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Abstract
Machine learning has been growing in importance in empirical accounting research.
In this opinion piece, I review the unique challenges of going beyond prediction
and leveraging these tools into generalizable conceptual insights. Taking as spring-
board “Machine learning improves accounting estimates” presented at the 2019
Conference of the Review of Accounting Studies, I propose a conceptual framework
with various testable implications. I also develop implementation considerations
panels with accounting data, such as colinearities between accounting numbers or
suitable choices of validation and test samples to mitigate between-sample correla-
tions. Lastly, I offer a personal viewpoint toward embracing the many low-hanging
opportunities to bring the methodology into major unanswered accounting questions.
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In their new book, The End of Accounting and the Path Forward For Inventors and
Managers, Baruch Lev and Feng Gu provocatively argue that accounting has not kept
pace with secular changes in economic structures. With the decline in the importance
of controlling physical means of production, the value of businesses is increasingly
driven by intangibles assets - a knowledge economy in which know-hows, customers,
brands, and networks explain investor value. Their analysis further takes stock of the
growing disconnect between markets where antiquated procedures focus on minu-
tia of historical events of no interest to investors, bury relevant information into
aggregated reports, and are often contaminated by managerial judgment.

Baruch Lev is a co-author of this year’s must-read paper at the Review of Account-
ing Studies 2019 conference (Ding et al. 2019) and that we should see similar themes
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comes as no surprise. This begs the question: Can machine learning help provide
better high-quality forward-looking information? Indeed, interests in the accounting
community have been growing to integrate machine learning as a set of reporting
tools to predict, diagnose, and improve reporting quality, with various new studies
showing the quality of machine learning to predict errors and irregularities (Perols
2011; Perols et al. 2017; Bertomeu et al. 2019; Bao et al. 2019), measuring infor-
mation content (Li 2010; Barth et al. 2019), analyzing financial statements (Binz
et al. 2020) or improving audit procedures (Gerakos et al. 2016; Sun 2019), among
many others.

In this essay, my objective is twofold. First, leveraging on the insights from Ding
et al. (2019), I will describe a new research paradigm that is slowly emerging from
the application of machine learning to accounting research. I will argue that, while
the tools of machine learning are designed to optimize prediction, as René Thom
puts it, “Prédire n’est pas expliquer,” i.e., to predict is not to explain, and our role
as social scientists is to draw new theoretical insight from a better understanding of
complex data. To do this, I will develop a simple conceptual framework to explain
the performance of machine learning, show how perspectives of machine learning
can inform accounting theory, and point the curious reader to newly available tools
and methods to interpret the models.

My second objective is more practical. The use of machine learning is new in
accounting, and, with it, come new challenges in fitting tools that were initially not
designed from the type of panel or time-series data typically obtained in accounting. I
will discuss some of the challenges in applying these tools in accounting datasets and
develop common approaches adopted in the existing literature. Then I will illustrate
(by example) how to implement a simple machine learning algorithm to eliminate any
barrier to entry for researchers interested in bringing machine learning into their own
research. Supporting Python code will be distributed on the website of the Review of
Accounting Studies.

1 Beyond Prediction

1.1 A Conceptual Framework

Machine learning can be thought as an algorithm which outputs an estimator gML(ht )

of a particular quantity of interest rt , given an information set ht observable by an out-
side user (e.g., regulator, investor, etc.). Suppose that the machine learning algorithm
aims to efficiently estimate the mean of this quantity given all known information:1

gML(h
p
t ) = E(rt |hp

t ). (1)

1This would be desirable if, for example, a decision-maker bears a quadratic loss E((g − rt )
2|ht ) when

making a decision based on g. This representation is a normalization to the extent that we can always define
rt as the quantity whose first moment is of interest to a decision-maker: if the decision-maker has a loss
function E(L(g, rt )|ht ) with an optimum given by the first-order condition E(L1(g

ML(ht ), rt )|ht ) = 0,
we can redefine the (implied) quantity of interest as r ′

t ≡ L1(g
ML(ht ), rt )+ gML(ht ), which satisfies (1).
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Management, on the other hand, applies a different estimation procedure, which
could be driven by accounting procedures or their own judgment and incentives, and
makes an estimate gm(hm

t ) to maximize

gm(hm
t ) ∈ arg max

g
Em(V (g, rt )|hm

t ), (2)

where V (.) is the objective of the manager, Em is a subjective expectation, and hm
t is

the manager’s information set when making an estimate.
To set ideas, consider the reporting problem examined by Ding et al. but that one

can easily apply to any accounting estimation problem. Table 1 zooms in on the
insurance report issued by Lloyds for 2002–2007. Lloyds estimated that, in 2002, that
$7.463 (millions) would be paid off on claims occurring in 2002, of which $5.354 was
settled while a remaining $2.109 were accrued as liabilities. An incremental $6.884-
$5,354=$1.530 was paid off on these claims in 2003. At this point, the majority of the
claims would be considered settled or unlikely to trigger payment, so the company
reduces its assessment of total repayments down to $7.270, reducing its remaining
liability to $7.270-$6.884m=$.386. Ultimately, within a six-year time frame, only
$7.111 was paid, and management over-estimated payments by gm(hm

t )−rt=$7.463-
$7.111=$0.352, a hair below 5% of actual payments.

