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Abstract In this study, the sol–gel method is utilized to produce TiO2–In2O3

composite (Ti–In). The generated Ti–In was separately co-doped with C–N and S–N

to form novel TiO2–In2O3–C–N (Ti–In–C–N) and TiO2–In2O3–S–N (Ti–In–S–N).

The sources of N, C and S dopants were urea, powder activated carbon and

Na2S2O3. The dye C.I. reactive red 2 (RR2) was used as a model compound that was

exposed to various composites and its removal by photocatalytic degradation and

adsorption was measured. The percentage of anatase phase in Ti–In–C–N and Ti–

In–S–N exceeded that in Ti–In; conversely, the particle diameter and band gap

energy of Ti–In exceeded those of Ti–In–C–N and Ti–In–S–N. Bonds of Ti–O–N,

Ti–N–O and Ti–O–C were detected in Ti–In–C–N and bonds of Ti–O–N, Ti–N–O

and Ti–O–S were found in Ti–In–S–N. The pseudo-first order RR2 removal rate

constants in UV/Ti–In, UV/Ti–In–C–N and UV/Ti–In–S–N were 0.43, 1.68 and

1.70 h-1, in order. The specific oxygen uptake rates of the RR2 effluent in UV/Ti–

In, UV/Ti–In–C–N and UV/Ti–In–S–N were determined to be 4.4, 7.3 and 5.3 mg

O2/g-MLVSS h. Ti–In–C–N and Ti–In–S–N were more effective in decolorizing

and detoxifying RR2 than was their parent Ti–In.
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Introduction

Advanced oxidation refers to a set of chemical treatment procedures for removing

organic and inorganic materials from wastewater by oxidation. Photocatalysis using

a nanosized metal oxide semiconductor is regarded as one of the most effective and

simplest ways to mitigate environmental pollution that is caused by humans.

Titanium dioxide (TiO2) is currently considered to be the most promising

photocatalyst because of its chemical and biological stability, high abundance and

non-toxicity. The photocatalytic degradation of pollutants in water has been

successfully performed using a suspension of TiO2. The generally accepted

mechanisms of the photodegradation of organics by UV/TiO2 are as follows [1].

Photogenerated holes are formed when TiO2 particles are irradiated by UV light.

Hydroxyl radicals are produced by the oxidation of OH- or H2O by these

photogenerated holes, and are primarily responsible for the destruction of the

organic species. Oxygen is used as an efficient electron trap to prevent the

recombination of photogenerated electrons and holes. If the amount of available

oxygen is limited, then the rapid recombination of photogenerated electrons and

holes in TiO2 reduces the efficiency of the photocatalytic reactions.

A different method for preparing photocatalytic TiO2 efficiently involves

coupling it with other semiconductor oxides, such as CdSe [2], SnO2 [3, 4], WO3

[4], and In2O3 [5–7]. These composite systems demonstrate considerably enhanced

photocatalytic performance in the degradation of pollutants, as the composite

facilitates charge transfer and suppresses the recombination of electron–hole pairs in

the photocatalysts systems. Coupling In2O3 with TiO2 enables the transfer of the

photogenerated electrons from the surface of In2O3 to the conduction band of TiO2

because the band gap of In2O3 (2.64 eV) is lower than that of TiO2 (2.95 eV) and

the conduction band of In2O3 (-0.63 eV vs. NHE) is higher than that of TiO2

(-0.4 eV vs. NHE). This process results in the effective capture of photogenerated

electrons and retardation of the recombination of photogenerated electron–hole

pairs [7, 8]. Various studies have demonstrated that the photocatalytic activity of

TiO2–In2O3 composite (Ti–In) exceeds that of In2O3 and TiO2 [5, 6].

Various metal and nonmetal ions have been doped into photocatalysts to reduce the

recombination of photogenerated electrons and holes in them and to increase their

absorption of light. However, metal ion-doped photocatalysts have some serious

drawbacks, such as thermal instability and the metal centers acting as electron traps,

reducing photocatalytic efficiency [9]. Sojic et al. [10] showed that nonmetals are

more efficient dopants than metals. Accordingly, doping nonmetal ions into

photocatalysts has recently attracted considerable attention. Nonmetal-doped forms

of TiO2, including C-doped [11–13], N-doped [10–12] and S-doped TiO2 [12, 14–16],

has been found to exhibit superior photocatalytic activity because C, N and S atoms

can effectively narrow the energy band gap of TiO2. Moreover, C–N [11] and S–N co-

doped TiO2 [17, 18] have been investigated and co-doped TiO2 has been found to have

a higher photocatalytic activity than single-doped TiO2 [11, 18].

