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MERGING AND STRIPPING REGIMES IN CLOSE PAIRS OF RELATIVISTIC
STARS: PROSPECTS FOR MODELS OF SHORT GAMMA-RAY BURSTS

A.V.Yudin,1 S. I. Blinnikov,1,2,3,4 N. I.Kramarev,1,3
and M. Sh. Potashov1,4 ∗ UDC 524.387

We consider the current status of the binary neutron star stripping model to explain short gamma-
ray bursts. After the historical joint detection of the gravitational wave event GW170817 and ac-
companying gamma-ray burst GRB170817A, the production of short gamma-ray bursts in the
neutron star coalescence has been reliably confirmed. Many properties of GRB170817A that
turned out to be peculiar compared to other short gamma-ray bursts are naturally explained in
the stripping model proposed in our works in 1984. We emphasize the role of D.K.Nadyozhin
(1937–2020), who quantitatively predicted the GRB and kilonova properties back in 1990. We
also discuss problems that need to be solved in the context of this model, especially in simulations
using the smoothed-particle hydrodynamics method.

1. INTRODUCTION

Long gamma-ray bursts (GRBs) most likely occur during collapse of “hypernovae,” which are a sub-
group of type Ic supernovae [1–5]. These events can be explained by the rapid collapse of the core of a
massive star into a black hole (with mass M ∼ 40M�, where M� is the mass of the Sun), which lost its
outer hydrogen and helium shells. These supernovae are called hypernovae because they usually have a much
higher kinetic energy of explosion than that of ordinary supernovae. Something fundamentally different was
proposed for short GRBs long before the long GRB models appeared.

The first ideas about the merging of a neutron star (NS) and a black hole, related to short gamma-ray
bursts, were put forward by Lattimer and Schramm [6,7] (they even discussed the r-process of nucleosynthesis
within this hypothesis). Detailed scenario for the merging of two neutron stars was developed by Clark and
Eardley [8], but not a word was said about GRB in their important paper. They discussed in detail not only
merging, but also stripping of a low-mass neutron star.

What is the difference between merging and stripping mechanisms? Two neutron stars revolving
around each other must come closer due to the loss of the angular momentum due to the radiation of
gravitational waves. The merging mechanism is as follows. By getting closer at a sufficient distance, neutron
stars in just the last few revolutions merge into a single object, namely, a black hole or, less likely, into
a rapidly rotating neutron star. In this case, part of matter may be ejected from the system due to tidal
interaction [9]. In addition, due to the extreme acceleration of the rotation of matter and its heating,
a highly collimated ejection of matter (jet) may form. This pattern of neutron star coalescence is now
generally accepted (see, for example, [10]), although many of its details remain unclear.
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The fundamental difference between the stripping mechanism and rapid merging is a long-term process
(many revolutions of a binary system) by which one star flows into another. Note that a sufficient asymmetry
in the masses of the components of a binary system is required to implement this scenario. As the NSs
approach each other, the component that has the lower mass (we denote it M2) fills its Roche lobe first
because of having a larger radius, and starts to flow to a more massive companion (with mass M1) through
the internal Lagrange point. Asymmetry of the system increases and the companions move apart due to
the approximate conservation of the angular momentum of the system. However, the flow does not stop (is
stable) for two reasons: first, the loss of angular momentum due to the radiation of gravitational waves still
moves the NSs closer to each other, and second, the radius of the NS of a lower mass starts to increase. The
latter fact follows from the properties of the mass–radius (M −R) diagram of the NS [11].

As a result of the mass exchange, M1 increases, but the radius of this component remains approxi-
mately constant or decreases, while M2 decreases with increasing radius. When M2 reaches a value corre-
sponding to the minimum possible NS mass Mmin ∼ 0.1M�, an explosion will occur, which, in fact, produces
a gamma-ray burst.

As a result of accretion of companion matter, the remaining single, more massive NS can, in principle,
either collapse into a black hole or leave the place of interaction with significant (up to 1000 km/s) speed.

This scenario was described in detail in a visionary article by [8], but without mentioning the gamma-
ray burst accompanying the explosion of a low-mass NS. The first firm prediction about the birth of a
gamma-ray burst in a binary system, and precisely in stripping regime, was done by S. I. Blinnikov with
co-authors [12]. In the subsequent paper [13] with D.K.Nadyozhin, hydrodynamic modeling of the explosive
destruction of a low-mass NS was performed and many properties of the accompanying short gamma-ray
burst were predicted. Among other things, it was shown there that the entire explosion process takes about
one-tenth of a second, the gamma-ray radiation being generated by a very low-mass outer NS matter layer
accelerated to relativistic velocities due to the cumulation effect when the shock wave reaches the surface.
Hydrodynamic modeling of this process within the framework of relativistic hydrodynamics was recently
discussed in [14].

However, this stripping scenario was forgotten for many years, first, due to the low energy of the
resulting GRB, and second, due to the lack of a generation mechanism of the accompanying jet (the explosion
of a low-mass NS is almost spherically symmetrical, see [15]). In addition, there were serious doubts about
the existence of the regime of stable flow of matter [16].