Ding et al. consider different algorithms gML(ht ) to improve these estimates using
information ht that could be used as an input to make these estimates, e.g., premi-
ums charged, settlements and payments made as well as a number of company and
macroeconomic characteristics. Obviously, we would expect machine learning to do
worse because an outside user does not have the field expertise of the insurer to make
quality estimates. Shockingly, Ding et al. discover a very different pattern in the data.
Not only is gm far from a sufficient statistic to predict settlements but, in four out
of five business segments, gML has smaller out-of-sample errors than gm even if we
do not include management estimates. When included into the algorithm, manage-
ment estimates had little incremental predictive power and are not always the most
important predictor of settlements.

These results decisively support the theory that users would be better off making
their own objective estimates over management estimates, lining up with the inte-
grated reporting framework in The End of Accounting, which would empower users
with the inputs of managerial estimates. Yet what it does not say is what may be driv-
ing such higher, and predictable management errors in the form |rt − gML(h

p
t )| <

Table 1 Incurred and Paid Losses for 2002 Claims at Lloyds

2002 $7.463 $5.354
2003 $7.270 $6.884
2004 $7.064 $6.987
2005 $7.178 $7.045
2006 $7.169 $7.060
2007 $7.135 $7.111

2002
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|rt − gm(hm
t )|. Below, I decompose errors in three broad economic explanations,

whose implications for users and regulators may be quite different.
First, hm

t may be coarser than h
p
t because the management estimate ignores some

of the public information used in the algorithm. My (admittedly subjective) con-
jecture is that this is less the result of ignorance or availability of information than
difficulties in incorporating information that does not fit well into a formal model or
a set of accounting procedures. For example, it is well-documented that even sophis-
ticated financial experts do not fully incorporate all macro news into their estimates
(Hugon et al. 2016). Further, accounting procedures used to generate estimates are
often anchored on historical realized settlements rather than incorporating into a sta-
tistical model all variables known to correlate to the variable of interest. I will refer
to this explanation as the lost information hypothesis (A).

Second, the manager may be using an incorrect statistical model, given a partic-
ular information set, such that the subjective expectation Em(.) �= E(.). Consider a
manager with a miscalibrated prior anticipating a high conversation of claims into set-
tlements; the manager would accrue gm(hm) = Em(rt |hp

t ) > E(rt |hp
t ). This type of

miscalibration creates patterns detectable dynamically because, as uncertainty real-
izes, the estimate will predictably drift toward the true value, over-estimating (on
average) settlement amounts over the entire path. Naturally, many other errors could
cause the statistical model to be misspecified, such as relying too much on recent
experience, putting weight on signals irrelevant for the decision at hand or missing
important interactions between variables. In accounting, these errors can occur as a
result of behavioral biases but, of greater relevance to accounting regulators, also the
procedural rule books that govern how estimates are made and audited. For later use,
I refer to this collective set of explanations as the bad model hypothesis (B).

Third, managers face their own objectives that need not be fully aligned with
investors. If the manager’s objective function is not set to minimize a squared error
V (g, rt ) = −(g − rt )

2, the management estimate gm solving (2) need not be
Em(rt |hm

t ) and may exhibit greater estimation errors than gML(ht ), even if the infor-
mation sets hm

t = ht are identical and the manager uses a correct statistical model
E = Em. To illustrate this further in a different context, Gu and Wu (2003) show that a
financial expert forecasting to minimize absolute errors would issue estimate accord-
ing to the median rather than the mean. When choosing accruals, many complex
considerations take place, such as the effect of accruals on income statement accounts
used to assess valuation and performance or the avoidance of under-reported liabil-
ities that could later cause regulatory intervention or lawsuits (Dechow and Skinner
2000; Dechow et al. 2010). I will refer to these explanations as the user misalignment
hypothesis (C).

1.2 Causes of Management Errors

How do we distinguish between lost information (A), bad model (B) and user
misalignment (C) without detailed institutional of the process through which the esti-
mates were made? As it turns out, machine learning needs not end with improved
prediction but can give us pathways to open the black box of what led to bad
estimates.
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Consider the lost information hypothesis (A). This hypothesis can be tested in a
fairly straightforward manner by comparing the variables that enter the construction
gML versus those variables that enter the construction of gm. While the model that
led to gm is unobservable, one may decompose gm by predicting the management
estimate as a function of various variables important in gML, i.e., using machine
learning to construct:

gML,m(ht ) = E(gm(hm
t )|ht ). (3)

The existence of variables important in gML but not gML,m(ht ) would suggest that
these variables have been omitted in the manager’s estimation model.