Ma et al. [8] demonstrated that the photocatalytic activity of Pt/Ti–In exceeded

that of Ti–In because the separation of the photogenerated electron–hole pairs in the

former is more efficient, owing to the incorporation of In2O3 and Pt into the TiO2
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framework. Ag/Ti–In has been found to exhibit a similar enhancement [19].

However, to the best of our knowledge, the photocatalytic activities of Ti–In that is

co-doped with nonmetal dopants have not been examined. In this study, the Ti–In

photocatalyst was synthesized via the sol–gel method, doped separately with C and

S, and finally the C-doped and S-doped Ti–In were calcined with urea to form C–N

co-doped and S–N co-doped Ti–In. To determine the photocatalytic activities of C–

N-co-doped and S–N-co-doped Ti–In, their removal of a common azo dye, C.I.

reactive red 2 (RR2), was studied. The objectives of this study are (i) to prepare

novel C–N-co-doped Ti–In (abbreviated as Ti–In–C–N) and S–N-co-doped Ti–In

(Ti–In–S–N), (ii) to characterize the surface properties of Ti–In–C–N and Ti–In–S–

N, (iii) to determine changes associated with the adsorption of RR2 onto Ti–In–C–N

and Ti–In–S–N, and (iv) to evaluate the photocatalytic activities of the doped Ti–

In–C–N and Ti–In–S–N in decolorizing RR2, relative to that of their parent Ti–In.

Materials and methods

Materials

In this investigation, the sources of Ti and In are TiCl4 (Acros) and InCl3 (Alfa

Aesar). The sources of N, C and S dopants were urea (Katayama), powder activated

carbon (PAC) (Katayama) and Na2S2O3 (Merck. The parent compound, RR2, was

purchased from Sigma Aldrich. Its formula, molecular weight, and maximum light

absorption wavelength were C19H10Cl2N6Na2O7S2, 615 g/mol, and 538 nm. The pH

of the solution was adjusted by adding 0.1 M HNO3 (Merck) or NaOH (Merck). All

compounds were used as received (without further purification), and all solutions

were prepared using deionized water (Milli-Q) and reagent-grade chemicals.

Preparation of Ti–In, Ti–In–C–N and Ti–In–S–N

Ti–In was prepared with a Ti/In mole ratio of 54 using the sol–gel method, as

previously described [7]. The molar ratios of Ti/C and Ti/S in Ti–In–C–N and Ti–

In–S–N were both 7.5; the molar ratios of Ti/N in both Ti–In–C–N and Ti–In–S–N

were both 0.07.

To prepare Ti–In–C–N and Ti–In–S–N, C-doped Ti–In (Ti–In–C) and S-doped

Ti–In (Ti–In–S) were first produced. To prepare the Ti–In–C, PAC (0.184 g) was

first mixed with HCl (20 mL; 0.65 M) and the mixture was placed in an ultrasonic

bath for 10 min; then this solution was added InCl3 (0.4805 g; 99.9 %) and TiCl4
(13 mL; 98 %). The pH of the solution was adjusted to pH 8 by adding NH4OH

solution (28 %), forming a solid precipitate. This precipitate was collected by

filtration and washed repeatedly using distilled water; it was dried at 110 �C for

24 h and then calcined at 450 �C for 2 h to yield the Ti–In–C. To prepare Ti–In–S,

PAC was replaced with Na2S2O3 (1.212 g) and the other steps were the same as

those used to prepare Ti–In–C. To prepare Ti–In–C–N (or Ti–In–S–N), 2.5 g Ti–In–

C (or Ti–In–S) and urea (12.5 g) were thoroughly mixed and the mixture was

calcined at 450 �C for 2 h.