2. GRB170817A AND THE STRIPPING MODEL

On August 17, 2017, LIGO detectors (with the participation of Virgo) recorded a very long signal
of gravitational waves (GWs) [17]. Unlike the previous ones, this event corresponded to masses of merging
objects, characteristic of neutron stars, not black holes. 1.7 s after the peak of a GW signal, FERMI and
INTEGRAL spacecraft detected a short gamma-ray burst GRB170817A [18], and another 11 hours later a
kilonova was discovered [19] in the galaxy NGC4993, which is 40 Mpc away from the Earth. Already in
2023, it was shown [20] that this kilonova was spherical, in complete contradiction with jet models and in
complete agreement with the stripping model.

This success of multi-channel astronomy is significant in that this gamma-ray burst turned out to be
very peculiar. In particular, it was 104 times weaker than other well-known short gamma-ray bursts [18],
was soft rather than hard, and showed no signs of a strong jet [21].

As we showed in [22], all the features of GRB170817A obtain a natural explanation in the stripping
mechanism during the mass exchange of NSs. Let us trace the sequence of events following [23] and Fig. 1.

Thus, two NSs with masses M1 = 1.6M� and M2 = 1.15M� move closer because of the losses due to
gravitational radiation, whose luminosity LGW (Fig. 1c) is determined by the formula [24]
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Fig. 1. Distance a between the components (a), their masses M1 and M2 (b), gravitational-wave LGW (c),
and “neutrino” Lν (d) luminosities as functions of time t.

where G is the gravitational constant and c is the speed of light in empty space. When the distance a
between NSs decreases to approximately 40 km, the less massive component M2 fills its Roche lobe and
starts to give its mass to the component M1. The components move away from each other, which, together
with an increase in mass asymmetry of the system, leads, according to Eq. (1), to a sharp drop in luminosity
of gravitational radiation. In this case, M2 matter accreting on the surface of M1 leads to the release of
energy with the power

Lν =
GM1Ṁ1

R1
, (2)

where R1 is the radius of the more massive NS, and the dot means differentiation with respect to time. Here,
following [8], we attribute this energy release to the neutrino channel, although part of it will inevitably
occur in the form of electromagnetic radiation. This radiation may be a precursor to the main gamma-ray
burst about a second before the trigger (see, e, g., [25]). If the Eddington luminosity is exceeded (it is more
than ten orders of magnitude less than the neutrino luminosity Lν), the electromagnetic channel of energy
release should lead to the formation of a dense shell of matter blown away by the radiation pressure. We
plan to take this possibility into account in the future. For now, following Clark and Eardley [8], we consider
only the simplest conservative case. The action of the accompanying effects related to non-conservative mass
exchange on the evolution of the system will be discussed in subsequent works.

When the mass M2 decreases to approximately 0.2M�, the flow stability is lost (see the criterion (4)
in what follows) and the star rapidly, on a hydrodynamic time scale, reaches the minimum mass value Mmin

and explodes, producing a gamma-ray burst.
Thus, the most important parameter tstr appears in the stripping mechanism, namely, the time be-
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tween the peak of the gravitational-wave signal and the gamma-ray burst. In the example considered, this
parameter is slightly more than 2 s. Its value is determined by the equation of state BSk26 [26] used here,
which satisfies modern constraints on NS parameters [27], and mass values consistent with LIGO—Virgo
data on the signal source GW170817 [28]. It is striking that in the example discussed in [8], with the masses
M1 = 1.3M� and M2 = 0.8M� and outdated equation of state, the authors obtained for tstr exactly the
value 1.7 s!

In this paper, the problem of matter flow in a close binary system is solved initially in two ways in
parallel. The first method is a semi-analytical approach that uses the approximation of point masses with
spin. The second method is completely numerical and uses the method of smoothed-particle hydrodynamics.

3. MARGIN BETWEEN SCENARIOS AND THE FLOW STABILITY

What will happen for other values of the compo-
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Fig. 2. The tstr value for different masses of the
components of the binary system with the equa-
tion of state BSk26. The margin between scenar-
ios (white color denotes merging and the shades
of blue, stripping), the mass range dictated by
GW170817, and specific values used to construct
Fig. 1 (circled) are also shown.

nent masses, other things being equal? For the answer, we
address Fig. 2, which shows the quantity tstr as a function
of M1 and M2 for the region where the stripping mech-
anism is operative. Simulations were performed for the
equation of state BSk26 [26]. The range of masses corre-
sponding to the GW170817 signal [28] is also shown: the
darker part of the curve corresponds to the case of low
initial spins of the components, and the light part, to the
case of high ones. The specific mass value we used to con-
struct Fig. 1 is shown by a circle. It can be seen that
for none of the M1 and M2 mass values does the value
tstr = 1.7 s exist. However, this is only a property of this
particular equation of state we used. For other equations
of state this is not the case, but, as we showed in [29,30],
other factors, not taken into account in the above simple
version of the stripping mechanism, are more important
there.