Certain features of gML can also suggest lost information. Comparing models with
versus without management estimates, variables that are not used in the management
estimate are likely to retain their importance or become relatively more important,
while variables being considered by management should lose most of their impor-
tance after incorporating management estimates. Finally, given prior research, certain
types of information are less likely to be part of the construction of management
estimates because, institutionally, procedures do not make adjustments for these vari-
ables. With this logic at hand, let us apply it to the insurance environment of Ding
et al.. The ranking of variables by importance appears, by and large, unchanged by
the inclusion of managerial estimates, suggesting that no important variables seem to
be fully omitted from the management model. Further, among all variables used by
Ding et al., the two most likely variables not to take part in management procedures
to estimate payments are GDP growth and inflation. GDP growth would require a
model of how changes in the aggregate economy translate into claim severity, and
inflation has remained at unprecedented historically low and stable levels. Overall,
the evidence seems to rule out lost information as a significant cause of forecast
errors in this environment.

The bad model hypothesis (B) is more difficult to assess because we do not directly
observe the model used by management, and, even if we could survey management,
it would be likely based on mental processes that map inputs into predictions that
are neither quantifiable nor machine-readable. To address this difficult problem, let
us take a seemingly unrelated parenthesis to delve into interpretation of machine
learning models.

Unfortunately, there is a price to pay in exchange for better predictions, in the
form of models that do not have closed-form, and thus how a prediction is made can
be obscure. Random forests and gradient boosted regression trees, two well-regarded
algorithms featured in Ding et al., are examples of ensemble learning methods that
combine the prediction of a large number of trees (around 100 trees in Ding et al.
but up thousands of trees in applications with larger data sets). There are, however,
approaches available to researchers to decode what lies behind a prediction and Ding
et al. shall serve us as an example generalizable to any setting. If gML(.) is suf-
ficiently effective to have filtered a sufficient portion of the noise, using simpler
models to analyze the predictions gML(.) with a simpler (closed-form) model

gML,s(ht ) = E(gML(ht )|ht ) (4)
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will help clarify how the model makes its prediction. One example of this approach
would be to run a regression with suitable (but limited) interaction terms using
gML(ht ) as a dependent variable.

Computer scientists have also contributed additional tools to conduct this type of
analysis more systematically. InTrees (Deng 2019), a short-hand for “interpreting tree
ensembles,” provides a toolbox for generating simple actionable decision rules as a
function of a subset of variables. When applied to the Ding et al. setting, one of the
decision rules generated by InTrees involves a management estimate below $124.54,
assets below $385.154, current settlements below $1.270 for a predicted cumulative
payment of $1.330. InTrees can provide a large number of such rules, partitioning the
sample into homogenous groups whose characteristics inform the researcher about
how predictions.

Another approach, illustrated in Fig. 1 is to run a weak learner (i.e., a tree with
few branches) on a model with management estimates to identify which interac-
tions seem to add explanatory power to management estimates.2 Along this weak
learner, the management estimate is the first variable that is used to predict settle-
ments, with a cutoff at $1.25 separating high and low expected settlements. For high
expected settlements, the weak learner further subdivides the sample as a function
of (solely) management estimates, perhaps consistent with more effort in produc-
ing estimates for larger magnitudes. For moderate management estimates, however,
current settlements become incrementally informative.

Now, what do we learn about the bad model hypothesis (B) from a better under-
standing of the inner workings of gML(ht )? The subgroup identified by InTrees
suggests that among observations with low managerial estimates, lower current
settlements may serve to further narrow down the predicted cumulative payment
(Indeed, InTrees favors using current settlements over a finer cut on managerial
estimates.) The weak learner in Fig. 1 points to a similar insight, implying, for man-
agerial estimates that are below $1.250 but higher than $0.27, actual settlements
serve to make better estimates. Both analyses point to specific regions of managerial
estimates in which the manager may be using a bad model.

Last but not least, an economic perspective on accounting naturally points to the
many incentives mechanisms that create a misalignment between the demand for
information by users, and preparers’ choice to supply information with contract-
ing, financing, and regulatory consequences. Without further tests, this misalignment
would be perceived as part of the bad model hypothesis, and hence additional theory
is required to disentangle estimation errors unrelated to personal motive, from biased
estimates that serve a particular reporting objective (C).

Identifying (C) requires theory about the causes of the misalignment that would
drive managerial discretion. Unfortunately, for this particular purpose, the private
nature of most companies examined by Ding et al. makes this question difficult to
answer, as we do not observe well the financial stains borne by the company, the
compensation contracts, or stock market incentives. Yet, even in this context, vari-
ables that would seem plausibly irrelevant to a prediction exercise, given the more

2I thank Ting Sun for sharing this analysis for purposes of discussion.
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Fig. 1 Predicting cumulative settlements (a weak learner)

disaggregated variables, but may capture a reporting incentive may provide evidence
of (C). If an insurance company features more stress on its capital structure due to
increasing assets and declining liabilities, pressures to make more aggressive reports
would increase. Ding et al., however, show that aggregate accounting variables do
not rank high in terms of importance.

To generalize this approach, machine learning provides a method to test more
systematically for biases correlated to incentive variables, by regressing management
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errors gm(ht
m) − gML(ht ) as a function of incentive determinants Xt :

gm(ht
m) − gML(ht ) = β′Xt + εt . (5)

This is inherently a traditional research design that compares reports to a “normal”
predicted level gML(ht ). Machine learning can dramatically improve over the quality
of this approach by offering a rich, nonlinear model for this expectation. Interest-
ingly, when running this approach, Ding et al. find that errors are correlated to many
variables likely to capture incentives: tax shields, violation of regulated ratios and
small profits all appear to be correlated to management errors. To summarize, the
model suggests that errors would be at least partly driven by user misalignment.