Reac Kinet Mech Cat (2015) 114:341–355 343

123



Characterization of Ti–In–C–N and Ti–In–S–N

The crystalline structures of various photocatalysts were analyzed by X-ray

diffraction (XRD) (Bruker D8 SSS, Germany). The XRD patterns were recorded

over 2h values of 10–90�, with an accelerating voltage and applied current of 40 kV

and 30 mA, respectively. Diffuse reflectance UV–Vis spectra of the photocatalysts

were obtained using a UV–Vis spectrophotometer (JAS.CO-V670, Japan) and these

were used to calculate the band gap energies. Specific surface areas of the samples

were determined by the BET method from the nitrogen adsorption isotherms that

were obtained using a Micrometrics ASAP 2020 apparatus. X-ray photoelectron

spectroscopy (XPS) measurements were made using a PHI Quantum 5000 XPS

system (USA) with a monochromatic Al Ka source and a charge neutralizer.

Decolorization of RR2

Experiments were performed using 0.2 g/L of each photocatalyst, with

[RR2] = 20 mg/L, at pH 3 and 25 �C. Decolorization experiments were conducted

in a 3 L hollow cylindrical glass reactor, illuminated by an 8 W UV lamp (254 nm,

Philips) with a light intensity of 1.12 W/m2 that was placed inside a quartz tube.

Adsorption experiments were performed in the dark. The reaction medium was

continuously stirred at 300 rpm to maintain the suspension. Aliquots each with a

volume of 10 mL were withdrawn from the reactor at intervals to monitor reaction

progress. Following sampling, solids were separated by filtration using a 0.22 lm filter

(Millipore), and the RR2 that remained in the filtrate was analyzed by measuring

absorbance at 538 nm using a spectrophotometer (Hitachi U-5100, Japan).

Tests of specific oxygen uptake rate (SOUR)

The biodegradability of RR2 effluent was evaluated by performing a SOUR test.

Activated sludge was collected from a sewage treatment plant in Kaohsiung. Before

testing, the activated sludge was aerated for 24 h. The concentration of mixed liquor

volatile suspended solids (MLVSS) in activated sludge was measured to be 3.5 g/L.

The SOUR (mg O2/g-MLVSS h) of aerobic microorganisms was measured for the

RR2 effluent (after 180 min reaction and separated the suspended photocatalyst) to

be the biodegradability index in the UV/Ti–In, UV/Ti–In–C–N and UV/Ti–In–S–N

systems. SOURs were determined by dividing abatement rates in dissolved oxygen

(DO) to MLVSS values.

Results and discussion

Characteristics of the surface of prepared photocatalysts

Fig. 1 displays the XRD patterns of Ti–In, Ti–In–C–N and Ti–In–S–N. The anatase

peaks were at 25.4� and 48.2�. The peaks at 27.5�, 36.2�, 41.3�, 54.4�, and 69.2�
were attributable to rutile crystal phases. The peaks at 21.5�, 30.6�, 35.5�, 51.0�, and
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60.7� were attributable to In2O3. No pattern included any In2O3-derived, N-derived,

S-derived, or C-derived peaks.

The anatase content was determined from the integrated intensity of the anatase

diffraction peak at 2h = 25.4�, IA, and the rutile content was determine from the

rutile diffraction peak at 2h = 27.5�, IR, using Eq. 1 below [20]. From the XRD

patterns, the crystalline size was calculated using the Scherrer equation, Eq. 2 [21]:

Anatase ð%Þ ¼ 1

1þ 12:6 IA

IR

� 100 ð1Þ

D ¼ 0:9k
b cos h

ð2Þ

Here, D represents the crystalline size (nm); k is the wavelength of the X-rays

(0.15418 nm); b is the line-width at the half maximum of the anatase peak at

2h = 25.4� or of the rutile peak at 2h = 27.5�, and h is the diffraction angle (�).

Table 1 lists the surface properties of various photocatalysts. The surface areas

followed the order Ti–In–S–N [ Ti–In * Ti–In–C–N. The percentage of anatase

phase in Ti–In–C–N and Ti–In–S–N exceeded that in Ti–In. Clearly, C–N and S–N

co-doping in Ti–In inhibited the conversion of TiO2 from anatase to rutile. This

Table 1 Parameters of surface properties for various photocatalysts

Photocatalysts Anatase (%) Rutile (%) Diameter

(nm)

Band

gap (eV)

BET

(m2/g)

k (h-1)

Ti–In 30 70 57 2.97 35.7 0.43 (0.999)

Ti–In–C–N 63 37 33 2.86 35.6 1.68 (0.988)

Ti–In–S–N 64 36 33 2.82 42.3 1.70 (0.982)

(): denoted the value of R2

Fig. 1 XRD patterns of Ti–In, Ti–In–C–N and Ti–In–S–N
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retardation of phase transformation may be due to stabilization of the anatase phase

by surrounding N ions via formation of Ti–O–N bonds. Anatase is regarded as the

photoactive form of TiO2, whereas rutile exhibits a low photocatalytic activity.

