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Abstract In this work, Fe3O4/SiO2 nanoparticles were synthesized according to

the literature and characterized by transmission electron microscopy, powder X-ray

diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis and

vibrating sample magnetometer. The catalytic properties of the Fe3O4/SiO2 catalyst

have been tested in the epoxidation of different cyclic and acyclic alkenes with m-

chloroperbenzoic acid (oxidizing agent). Under optimized conditions, all reactions

afforded the desired products in good to excellent yields. Furthermore, the effect of

different additives such as pyridine N-oxide and N-methylmorpholine-N-oxide was

tested on the conversion of alkenes, but in all cases additives did not improve

epoxidation yields. As a result, the Fe3O4/SiO2 showed good activity and super

stability in the epoxidation of various olefins. Moreover, this catalyst can be

recovered by using a magnetic field and recycled for several times without a sig-

nificant loss in the catalytic activity.

Keywords Fe3O4/SiO2 � Alkenes � Epoxidation � Magnetic nanoparticles

Introduction

Selective epoxidation of alkenes into high value chemicals (epoxides) which are

widely used in the fine chemical industry is of great attention in chemical and

pharmaceutical industries [1]. Some transition metal oxides such as NiO, CoO,

MoO3, CuO, TiO2–SiO2, Au/SiO2, CuOx/SiO2 and tungstate(VI) or molybdate(VI)

have been reported for the epoxidation of alkenes with organic hydroperoxides

[2–8]. However, in most cases, either alkene conversion or alkene oxide selectivity/

yield was poor and many of these transition metal catalysts are expensive and highly

M. A. Nasseri (&) � A. Allahresani � H. Raissi

Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand, Iran

e-mail: manaseri@birjand.ac.ir

123

Reac Kinet Mech Cat (2014) 112:397–408

DOI 10.1007/s11144-014-0715-1



dangerous for the environment as well. From an economic point of view, the

separation of ultrascaled and nanosized catalysts from the reaction system via

routine methods such as free sedimentation, centrifuging and filtration is difficult,

time-consuming and costly. Magnetic nanoparticles (NPs) which are economic

friendly can be easily separated by applying a simple external magnet without any

significant loss of activity put forward a solution to this problem. In addition, good

selectivity and great stability are some especial advantageous of magnetic NPs

[9–11]. Magnetic NPs have been reported to catalyze a wide range of reactions

including, C–C, C–S, C–N bond formation, asymmetric synthesis and oxidations

reactions [12–15]. Usually, silica was utilized to coat the Fe3O4 particles forming

Fe3O4/SiO2 core–shell structure. This layer not only protects Fe3O4 from oxidizing

or dissolving in the acidic reaction media, but also stabilizes NPs by preventing

aggregation of the Fe3O4 particles [16]. The silica shell can also provide numerous

surface Si–OH groups for further modification [17, 18].

This article presents the epoxidation of cyclic and acyclic alkenes with

m-chloroperbenzoic acid (m-CPBA) in the presence of catalytic amount of

Fe3O4/SiO2 NPs in dichloromethane as solvent. By using this catalyst, the

corresponding products were obtained in excellent yields after 4 h and magnetic

NPs, which are recovered from the reaction mixture by using external magnetic field

simplified the isolation of products (Fig. 1).

Experimental

General

Tetraethoxysilane (TEOS), FeCl3�6H2O, FeCl2�4H2O, styrene, 4-chlorostyrene,

cyclohexene, a-methyl styrene, indene, cis- and trans-stilbene, cyclohexene,

cyclooctene, 1-octene, m-CPBA, pyridine N-oxide (PNO), pyridine (Py), N-

methylmorpholine-N-oxide (NMNO), 1-methylimidazole (MI), imidazole, dichlo-

romethane (DCM), ethyl acetate (EtOAC), ethanol (EtOH), CH3CN, CHCl3, THF,

NaIO4, NH4OAC, t-BOOH, PhI(OAC)2, H2O2 (30 %) and Oxone were purchased

from Merck and used without purification. Graphite powder was obtained from

Aldrich. The resulting Fe3O4/SiO2 was characterized by IR, TEM, TGA, VSM and

X-ray diffraction (XRD) patterns. The IR experiments were carried out on a Perkin-

Elmer 783 Infrared spectrophotometer in a KBr pellet, scanning from 4,000 to

600 cm-1 at room temperature. The XRD measurements were carried out by using a

Bruker D8-advance X-ray diffractometer with Cu Ka radiation (k = 1.5406 Å). The

TEM images measurements were obtained using Philips CM10 instrument.