2 Steps intomachine learning

2.1 Fact and Fictions

Most researchers in accounting would be familiar with classical statistics, and, while
there are many texts that cover machine learning, it is helpful for us to ease the tran-
sition to machine learning by building a bridge from statistics to machine learning.
Let us begin with a few misconceptions about machine learning.

Machine learning is about prediction, while statistics is about interpretation Accu-
rate prediction is an active subfield of statistics, and research in this area offers
many tools commonly used for macro data or high-frequency series, see, e.g., Elliott
and Timmermann (2013). Even when not explicitly modelling prediction, the word
“interpretation” in econometrics refers to identifying the true causal mechanisms that
can predict outcomes out-of-sample. For counter-factual experiments that are not yet
observable, because a regulator has not yet passed a regulation or the researchers aim
to predict and avoid, certain bad outcomes before they occur, the assumptions behind
the causal model provide the means to accurate prediction (Bertomeu et al. 2016).

Machine learning does not require functional forms, while statistical models require
user-supplied functional forms Many models used in machine learning use func-
tional forms, e.g., linear regressions are a conventional machine learning algorithm.
Vice-versa, many statistical models aim to identify smooth relationships between
dependent and independent variables that do not require a parametric knowledge of
distributions or functional forms (Pagan and Ullah 1999), and applied researchers
commonly augment models with interaction and polynomial forms to capture
nonlinearities.

Machine learning does not require a mathematical formalization, while statisticians
specify the data-generatingprocess Statistics has a long tradition of theoretical work
examining the theoretical properties of estimators. However, this is primarily a con-
sequence of the maturity of the area, which has given researchers time to develop
a complete theoretical background for most estimation procedures. But whether the
researcher explicitly specifies a data-generating process, the scientific method would
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assume the existence of an objective data-generating process, which implies the
existence of (objective) mathematical properties for both standard estimators and
machine learning estimators. We do not know yet the asymptotic properties of most
common algorithms in machine learning, nor do we have mathematical guidance to
theoretically choose between algorithms or quantify the quality of predictions, but
this is the object of ongoing research (Wager and Athey 2018).

Machine learning must balance learning versus overfitting, while statistical models
do not need to consider overfitting Many statistical models can be prone to over-
fitting and have explicit parameters that would overfit the data if left unchecked.
Any applied researcher, for example, would be familiar with how firm fixed effects
can absorb the economic variation of interest in short panels and how including
too many irrelevant variables or interactions can mute estimates and increase stan-
dard errors on important estimates. In nonparametric kernel estimation, the choice of
bandwidth guides whether the model uses very few observations to fit an expectation
or a density, potentially overfitting a sample.

Having noted these similarities, even if we view machine learning as a subbranch
of nonparametric statistics, there are a few special areas of emphasis that make it
a unique tool for applied researchers. I review these here in terms of the general
philosophy of machine learning.

Most statistical estimators follow simple algorithms that can be written down
in a few textbook equations. Machine algorithms are much more complex, and
their implementation can take the form of many steps –ensemble methods worsen
this issue by combining multiple algorithms. Computer scientists argue that this
approach, which might appear as a series of adhoc fixes compared to standard statis-
tical methods, yields models in which the sum-of-the-parts is superior to individual
pieces. The proof of concept is not in terms of proving mathematical results but in
terms of actual performance on classic decision problems, from classifying faces
and handwritten text, to medical diagnosis or predicting search results. This is a
philosophical point of dissent with classical statistics: when evaluating the perfor-
mance of an approach, computer scientists would tend to focus on practical decision
problems in a sample, which includes assessing the performance on a subset of the
sample, while, perhaps more ambitiously, statisticians and econometricians would
assess performance from generalizable mathematical properties of the sample.

Both approaches have their limitation, and it is neither my expertise nor my pur-
pose to settle debates over mathematics versus simulation. As to using out-of-sample
data to evaluate a model, the idea is not new in statistics and parallels bootstrap meth-
ods, which use subsampling to characterize properties of a model (Horowitz 2001).
Using these methods is usually conceptually easier for models whose properties are
not known to the researcher because it simply involves replicating the steps of an esti-
mation on a subsample. Perhaps this democratizes complex econometric problems
by sidestepping the need to analytically derive properties of estimators, and using
(instead) the out-of-sample data to examine performance or precision of estimates.
Furthermore, even in models whose asymptotics are mathematically known, these
methods tend to yield more accurate estimates because either the data may not fully
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satisfy the theoretical requirements or asymptotics are not the best approximation for
a finite sample.

However, failing to use any mathematical guidance also comes with its own lim-
itations, some intuitively apparent and other less so. Most machine learning features
a large set of hyperparameters that guide the degree of overfitting. It is not compu-
tationally feasible to search over the entire space of such parameters, so researchers
would use very coarse grids unlikely to select an optimal model or rely on recommen-
dations that were obtained in a different sample. A less visible limitation is that there
is often no true clean out-of-sample whose errors are uncorrelated to a subsample. In
panel datasets, we would expect both correlations within firms and within periods,
and even if such were the only source of correlations, selecting multiple subsamples
with separate firms and periods would remove most of the sample.3 In addition, with-
out any structure, there is no observed out-of-sample that will allow the researcher
to assess the accuracy of a model after agents learn from the model and adjust their
expectations (Chemla and Hennessy 2019).