Hurum et al. [22] proposed that electron-trapping sites are more stable in anatase

than in rutile, so anatase exhibits greater photocatalytic activity. Accordingly, C–N

and S–N co-doping in Ti–In may improve the photocatalytic activity of Ti–In.

Additionally, C–N and S–N co-doping in Ti–In reduced the particle diameter,

suggesting that the C–N and S–N co-doping retard the agglomeration of Ti–In

crystals. Liu et al. [16] indicated that the doping with S effectively inhibited the

growth of TiO2 crystalls and Chen et al. [11] that doping with N had a similar effect.

Li et al. [23] also demonstrated that carbon acts as a barrier that controls the growth

of TiO2 powder and prevents its agglomeration.

The band gap energy of Ti–In exceeded those of Ti–In–C–N and Ti–In–S–N

(Table 1). N-doping was effective in reducing the band gap of TiO2 by creating an

isolated N2p narrow band above the O2p valence, by the incorporation of N atoms

into the TiO2 lattice [24]. The reduction of the band gap of C-doped TiO2 was

attributed to the formation of Ti–O–C bonds [25]. C–N co-doping generated the

intragap localized state of C2p and N2p above the valence band gap of TiO2.

Therefore, electrons were promoted from the valence band to the conduction band,

leaving holes behind [26]. The role of S in Ti–In–S–N was same as that of C in Ti–

In–C–N; therefore, co-doping of C–N and S–N in Ti–In reduced the band gap

energy.

XPS was utilized to determine the chemical compositions of the photocatalysts.

Fig. 2a–e display the XPS spectra of Ti2p, In3d, O1s, C1s, and N1s for Ti–In–C–N.

The Ti2p3/2 and Ti2p1/2 spin-orbital-splitting photoelectrons were observed at

binding energies of 455.7–458.8 and 462.1–464.5 eV [26–28]. The binding energy

of the Ti2p3/2 and Ti2p1/2 spin-orbital-splitting photoelectrons in Ti–In–C–N was

458.2 and 463.9 eV (Fig. 2). These binding energies are close to those reported for

Ti4? in TiO2 [29]. The In3d5/2 and In3d3/2 spin-orbital splitting photoelectrons were

observed at binding energies of 443.9–445 [19, 28, 30, 31] and 451.5–452.0 eV [19,

28, 30]. The binding energy of the In3d5/2 and In3d3/2 spin-orbital-splitting

photoelectrons of Ti–In–C–N was 444.3 and 451.9 eV (Fig. 2b). Peaks at

528.5–529.5 [26, 28, 32] and 529.6–531.0 eV [27, 30, 31] were assigned to O1s;

the former was associated with Ti–O and the latter was attributable to In–O. Peaks

at 531.4–531.9 eV indicated other oxygen species, possibly belonging to OH- on

the surface of the photocatalyst [32, 33]. The binding energy of Ti–O, In–O, and

OH- in Ti–In–C–N was 529.4, 529.7, and 531.6 eV (Fig. 2c). The binding energies

of C1s, which were 284.8, 285.4 and 288 eV, were attributed to C–C, C–O [34], and

Ti–O–C [27] bonds (Fig. 2d). The 284.8 eV peak is due to the carbon-containing

species adsorbed on the surface, which is usually ascribed to the adventitious carbon

or carbon residues from the organic precursor [12]. Kang et al. [35] assigned the

binding energy at 282 eV to the Ti–C bond that was formed by the substitution of

carbon at an oxygen site in TiO2; they assigned the binding energy at 288 eV to the

presence of carbonate species that were formed by the substitution of carbon at the

Ti site in TiO2. The prepared Ti–In–C–N formed C–C and C–O bonds, but no Ti–C

bonds. Chen et al. [11] reported that carbonate species that formed on the TiO2
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Fig. 2 XPS spectra of Ti–In–C–N. a Ti2p, b In3d, c O1s, d C1s, e N1s

Reac Kinet Mech Cat (2015) 114:341–355 347

123



surface served as a photosensitizer, like an organic dye, promoting the absorption of

TiO2.