Magnetization measurements were carried out at 300 K on a vibrating sample

magnetometer (VSM Leak shore 7200). The TGA analysis was performed by

heating the samples in an argon flow at a rate of 100 mL min-1 using a Perkin–

Elmer Diamond TG/DTA thermal analyzer with a heating rate of 10 �C min-1. The

conversion of products was determined by GC-17A Shimadzu with capillary

column (Shimadzu, CBP5, 30 m 9 25 mm 9 0.25 lm).
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General procedure for the synthesis of Fe3O4/SiO2 core–shell

Black magnetic Fe3O4 NPs were prepared as described in the literature [19]. The

core–shell Fe3O4/SiO2 NPs were prepared by a modified Stober method [20].

Briefly, Fe3O4 (0.50 g, 2.1 mmol) was dispersed in the mixture of ethanol/deionized

water (50:5 mL). Then, TEOS (0.20 mL) was slowly added to the mixture followed

by addition of 5 mL of NaOH (10 wt%). This solution was stirred mechanically for

20 h at room temperature. Then the product, Fe3O4/SiO2, was separated by an

external magnet, washed with deionized water and ethanol three times and dried at

80 �C for 10 h.

General procedure for the epoxidation of olefins

In a typical procedure, the catalyst (0.06 g) was dispersed in 3 mL of dichloro-

methane for 10 min. Then the substrate (1 mmol) and m-CPBA (2 mmol) were

added to the mixture at room temperature. The mixture was stirred at room

temperature for appropriate times. The progress of the reaction was monitored by

TLC. After the completion of the reaction, the catalyst was separated by external

magnet. The solution was washed with 1 M NaOH (8 mL) and brine (8 mL) and

dried over MgSO4. Then, the solution was concentrated by rotary evaporator to

1 mL. Finally, the conversion of the products was determined by GC. The catalyst

was washed twice with ethanol and reused.

Results and discussion

Characterizations of catalyst

The Fe3O4 NPs (A) were simply synthesized by using of FeCl3�6H2O and

FeCl2�4H2O in deionized water under nitrogen atmosphere. Then, Fe3O4/SiO2 NPs

Cl

OOH

O

Cl

OH

O

O

SiO2

Fe3O4DCM r.t, 4 h

Fig. 1 Epoxidation of alkenes with m-CPBA catalyzed by Fe3O4/SiO2 in dichloromethane solvent.
Reaction conditions: alkene (1 mmol), m-CPBA (2 mmol), catalyst (0.06 g), DCM (3 mL) 4 h at room
temperature
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were obtained by treating the Fe3O4 NPs with TEOS (Fig. 2). The magnetic

properties of the Fe3O4 and Fe3O4/SiO2 NPs (B) were studied by a VSM at 300 k.

As shown in Fig. 3, both NPs have super paramagnetism at room temperature. Also,

no hysteresis phenomenon was observed in Fig. 3 and the saturation magnetization

values for Fe3O4 and Fe3O4/SiO2 NPs were 70.495 and 38.30 emu/g, respectively.

However, despite the considerable decrease of the magnetization of Fe3O4/SiO2 NPs

compared to Fe3O4, Fe3O4/SiO2 NPs can still be separated from the solution by

using an external magnetic field on the sidewall of the reactor. Fig. 4a shows the IR

spectrum of Fe3O4 with important vibration bands in 560–590 and 3,400 cm-1,

which are due to Fe–O and OH, respectively. According to the IR spectrum of

Fe3O4/SiO2 in Fig. 4b, there are several important vibration bands in 560–590, 954,

and 3,400 cm-1, which are due to Fe–O, Si–OH, and OH. The vibration bands in

755 and 1,100 cm-1 are due to Si–O–Si. These vibration bands (755, 954 and

1,100 cm-1) confirmed coating of the silica shell on the surface of the Fe3O4 NPs.