In short, the many algorithms used in machine learning have leveraged from
growth in computing, which provides a (partial) solution to not knowing the math-
ematical structure of an estimator. Even considered as algorithms, many standard
nonparametric methods suffer from a curse of dimensionality, where adding too many
variable or interactions would become impractical in building the model or require
too many observations. Unlike standard models, the algorithms will deliver results,
admittedly whose quality will be a function of the data, that have appeared robust to
many data-generating processes and therefore can be essential tools for practice.

2.2 A brief tutorial

In this section, I will illustrate first steps to a machine learning exercise in a manner
that would seem natural and straightforward to any researcher with basic experi-
ence in empirical research. Supporting code in Python is provided in the Appendix
for random forests. (The code can be adjusted with minimal changes to other com-
mon algorithms.) In my experience, over various accounting datasets, random forests
consistently rank among the top algorithms while involving a lower computational
burden and a less finicky tuning process.

For purposes of better linking to textbooks for readers interested in delving deeper,
I will use here the terminology used by computer scientists. To avoid confusion, I
map the most commonly used concepts in Table 2 below.

Consider a dataset (yt , Xt )t∈T , where yt is a response to be predicted and Xt is
a vector of features. We are interested in building a model gML(.; θ), where θ is

3To illustrate, suppose that we (minimally) wish to separate a sample into three subsamples, a training
sample to fit the model, a validation sample to select the hyperparamaters of the model, and a test sample
to assess performance. The original firms are firms observed over a full time-series. To select these sub-
samples in a manner that did not imply any time or firm-level correlations, we would have to first divide
periods in subsamples 1, 2 and 3 and then subdivide the firms in groups a, b, and c, dividing the entire
sample as 1a, 2b and 3c but dropping all other subgroups to avoid correlations. Assuming each group is
equally sized, this would imply a data loss of 2/3.
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Table 2 Comparative terminology

independent 
variable, regressor feature

dependent variable response, target 

a set of (hyper) parameters for this model and that assigns a prediction gML(X; θ)

for any X.

Step 1: Partitioning the Sample. The first step is to partition the sample into three
subsamples Ttrain, Tval and Ttest , where Ttrain will (initially) serve to build
gML(.; θ) for any given θ , Tval will serve to assess the best parameters θ∗
and Ttest will be used to evaluate the performance of the estimator. In an
ideal implementation, the researcher should choose these subsamples such
that the errors terms in

yt = gML(Xt , θ
∗) + εt (6)

are independent.
In panel data commonly used in accounting research, unfortunately,

creating subsamples with independent error terms is infeasible: at the mini-
mum, observations in the panel are likely to feature correlations within-firm
or within-time. The greater this correlation, unfortunately, the more the
model is likely to fit noise specific to the firm or time and incorrectly
report illusory high performance in validation or test samples because it
inadvertently fits the correlated errors in these samples.

A partial solution to this problem is to partition the sample by time, with
earlier examples assigned to Ttrain, later examples assigned to Tval and the
most recent examples assigned to Ttest (Bertomeu et al. 2019; Bao et al.
2019). A researcher using this method in an accounting panel should note
that this an imperfect solution that likely favors algorithms more prone to
overfitting: it ignores within-firm or within-industry error correlations, and,
even between periods, noise terms in a time-series are rarely independent.
The main advantage of this method, on the other hand, is to reduce the com-
putational burden by using a single validation sample Tval and ensuring (by
construction) that future information is not used when predicting over a par-
ticular period. A common choice is to set aside 10% of the sample in Ttest

and assign an additional 20% of the remaining examples as validation Tval ,
which ensures that the model is fitted with at least 72% of all examples.

A second approach, widely adopted in computer science and used by
Ding et al., is to use k-fold cross-validation. Examples that were not
assigned to Ttest are partitioned into k subgroups, and the performance of
the model is measured over k iterations, varying which subgroup is assigned
to Tval , with overall performance being measured as the average over all
assignments. Cross-validation avoids a performance assessment capturing
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contextual events of the validation sample. For example, when selecting
Tval , according to the chronological method used earlier and with (often)
few periods in the test and validation samples, performance may reflect
the particular macro context of these periods rather than generalizable per-
formance in future periods in which this model may be used. In addition,
k-fold cross-validation can be combined to sampling by firm or by industry,
to mitigate the effect of within-firm or within-industry correlations.

While some studies make recommendations about which of these meth-
ods is suitable, I am not aware of any theoretical or simulation study
providing us with a comparative assessment of each approach. It is nev-
ertheless worth emphasizing that this problem will provide an unfair
advantage to methods likely to overfit these errors. Given a large enough
dataset and solely for purposes of comparing algorithms, a supplementary
test may be to construct Ttrain, Tval and Ttest by requiring that a period or a
firm be included only in one group. Unfortunately, this will usually require
dropping a majority of examples. Consider a balanced panel (yit , Xi,t ) with
N firms and T periods and suppose we partition the sample by allocating
a1 (resp., a2) firms and b1 (resp., b2) periods into the training (validation)
sample, which involves dropping all examples with firm or time that already
appear in a different group; see Fig. 2.