Fig. 3a–e present the XPS spectra of Ti2p, In3d, O1s, N1s, and S2p for Ti–In–S–N.

The XPS spectra of Ti2p, In3d and O1s in Ti–In–S–N (Fig. 3a–c all revealed similar

binding energies to those in Ti–In–C–N (Fig. 2a–c). Binding energies of

397.0–397.4 [36–38] and 398.6 eV [36, 37] in the N1s region were assigned to

Ti–N–O; the binding energy at 399–400.7 eV was attributed to the Ti–O–N bond

[28, 31]. For Ti–In–C–N, Ti–N–O and Ti–O–N were obtained at the binding energy

of 397.3 and 399.6 eV (Fig. 2e). Moreover, for Ti–In–S–N, Ti–N–O and Ti–O–N

were obtained at the binding energy of 398.7 and 400 eV (Fig. 3d). The XPS spectra

of Ti2p and In3d for Ti–In–C–N and Ti–In–S–N were similar to those for Ti–In [7]

and Ti–In–N [39] ; moreover, the XPS spectra of O1s and N1s for Ti–In–C–N and

Ti–In–S–N were similar to those obtained for Ti–In–N by Wu et al. [39] (data not

Fig. 2 continued
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Fig. 3 XPS spectra of Ti–In–S–N. a Ti2p, b In3d, c O1s, d N1s, e S2p

Reac Kinet Mech Cat (2015) 114:341–355 349

123



shown). Zhang et al. [40] indicated the post-nitridation of TiO2 by NH3 takes only

place on the surface layer and sublayer of TiO2 and maintains the original crystal

phase of TiO2 below 500 �C; accordingly, no crystalline phase of Ti–N was

obtained. The present study identified two crystalline phases, Ti–O–N and Ti–N–O,

which may be attributable to the use of urea rather than NH3 as the precursor of N.

Asahi et al. [24] utilized urea as a dopant and concluded that nitrogen atoms

substituted at the lattice oxygen sites, forming an isolated narrow band above the

valence band and narrowing the band gap. Notably, the preparation procedure

varied among the studies cited above, and this variation may explain the various

XPS observations.

The S atoms herein are in the S6? state, yielding a peak at 168.2–169 eV [14, 16,

41]. The binding energy of S2p in Ti–In–S–N is 168.7 eV (Fig. 3e). When S atoms

Fig. 3 continued
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replace O atoms on the TiO2 surfaces, no peak in the range 160–163 eV, which

corresponds to the Ti–S bond, is obtained [14]. Umebayashi et al. [42] suggested

that sulfur was doped as an anion and replaced the lattice oxygen in TiO2 to form

Ti–S bond, conversely, Ohno et al. [41] reported that S atoms were incorporated as

cations and replaced Ti ions in the S-doped TiO2. Ho et al. [15] suggested that the

oxidation state of the S-dopant depends on the preparation route. Anionic S doping

may be difficult to perform because S2- (0.17 nm) has a significantly larger ionic

radius than does O2- (0.122 nm). Hence, the substitution of Ti4? by S6? is

chemically more favorable than replacing O2- with S2- [14], so Ti–In–S–N

becomes positively charged. Therefore, the efficiency of adsorption of RR2 by Ti–

In–S–N may exceed those of Ti–In–C–N and Ti–In.

Li et al. [18] found that the absorption spectra of S–N co-doped TiO2 exhibited a

red shift in the adsorption edge. This shift was attributed to the fact that calcination

induces the doping of S and N atoms into the lattice of TiO2, narrowing the band

gap. Wang and Lim [26] observed a red shift of the absorption edge of C–N co-

doped TiO2 owing to the coexistence of Ti–C bonds, carbonate and oxynitride

species in the TiO2 lattice. The experimental results for Ti–In–C–N and Ti–In–S–N

herein were similar to those for C–N co-doped TiO2 and S–N co-doped TiO2.