FeCl3, 6H2O

+

FeCl2,4H2O

Fe3O4
1. TEOS, EtOH, H2O

2. NaOH, r.t, 20 h

OH

OH
HO

HO

HO

HO
OH

OH

OH

H2O, PEG300

NH4OH, N2

 80 °C, 4 h

Fe3O4

(A) (B)

Fig. 2 Schematic illustration for synthesis of Fe3O4 (a) and Fe3O4/SiO2 (b). Reaction conditions:
FeCl3�6H2O (4.8 mmol g), FeCl2�4H2O (4.5 mmol), water (30 mL), NH4OH (pH 10), PEG (1 g), N2,
80 �C, 1 h (a) and Fe3O4 (2.1 mmol), ethanol/deionized water (50:5 mL), TEOS (0.20 mL), of NaOH
(10 wt%, 5 mL) 20 h at room temperature (b)
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Fig. 3 Magnetization curves of a Fe3O4 NPs. b Fe3O4/SiO2 NPs at 300 K. The Fe3O4/SiO2 NPs can be
separated easily with external magnet
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The XRD pattern of Fe3O4 and Fe3O4/SiO2 NPs were determined by powder

XRD. As shown in Fig. 5a, the pattern of Fe3O4 indicates a crystallized structure

at 2h: 30.2�, 35.4�, 43.3�, 53.6�, 57.5� and 63.1� which are assigned to the (220),

(311), (400), (422), (511) and (440) crystallographic faces of magnetite, which is

in good agreement with the literature value (JCPDS Card No. 19-0629). The XRD

pattern of Fe3O4/SiO2 presents almost the same feature as shown in Fig. 5b. The

broad peak at 2h = 15–27�, which depends on amorphous silica. The average

diameter of Fe3O4 was about 11 nm, while the diameter of Fe3O4/SiO2 was about

14 nm, which is due to the agglomeration of Fe3O4 inside nanospheres and

surface growth of silica on the shell. The SEM image of Fe3O4 shows the

Fig. 4 FT-IR spectra of a fresh Fe3O4 b the fresh Fe3O4/SiO2 catalyst and c the Fe3O4/SiO2 catalyst of
cycle 5
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Fig. 5 XRD pattern of a fresh Fe3O4 b the fresh Fe3O4/SiO2 catalyst which are in good agreement with
the literature value (JCPDS Card No. 19-0629)
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morphology and average product size of Fe3O4 NPs (Fig. 6a). The TEM images of

Fe3O4 and Fe3O4/SiO2 NPs are shown in Fig. 6b, c. The results showed the

average product size of Fe3O4 and Fe3O4/SiO2 NPs 10 and 13 nm similar to the

results of XRD patterns. The TEM images of Fe3O4/SiO2 NPs indicate the

successful coating of magnetic Fe3O4 NPs (Fig. 6c). The TGA curve of Fe3O4/

SiO2 shows a weight loss over the range of 90–160 �C of about 3 %. These losses

can be attributed to the loss of adsorbed water and dehydroxylation of internal OH

groups. The second weight loss step is over the range 250–590 �C, which can be

ascribed to even further decomposition of the materials. The total weight losses

are approximately 10 % (Fig. 7).

Fig. 6 SEM images of a Fe3O4, b TEM micrographs of Fe3O4 and c TEM images of Fe3O4/SiO2

Fig. 7 Thermogravimetric weight loss pattern of Fe3O4/SiO2NPs with temperature raised of 10 �C/min
and initial sample weigh of 4.9 mg
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Catalytic activity

In this study, Fe3O4/SiO2 NPs were tested to catalyze the selective oxidation of

alkenes using m-CPBA as an oxidant. Styrene was selected as model substrate and

treated with Fe3O4/SiO2 NPs in the presence of m-CPBA as the oxygen donor at

room temperature under different conditions. This reaction was best carried out

using 2 equiv. of m-CPBA for 4 h at room temperature in dichloromethane. The

catalytic activity of the Fe3O4 NPs was also investigated in the epoxidation of

styrene, and low yield (45 %) was observed. Blank experiments showed that Fe3O4

and Fe3O4/SiO2 NPs alone are inactive towards the styrene epoxidation. To

optimize the amount of catalyst, the reaction was carried out in the presence of

different amount of Fe3O4/SiO2 NPs (0.01–0.08 g) at room temperature. It was

found that 0.06 g of Fe3O4/SiO2 was sufficient enough to afford styrene oxide with

97 % isolated yield (Table 1, entry 6).