A good choice of (ai, bi)i=1,2 is to maximize the fraction of the sample
that can be used, by optimizing:

� ≡ a1b1 + a2b2 + (1 − a1 − a2)(1 − b1 − b2), (7)

subject to a constraint that the training sample, used to fit the model and
requiring a greater sample size, include a certain fraction of the sample. For
example, we might set

a1b1 = z0a2b2 = z0(1 − a1 − a2)(1 − b1 − b2), (8)

where z0 > 1 is a constant capturing the size of the training set. This
problem can be solved analytically and yields

a1 = b1 = 2
√

z0 − z0

4 − z0
(9)

a2 = b2 = 1

2 + √
z0

. (10)

Setting z0 = 8 (which approximately matches the relative size of com-
mon training sets) implies that that 58.6% of the firms and time periods
are assigned to the training sample, and each of the remaining 20.7% are
assigned to validation and test, respectively. Even using this optimal break-
down, a majority of all examples (exactly 57.1%) in the off-diagonal must
be dropped.

Step 2: Tuning the model. All machine learning algorithms will have a vec-
tor of parameters θ that need to be tuned. Studies will often provide
guidance as to good choices of parameters, and software implementa-
tions of these algorithms will typically provide reasonable default values.

1146



Machine learning improves accounting: discussion, implementation...

Fig. 2 Partitioning by firm and time

Unfortunately, while some reliance on recommended or default values is
unavoidable, this should be done with caution as such guidance is usu-
ally obtained from datasets or simulations that have very little in common
with accounting datasets. Up to the constraints of computational feasibil-
ity, it is therefore desirable to (re)tune as many of the primary parameters
as possible.

To tune a model, a set of models gML(., θj ) are built using the exam-
ples in Ttrain over a grid (θj )j∈J . The performance of each model is then
measured using only examples in Tval . Two commonly used metrics are the
mean-squared error for continuous responses and the area-under-the-curve
for binary responses. There are, of course, many other reasonable choices,
such as mean absolute error and F1 scores, among others, whose discus-
sion goes far beyond our current purpose, see, e.g., Mohri et al. (2018) for a
thorough treatment. The selected parameter θ∗ maximizes performance on
the grid (θj )j∈J .

Step 3: Building and Assessing the Model. The model gML(., θ∗) is then built with
both Ttrain and Tval to use all examples except those assigned to Ttest .
We can compare the in-sample performance of the model to its out-of-
sample performance when used to predict examples in Ttest . The difference
between in-sample and out-of-sample performance can indicate the extent
to which an algorithm tends to overfit data.

For binary response models that classify examples, the receiver operat-
ing characteristic (ROC) curve aims to graphically represent the trade-off
between predicting observations with yt = 1, “true positives”, i.e., the

1147



J. Bertomeu

fraction of all true positives in the population (recall), versus the rate of false
alarms, i.e., the probability that yt = 0 is a predicted as a positive. On its
own, an algorithm gML(., θ∗) provides a score that captures the propensity
of an example to be a true positive. A classification can be made with a cut-
off on this score. If the cutoff is arbitrarily low (high), both recall and false
alarms will be one (zero) because all examples will be predicted as positives
(negatives). The ROC plots the locations of false alarms and recall for any
possible classification cutoff. The northwest direction in this plot indicates
a better algorithm on both recall and false positives. Decision problems in
which inspections are costly or difficult tend favor the west side of the ROC
curve as more relevant, while large damages from failing to detect a true
positive suggest focusing on the east side of the ROC curve.

In an accounting context, we should keep in mind that neither ROC nor
other summary vizualization tools need to be designed to solve a practical
problem and ultimately the raw predictions would likely be more helpful
to a decision-maker. Ding et al. offer a good illustration of this problem:
users of accounting information may not weigh equally all types of errors.
An under-estimation of accruals may be more important, especially for a
firm in difficulty or facing risks of lawsuits. Similarly, insurance regulators
may be targetting a particular buffer of capital so that the insurer does not
only accrue future payments on average but also for various stress tests.
Hence, without more experimentation on reasonable decision problems and
a more general measure of informativeness, Ding et al. cannot conclude that
a lower absolute or mean-squared error “improves” accounting estimates.

Step 4: Interpretation and Analyses. In addition to context-specific interpretation
tools in Section 1.2, there are several additional analyses that can provide
additional insight. Most machine learning tools allow the researcher to rank
features by how much they contribute to the model. There are, however,
some limitations when relying solely on feature importance.

First, the ranking of features does not provide information about the directional
association between a feature and the response. In a complex learning model, this
association could be positive for certain examples while negative for others, so visu-
alizing the role of a feature is more difficult than in a traditional linear model. While
the importance of features can help focus on a subset of the most important features
in a dataset with a large number of features, it can be useful to present a correlation
matrix with the response, and compare averages and medians of a feature for true
positives versus false positives.

