [27]:

$$O_{2 ads} + e^{-} \rightarrow O_{2}^{\bullet} + (H^{+}) \rightarrow HO_{2}^{\bullet} \rightarrow H_{2}O_{2} + (e^{-}) \rightarrow O_{2} + OH^{\bullet} + OH^{-}$$
(6)

The illumination time is fixed at 4 h and the main parameters that influence the photoactivity are the loading of the sensitizer WS₂ and the OII concentration (C_0). The photoactivity is investigated by varying the mass of WS₂ keeping that of TiO₂ constant (Fig. 6). As expected, the performance increases with increasing the amount WS₂, due to its effective dispersion over TiO₂, which provides a high reception surface for the incident photons and in this way the contribution of a large number of (e^-/h^+) pairs. Similarly, there is an optimal concentration above which OII act as optical filter; the light is absorbed before reaching the catalyst and competes with WS₂ absorption, thus lowering the photoactivity. The half life ($t_{1/2}$), the time needed to degrade half of OII present initially, is found to be concentration dependent. The linear relation between $ln(C_0/C_t)$ and irradiation time (t) of the photoactalytic degradation of OII obeys pseudo-first order kinetics (Fig. 7):

$$\ln C_t = -kt + \ln C_0 \tag{7}$$

Fig. 6 Effect of WS_2 on the photocatalytic decolorization of orange II on the hetero-system TiO_2/WS_2

Fig. 7 Linear plots $ln(C_0/C)$ versus illumination time of orange II on the hetero-system TiO_2/WS_2

Table 1 First order rate constant (k) and half-lives $(t_{1/2})$ for the photocatalytic degradation of orange II on TiO₂/WS₂ system

Catalysts	$\mathrm{K_{app}}~(\mathrm{min}^{-1}) \times ~10^{2}$	t _{1/2} (min)	R^2
TiO ₂ –SG	2.11	31.5	0.998
TiO2-SG/10 %WS2	2.61	26.7	0.990
TiO ₂ -SG/20 %WS ₂	3.22	21.7	0.989
TiO ₂ –SG/30 %WS ₂	4.80	14.4	0.989

The rate constants (k) and half-lives (Table 1) show that the best performance is obtained on 30 %WS₂/TiO₂ with a constant k of $4.8 \times 10^{-2} \text{ mm}^{-1}$. The kinetics exhibits an initial period of relatively rapid degradation. Over time, the slopes decrease progressively and become smaller followed by the gradual cessation of the photoactivity (Fig. 6b). This tendency to saturation indicates that the layers already adsorbed are oxidized after which the process becomes governed kinetically by the diffusion of OII toward the active sites at the interface in which the radicals OH[•] are generated for further adsorption/photodegradation. So, the process is self limited due to adsorbed layer and availability of photocatalytic sites. In this respect, the EC impedance would be helpful to bring insights on the interfacial process. This study is presently under way and will be consecutively reported.

Conclusion

The feasibility of WS₂ loaded TiO₂ is demonstrated for the light induced oxidation of OII in aerated aqueous solution under UV light. WS₂/TiO₂ achieves the colloidal photochemical hetero-system synthesized by sol gel with intimate contact. The choice of WS₂ is motivated by the chemical stability over a fair pH range and high energetic position of the CB, made up of W: 5d orbital, more cathodic than TiO₂-CB resulting in the electron transfer. The combination of the flat band potentials and optical gaps permitted to build the energetic diagram. Electron injection from OII to WS₂ upon visible illumination is confirmed by the photocurrent measurement. Oxygen improves the photoactivity considerably and the oxidation of OII obeys to first order kinetics. The photocatalytic process is governed by the diffusion of OII to active sites in which the radicals OH[•] are generated.

Acknowledgments The authors would like to express their gratitude to the Faculty of Chemistry for the financial support of this research. The authors are also grateful to H. Zouaoui for his technical assistance.