To explore the effect of solvent on the reaction, the same reactions were

performed in different solvents. Despite the moderate yields in some solvent such as

EtOAC and CH3CN (Table 2, entries 1, 2), the best conversion was observed when

the reaction was performed in DCM (Table 1, entry 7, 97 %).

Table 1 Optimization of the catalyst amount of Fe3O4/SiO2 NPs

Entry Catalyst amount (g) Time (h) Yielda (%)

1 0.01 4 15

2 0.02 4 25

3 0.03 4 40

4 0.04 4 58

5 0.05 4 78

6 0.06 4 97

7 0.07 4 98

8 No catalyst 4 8

Reaction conditions: styrene (1 mmol), m-CPBA (2 mmol), DCM (3 mL) at room temperature
a Determined by GC with a CBP5 column (Shimadzu 30 m 9 0.32 mm 9 0.25 mm)

Table 2 The effect of solvent on the conversion of styrene to the corresponding styrene oxide

Entry Solvent Time (h) Yielda (%)

1 EtOAC 4 75

2 CH3CN 4 60

3 H2O 4 15

4 EtOH:H2O 4 40

5 CHCl3 4 50

6 THF 4 35

7 CH2Cl2 4 97

Reaction conditions: styrene (1 mmol), m-CPBA (2 mmol) and catalyst (0.06 g) at room temperature
a Yields refer to GC yield
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The effect of different oxidants and additives in the epoxidation of styrene

The effect of various oxidants such as NaIO4, m-CPBA, UHP, H2O2, Oxone, PhIO,

PhI(OAC)2 and tert-BuOOH was investigated in the epoxidation of styrene. The

results showed that m-CPBA is the best oxygen source because this oxidant can give

better yield (Table 3, entry 1) while other oxidants such as UHP, H2O2, PhIO,

PhI(OAC)2 gave low yields (Table 3, entries 5–8). In addition, different equivalents

of the oxidant were tested, and the best catalytic activity was obtained with 2

equivalents of the oxidant which provide moderate source of oxygen for the

catalytic reaction. Also, dichloromethane was chosen as the best reaction medium.

Consequently, the optimum molar ratio of olefin to oxidant is 1:2.

The effect of various additives such as NMNO, PNO, NH4OAC, MI, Py and

imidazole was investigated in the epoxidation of styrene in the DCM/m-CPBA

system. Generally, additives such as NMNO and imidazole in the Mn(III) salen

reaction mixture facilitate faster reaction rates and higher epoxide yields. However,

in this test, the catalytic activity did not increase in the presence of PNO and other

additives.

The reactions were also carried out in 0, 40 and 60 �C. The yield was lower at

0 �C than at room temperature, but both of them showed good selectivity. When the

reactions were carried out in 40 and 60 �C, the reaction rates increased but the

selectivity of epoxides decreased. So, considering the economic point of view and

selectivity, room temperature was chosen as the best condition for this reaction.

Therefore, we employed the optimized conditions (0.06 g nanocatalyst, 2 mmol

m-CPBA and DCM at room temperature) for the conversion of several alkenes into

the corresponding products. Table 4 lists a group of alkenes that were investigated

by magnetic NPs catalysts. The catalyst showed excellent activity toward alkenes

oxidation with an average isolation yield of 95 %.