Second, a notable problem specific to accounting is that many of the features are
likely to be colinear, due to the mechanics accounting process (e.g., assets equate
to liabilities and equity, and retained earnings increase by the current period income
minus distributions). In my experience, colinearity problems in machine learning can
be pernicious because they are common but difficult to systematically diagnose. To
give an example, suppose we use assets and market capitalization as two size features,
and then we use return on equity and price to earnings ratio. It is easily seen that at
least one of these four features is a function of the three others, causing colinearity in
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the procedure. Unlike linear regression, most machine learning will complete without
error, even given perfectly colinear data, churning out various performance metrics
and tables of importance of features, because learning will occur by haphazardly
picking features and transformations of these features. Even for partial colinearity,
the common diagnostic of badly estimated coefficients is not immediately visible,
given that the approach does not yield closed-form coefficients or standard errors.

Should the researcher worry about colinearity if the out-of-sample performance of
the model is sufficient? Unfortunately, our ability to interpret variables and under-
stand a model is lost with colinearity: variables that capture economic concepts
important in the analysis can fall at the bottom of a table of importance if the set of
features includes many correlated variables. Below, I make several (simple) practical
recommendations that may help ex-ante mitigate this problem.

1. When starting from a kitchen sink approach to the inclusion of features in a
model, filter out any feature that can be written as a function of one or more
included features.

2. Limit the model to few features capturing size, i.e., variables such as revenue,
assets or market capitalization in accounting, and scale other features by one of
these features to conceptually separate the effect of size.

3. Consider winsorizing, log transforms, or dividing by standard-deviations or
max − min for variables whose histograms cannot be visualized well or that have
significant outliers. Features with poor statistical properties can be perceived by
an algorithm as near constants with similar problems as colinearity.

4. For groups of variables likely to be colinear even after 1–3, consider assessing
importance by summing the importance over groups of variables. For example,
even if colinearity between accounting variables makes it difficult to assess the
importance of an individual accounting variable, one may assess the cumulative
importance of accounting versus market variables. For example, Ding et al. show
that, while management estimates are usually more important than other features,
the cumulative importance of all business-line features is typically greater.

2.3 Caveats, Tools and Tips

I discuss below a number of additional implementation notes that, while simple,
can save time and facilitate the broader use of machine learning tools by reducing
technical barriers to entry.

Parallelizing The main obstacle to building a model is the tuning step, which may
involve building the model over a very large number of grid points. For example, a
five-point grid over three parameters requires at least 125 models –this is a lower
estimate given that the search space is unknown and the researcher would have to
(ideally) change the grid so that θ∗ lies in one of the 27 interior values of this grid! For
many algorithms, up to five parameters need to be tuned, and some models, such as
neural networks, have a potentially infinite number of layers to tune. Since machine
learning is also more computing intensive, tuning can be a major obstacle.

Fortunately, many implementations of common algorithms have embedded paral-
lelization that can leverage all resources of a machine. Typically, even machines that
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are not designed for machine learning would have multiple cores per CPU and multi-
ple threads (units of execution) per core. To set ideas, an Intel i7-6950X has 10 cores
and 20 logical threads for a maximum of 20 workers. Many ensemble learning meth-
ods, such as random forests, parallelize very well because the model subcomponent
can be built independently. Even for algorithms that do not allow such parallelization,
the grid search required to tune the model can be parallelized with a few lines of code.
The code provided in the Appendix gives an example of both types of parallelization.

Libraries All common statistical suites include extensive libraries that, when used
to their full extent, have sufficient power to build models on standard accounting
datasets. The Python library scikit-learn offers one of the most extensive set of
choices with reliable high-speed computing and ease of use. However, in my own
work, I found implementations in Stata, Matlab and R to have very good performance
as well, making it a matter of personal preference. Stata provides better integration
with Stata’s well-regarded data preparation language and visualization; R benefits
from its large user base and a set of algorithms that is as extensive as Python; Matlab
integrates better with applications to modelling decision problems.

Comparing algorithms In many applications, multiple algorithms may be potential
candidates for a prediction model, and the researcher may be faced with the task
of choosing the most suitable algorithm. By and large, more complex “ensemble”
algorithms tend to outperform simpler ones but at the cost of higher computing needs
and less easily interpretable predictions. Nevertheless, to choose across algorithms,
it is possible to think about the algorithm choice as a generalized tuning problem:
by comparing performance in a validation sample across algorithms, the researcher
can choose the best model. This method comes with a caveat, as (because fitting
is optimized on the validation sample) it will give an advantage to algorithms more
prone to overfitting. Indeed, for a fair comparison to models that do not overfit, it is
also useful to compare the performance of the best algorithms to algorithms with very
little overfitting (i.e., whose performance in the training sample is similar to perfor-
mance on the test sample) and consider supplementary tests along the lines of Fig. 2 .

Contamination The purpose of the research agenda on machine learning should not
be to show to machine learning performs better than traditional methods; indeed,
knowing when machine learning is inferior to simpler interpretable methods also
offers a contribution. However, it is clear that researchers using machine learning
may be, even unconsciously, biased to favor machine learning. To avoid this, I rec-
ommend strict (documented) research procedures to select the test samples before
any assessments of performance are known. In fact, ideally, a secondary test sample
should be revisited based on new data after a study is complete.