References

- 1. Bassaid S, Chaib M, Omeiri S, Bouguelia A, Trari M (2009) Photocatlytic reduction of cadmium over CuFeO₂ synthesized by sol-gel. J Photochem Photobiol A 201:62–68
- Zou L, Zhu B (2008) The synergistic effect of ozonation and photocatalysis on color removal from reused water. J Photochem Photobiol A 196:24–32
- Petrov S, Stoichev PA (2002) Reagent ultrafiltration purification of water contaminated with reactive dyes. Filtr Sep 39(8):34–35
- Yu H, Fugetsu B (2010) A novel adsorbent obtained by inserting carbon nanotubes into cavities of diatomite and applications for organic dye elimination from contaminated water. J Hazard Mater 177:138–145
- Arsac F, Bianchi D, Chovelon JM, Conchon P, Ferronato C, Lair A, Sleiman M (2008) Photocatalytic degradation of organic pollutants in water and in air, an analytical approach. Mater Sci Eng C 28:722–725
- Arslan-Alaton I (2007) Degradation of a commercial textile biocide with advanced oxidation processes and ozone. J Environ Manag 82:145–154
- Qamar M, Gondal MA, Yamani ZH (2009) Synthesis of highly active nanocrystalline WO₃ and its application in laser-induced photocatalytic removal of a dye from water. Catal Commun 10:1980–1984
- Yahiat S, Fourcade F, Brosillon S, Amrane A (2011) Photocatalysis as a pre-treatment prior to a biological degradation of cyproconazole. Desalination 281:61–67
- Takimoto Y, Kitta T, Irie H (2012) Visible-light sensitive hydrogen evolution photocatalyst ZnRh₂O₄. Int J Hydrogen Energy 37:134–138
- Gherbi R, Trari M, Nasrallah N (2013) Influence of light flux and hydrodynamic flow regime on the photoreduction of Cr(VI) on the CuAl₂O₄/TiO₂ hetero-junction. J Environ Chem Eng 1:1275–1282
- Helaïli N, Bessekhouad Y, Bouguelia A, Trari M (2009) Visible light degradation of Orange II using xCu_yO₂/TiO₂ heterojunctions. J Hazard Mater 168:484–492
- Bellal B, Saadi S, Koriche N, Bouguelia A, Trari M (2009) Physical properties of the delafossite LaCuO₂. J Phys Chem Solids 70:1132–1136
- Benreguia N, Omeiri S, Bellal B, Trari M (2011) Visible light induced H₂PO₄⁻ removal over CuAlO₂ catalyst. J Hazard Mater 192:1395–1400
- Chen G, Li F, Fan Y, Luo Y, Li D, Meng Q (2013) A novel noble metal-free ZnS-WS₂/CdS composite photocatalyst for H₂ evolution under visible light irradiation. Catal Commun 40:51–54
- 15. Galasso SF (1970) Structure and properties of inorganic solids. Pergamon Press Ltd., Oxford
- Sun S, Li Z, Chang X (2011) Synthesis and structural characterization of tungsten disulfide nanomaterials. Mater Lett 65:3164–3166
- Bessekhouad Y, Brahimi R, Hamdini F, Trari M (2012) Cu₂S/TiO₂ hetero-junction applied to visible light Orange II degradation. J Photochem Photobiol A 248:15–23
- Zhang YJ, Zhang L (2009) Preparation of Ru-loaded CdS/Al-HMS nanocomposites and production of hydrogen by photocatalytic degradation of formic acid. Appl Surf Sci 255:4863–4866
- Nozik AJ, Memming R (1996) Physical chemistry of semiconductor-liquid interfaces. J Phys Chem 100(31):13061–13078

- 20. Park H, Choi W (2003) Visible light and Fe(III)-mediated degradation of acid Orange 7 in the absence of H_2O_2 . J Photochem Photobiol A 159:241–247
- Ortiz ME, Núñez-Vergara LJ, Squella JA (2002) Cyclic voltammetric behaviour of the O₂/O₂⁻ redox couple at a HMDE and its interaction with nisoldipine. J Electroanal Chem 519:46–52
- Mazar O, Schroeder M, Tsur Y (2011) Synthesis of inside-out core-shell perovskite-type oxide nanopowder. Chem Eng J 166:1139–1143
- Belhadi A, Boumaza S, Trari M (2011) Photoassisted hydrogen production under visible light over NiO/ZnO hetero-system. Appl Energy 88:4490–4495
- 24. Ge L, Liu J (2011) Efficient visible light-induced photocatalytic degradation of methyl orange by QDs sensitized CdS-Bi₂WO₆. Appl Catal B 105:289–297
- Derbal A, Omeiri S, Bouguelia A, Trari M (2008) Characterization of new heterosystem CuFeO₂/ SnO₂ application to visible-light induced hydrogen evolution. Int J Hydrogen Energy 33:4274–4282
- 26. Mozia S (2010) Application of temperature modified titanate nanotubes for removal of an azo dye from water in a hybrid photocatalysis-MD process. Catal Today 156:198–207
- Chhor K, Bocquet JF, Colbeau-Justin C (2004) Comparative studies of phenol and salicylic acid photocatalytic degradation: influence of adsorbed oxygen. Mater Chem Phys 86:123–131