The efficiency of Fe3O4/SiO2 is compared in Table 5 with the earlier reported

ones for their styrene epoxidation activity, expressed in terms of selectivity and

yields for the styrene oxide formation. Usually, transition metals are not very highly

efficient catalysts for alkene epoxidation (Table 5, entries 1–12). The comparisons

Table 3 The effect of different oxidants on the conversion of styrene to the corresponding Styrene oxide

Entry Oxidant Time (h) Yielda (%)

1 m-CPBA 4 97

2 Oxone 4 65

3 tert-BuOOH 4 70

4 NaIO4 4 50

5 UHP 4 35

6 PhIO 4 25

7 H2O2 4 20

8 PhI(OAC)2 4 15

Reaction conditions: styrene (1 mmol), solvent (3 mL) and catalyst (0.06 g) at room temperature
a Yields refer to GC yield
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of the catalysts reveal that Fe3O4/SiO2 catalyst with faster reaction rate, higher yield

and selectivity shows better performance as compared to the earlier ones (Table 5,

entry 13).

We also investigated the possibility of reusing of recovered catalysts for new

reaction. Therefore, the catalyst was separated by external magnet, washed with

EtOH, dried and reused directly for a subsequent round of reaction without further

purification with no significant loss of activity, which validates its recyclability

(Fig. 8). Moreover, the IR spectrum of Fe3O4/SiO2 NPs after five reuses show that

IR bands of the original skeletal vibration of Fe3O4/SiO2 have no obvious change

compared to fresh catalyst (Fig. 4c).

Table 4 Epoxidation of different alkenes catalyzed by Fe3O4/SiO2 nanoparticles

Entry Alkene Time (h) Selectivity % T (�C) Yielda (%)

1 4 99 25 97

2 4 99 25 97

3 4 98 25 97

4 4 99 25 95

5

Cl

4 99 25 97

6 4 98 25 95

7 5 99 25 90

8 5 99 0 95

9 4.5 99 0 95

Reaction conditions: substrate (1 mmol), DCM (3 mL), m-CPBA (2 mmol) and catalyst (0.06 g) at room

temperature
a Determined by GC with a CBP5 column (Shimadzu 30 m 9 0.32 mm 9 0.25 mm)
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Conclusions

In summary, we developed a facile, highly efficient, and eco-friendly procedure for

the epoxidation of olefins in the presence of Fe3O4/SiO2 as a heterogeneous catalyst

at mild reaction conditions. The prepared catalyst is found to be efficient catalyst

for the selective epoxidation of olefins to their corresponding products. This

Table 5 Performance of different transition metal oxides for the epoxidation of styrene

Entry Catalyst Selectivitya (%) Yield of SOb (%)/ref.

SOb BzAc Others

1 NiO nanodisks 60.2 7.6 35.6 38.6 [21]

2 Fe3O4 74.1 22.8 3.1 31.9 [22]

3 NiO 86.2 1.7 12.1 44.6 [2]

4 CoO 73.1 0.1 26.8 34.6 [2]

5 MoO3 76.2 0.0 9.6 32.0 [2]

6 Au–Yb2O3 54.8 7.1 38.1 54.8 [23]

7 BaO/Ga2O3 58 0.0 42 58.0 [3]

8 Au/MgO 66.1 0.1 33.8 44.3 [24]

9 Au/CaO 60.2 6.3 19.2 32.3 [24]

10 Au/BaO 53.5 10.2 17.6 30.0 [24]

11 Au/SrO 44.8 11.7 26.0 23.7 [24]

12 Au/meso–Al2O3 69.0 23.0 8 84.3 [25]

13 Fe3O4/SiO2 99 0.0 0.0 97 (This work)

a Selectivity (%)of product = (concentration of product/total concentration of all products) 9 100
b SO = styrene oxide
c BzA = benzaldehyde

Fig. 8 A comparison of the catalytic activity of fresh and reused catalyst for alkenes epoxidation.
Reaction conditions: substrate (1 mmol), m-CPBA (2 mmol), DCM (3 mL), fresh or reused catalyst
(0.06 g) 4 h at room temperature
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heterogeneous catalyst is highly reactive in the epoxidation of a wide range of

alkenes such as linear and cyclic ones. Moreover, easy preparation, handling and

recovery, reusability and long-term stability of the catalyst, as well as excellent

yields in shorter reaction time under mild reaction conditions, which are some

advantages of this heterogeneous catalyst, make it a useful catalyst for further

applications in the area of catalysis.
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