Classification versus Regression Many algorithms come with two versions: classifiers
designed for discrete responses and regression algorithms designed for continuous
responses (of the form used by Ding et al.). For binary response variables, both mod-
els will imply a score which can be mapped to probabilities of true positives and form
of cutoffs and classify examples, so the difference between the approaches is usually
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more subtle than just assigning a method as a function of the nature of the data. In my
experience, I found that classification methods work better when evaluating based on
area-under-the-curve and F1, i.e., performance metrics that organize examples within
(reasonably) balanced samples. However, regression methods when trying to accu-
rately predict the probabilities of true positives or true negatives for more rare and
unusual events. To summarize, the choice between methods is not solely a function
of the type of data but also a function of the intended use of the predictions.

3 Perspectives for future accounting research

As it is uncontroversial that the tools of machine learning are revolutionizing empir-
ical research, I shall dedicate the final parts of my discussion to opportunities for
future research that continue the research path opened by Ding et al..

(i) Embracing the training, validation and test mindsets in empirical research. A
common criticism of empirical research is that, because there are too many
degrees of freedom in choosing the empirical model to be estimated (fixed
effects, included or omitted variables, specification, etc.), the asymptotic dis-
tributions of conventional test statistics are invalid and provide far less than
the claimed 1% or 5% confidence levels. This model multiplicity is inherently
an overfitting problem that can be solved using the tools of machine learn-
ing. Using validation and test samples to choose which model to estimate,
even when restricting to classes of interpretable linear models (i.e., which vari-
ables should be included, which fixed effects should be included, etc.) would
standardize the procedure of model selection and reduce discretion in picking
results consistent with a theory. A researcher using this approach would dis-
criminate across all subsets of plausible models using a training and validation
sample and proceed to further analyse the chosen model in a test sample.

(ii) Better controls. Testing a theory requires good controls for alternate mecha-
nisms. However, standard methods restrict the number of variables that can be
included in a research design, leading to disputes about chosen controls, adop-
tion of particular controls in an ad-hoc manner because these were included in
another study without (in the first place) particularly good reasons. In addition,
linear specifications of controls exclude a large set of possible interactions that
could reflect real world settings. Using machine learning can allow researchers
to use a more robust procedure to include a large set of controls and their inter-
actions and therefore better remove variation that is not related to a variable of
interest.

(iii) Enriching classic paradigms in accounting: earnings management and con-
servatism. Many models of earnings management rely on extracting residuals
from accruals after controlling for economic factors assumed to drive accruals
but not managerial discretion (Dechow et al. 2010). The specification of these
models has led to a proliferation of earnings management models and because
simple models do not fit accruals well, the magnitudes of residuals seem too
large for discretion to be a first-order effect. We can use machine learning to
learn from a large set of controls and offer more accurately estimated residuals.
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In the context of research on conservatism, commonly used empirical mod-
els measure asymmetry in reporting in terms of only few economic variables
(Watts 2003), implying that machine learning may help better dissociate
conservatism from other correlated economic factors.

(iv) Re-discovering the missing link with theory. Although many researchers prob-
ably do not wish admit it, the current testing method in which a researcher
chooses a research design to “test” a theory is problematic, given incentives to
validate a theory (or, at least, to organize a set of results along the predictions
of a particular theory). This problem contaminates any perspective in which
theory comes before the empirical model but, in the end, is considered at such
a stylized level that it does not organize the empirical model. Unless one is
willing to embrace the structural approach used in the hard sciences (where the-
ories are not simply taken as directional predictions), machine learning offers
a completely different solution. The machine learning exercise need not orga-
nize data without reference to theory and therefore is not contaminated by a
goal to validate a theory. Yet, by reporting over important features and their
interactions, it can provide insight as to which theories speak to a feature likely
to explain a sample. In short, machine learning offers an approach in which
evidence comes before theory.

(v) Credible data mining in laboratory, field and natural experiments. Registered
reports have started to grow in accounting but presents unique challenges in
requiring researchers to “pre-commit” to tests in settings such as field or natu-
ral experiments. But how do we measure over-fitting due to pre-commitments
that are too broad, or, vice-versa, how can researchers form pre-commitments
without access to data –or wouldn’t priors formed from other studies them-
selves imply possible over-fitting? Machine learning can offer an entirely
different perspective: by learning all possible interactions and using a test sam-
ple to assess the true existence of these interactions, it can provide for a data
mining that is not only extensive enough to find all patterns but also can pro-
vide the tools to test whether these patterns are specific to the training sample
or are present in test samples.

(vi) Better financial ratios. Financial ratios and multiples have proliferated in
financial statement of analysis, leading practitioners to debate the suitable set
of variables that best summarize the health and prospects of a business. Which
indicators better summarize the state of a company? Progress in machine learn-
ing can help select information and design better ratios. Indeed, this research
agenda further hints at systematic ways in which we might redesign the infor-
mation provided in accounting numbers along the lines suggested by Lev and
Gu’s End of Accounting: which information should be given to investors and
how should it be organized in accounting reports?
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Appendix: Random Forests with scikit-learn
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