Photocatalytic properties of Ti–In, Ti–In–C–N and Ti–In–S–N

At pH 3, no significant decolorization occurred during direct photolysis (\5 %)

(data not shown herein). Hence, the disappearance of RR2 was attributed to

adsorption and/or photodegradation reactions. Fig. 4 presents the decolorization of

RR2 by adsorption and photodegradation in different systems. After 180 min, the

Fig. 4 RR2 removal in Ti–In, Ti–In–C–N and Ti–In–S–N systems via adsorption and photodegradation
([photocatalyst] = 0.2 g/L, [RR2] = 20 mg/L, pH 3)
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adsorptions of RR2 (in the dark) by Ti–In, Ti–In–C–N and Ti–In–S–N were 34, 20

and 43 %, while the total removals of RR2 (adsorption and photodegradation under

illumination) were 78, 97 and 99 %. Therefore, the net removal of RR2 that was

attributable to photodegradation by various photocatalysts followed the order Ti–

In–C–N [ Ti–In–S–N [ Ti–In. The order of RR2 adsorption by these photocata-

lysts was Ti–In–S–N [ Ti–In [ Ti–In–C–N, which agrees with the order of the

surface areas of these photocatalysts. The removal of RR2 in all experiments

followed pseudo-first order kinetics, as has been reported in various studies of RR2

decolorization [7, 13]. Table 1 lists the pseudo-first order RR2 removal rate

constants (k), which follow the order Ti–In–S–N [ Ti–In–C–N [ Ti–In. The k

values in UV/Ti–In, UV/Ti–In–N [39], UV/Ti–In–C–N, and UV/Ti–In–S–N were

0.43, 1.60, 1.68 and 1.70 h-1. Clearly, the promotion of photocatalytic activity of

Ti–In by co-doping with C–N or S–N was greater than that by N doping.

This study suggested that N atoms could form Ti–N–O and Ti–O–N, while C

atoms could form a mixed layer deposited PAC and Ti–O–C bond at the surface of

Ti–In–C–N particles. Furthermore, S atoms were incorporated as cations and

replaced Ti ions in Ti–In–S–N. Based on the experimental analysis, C, S and N were

successfully doped into Ti–In. The improved photocatalytic activity can be

evidenced by an increase in either the number of Ti4? defects or the number oxygen

vacancies upon doping, the form of the impurity states, which inhibit the

recombination of photogenerated hole and electron pairs, reduced band gap energy

and increased lifetime of holes and electrons [43]. Yu et al. [17] suggested that the

high activity of N–S co-doped TiO2 can be attributed to the red shift of the

adsorption edge, a large surface area and the two phase structures of N–S co-doped

TiO2. Large surface areas facilitate contact between holes (or electrons) and the

pollutant molecules, improving photocatalytic activity.

Fig. 5 DO uptake tests for RR2 effluent in in UV/Ti–In, UV/Ti–In–C–N and UV/Ti–In–S–N systems
([photocatalyst] = 0.2 g/L, [RR2] = 20 mg/L, pH 3)

352 Reac Kinet Mech Cat (2015) 114:341–355

123



Fig. 5 plots the DO profiles that were obtained by respirometric measurements of

the RR2 effluent in different systems. The SOURs for the RR2 effluent (after

180 min reaction) in UV/Ti–In, UV/Ti–In–C–N and UV/Ti–In–S–N were deter-

mined to be 4.4, 7.3 and 5.3 mg O2/g-MLVSS h. The C–N and S–N co-doped Ti–In

improved the biodegradation of RR2 effluent. The enhancement of biodegradation

by Ti–In–C–N exceeded that by Ti–In–S–N. The experimental results revealed that

Ti–In–C–N effectively decolorized and detoxified RR2.

Conclusions

Novel Ti–In–C–N and Ti–In–S–N photocatalysts were fabricated in this study. C–N

and S–N-co-doping in Ti–In inhibited the transformation of TiO2 from anatase to

rutile and particle agglomeration. The bang gap energy and particle diameter of Ti–

In–C–N and Ti–In–S–N were smaller than those of Ti–In. The RR2 removal rates

followed the order Ti–In–S–N [ Ti–In–C–N [ Ti–In. In this investigation, C, S

and N were successfully doped into Ti–In, and the resulting improved photocatalytic

activity was attributed to an increase in either the number of Ti4? defects or the

number of oxygen vacancies, which inhibited the recombination of photogenerated

hole and electron pairs. Ti–In–C–N and Ti–In–S–N effectively decolorized and

detoxified RR2.
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