Let us discuss the margin between the scenarios in
Fig. 2. It was obtained from the following considerations:
if a flow occurs, then the low-mass component M2 of the
binary system fills its Roche lobe. It was shown in [31]
that even if the donor had a large intrinsic angular mo-
mentum before the flow started, this momentum is quickly lost during stripping. Therefore, we can assume
that the low-mass component is in the co-rotation regime. From the above it follows that during the flow the
radius R2 of this component is equal to the size of the limiting Roche lobe RRoche, which is parameterized [32]
as

RRoche = af(q), (3)

where a is the distance between NSs and f(q) is the known [33] function of the mass asymmetry parameter
q = M2/(M1+M2). The flow stability parameter in this case can be written as [29, 34]

d(lnR2)

d(lnM2)
� d[ln f(q)]

d(ln q)
− 2

1−2q

1−q
. (4)

It is seen that the flow stability, besides q, is determined by the NS mass–radius dependence, or, which is
the same, the equation of state. In the unshaded region in Fig. 2 the stable flow, according to criterion (4),
is impossible and the merging scenario takes place.

Bringing a low-mass NS to the lower theoretical mass limit requires a stable regime of flow of matter.
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Why there are no signs of stable flow of matter in the numerous three-dimensional simulations performed to
study the NS merging process? This issue has been repeatedly explored in the literature, both analytically
in the Newtonian approximation [16] and numerically [35,36], in the post-Newtonian approximation [37–39]
and within the framework of the general theory of relativity [40]. These papers studied the problem of
stability for various equations of state of neutron matter, as well as various factors q′ = M2/M1. But even in
the Newtonian approximation, with the same parameters of the problem, some researchers obtained a global
dynamic instability, while others had a stable flow of matter over many revolutions of the binary system.
Independent verification is required even in the classical approximation. This test was started in [29], but
without taking into account gravitational radiation. Below we consider some of the research results on this
issue.
4. STRIPPING OR MERGING: PHANTOM CODE SIMULATION

Modern three-dimensional simulations of the neutron star merging process are very complex and
are expensive in terms of computer resources [41]. Therefore, the problem of choosing the initial simulation
configuration and/or the initial point in time is extremely important. There is a temptation to save resources
by skipping the “dull” part, namely, the actual process of NS coming closer (especially since the procedure
for correctly taking into account gravitational radiation in a 3D problem is not at all simple [42]) and move
immediately to a complex nonlinear merging process. It seems to us that this is at least part of the answer
to the problem that this section is devoted to.

The process of stripping of outer layers, formation of a jet, and flow of matter from a low-mass NS
to a massive component occurs at densities significantly lower than the densities in the depths of the NS, so
when describing these processes there is no point in using exact equations of state for superdense neutron
matter. Therefore, we use here simplified equations of state; see Eq. (5) below.

To perform 3D numerical experiments at this stage in order to clarify the problem of stability of
the flow process, we chose the open PHANTOM code [43]. It is based on the method of smoothed par-
ticle hydrodynamics (Smoothed Particle Hydrodynamics, SPH). This is a Lagrangian gridless method for
Newtonian dynamics and gravity. Particles in this method are bulk elements of the medium of unspecified
shape, to which physical characteristics are assigned, including coordinates, speed, mass, density, typical
sizes, temperature, pressure, and so on. PHANTOM has a constraint: all particles have the same mass. The
discrete representation of the medium in the form of smoothed particles involves the replacement of continu-
ous characteristics f(r) into piecewise constant quantities fi, determined for each particle i through the sum
of N quantities fj for the neighbor particles j lying around the particle i, using the weighting (smoothing)
kernel function. Approximation of spatial derivatives on the right-hand sides of conservation law equations
in SPH is carried out through the transfer of derivatives in the particle coordinate to the derivative of the
smoothing kernel function. Based on solutions to the equations of motion, continuity, energy, and other, the
particles change positions, density, and temperature, a new pressure field is calculated for them, and so on.

To model close binary systems, PHANTOM initially builds two stars with given masses and radii and
with density profiles depending on the equation state of matter. To do this, stars are “assembled” from SPH
particles and pass a relaxation procedure, during which the complete system of dynamic equations of motion
of self-gravitating particles is solved. In PHANTOM, the unit of time is a dimensionless quantity

utime =

√
u3dist

Gumass
.

Here udist is the unit distance (kilometer) and umass is the unit mass (M�). For the systems considered below,
utime ∼ 3 · 10−3 ms. The authors of the code recommend carrying out the relaxation procedure on times of
the order of 102utime. The simulation is then restarted to model the behavior of the resulting equilibrium
stars in orbit.
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4.1. Equation of state and hydrodynamics

At this stage, we model the NS using a very simple equation of state that connects pressure P , density
ρ, and temperature T :

P = Kργ + ρ
RT

μ
. (5)

Here, K is the polytropic coefficient, γ is taken equal to 2, R is the universal gas constant, and μ is the average
molecular weight, which can be taken equal to 1 in the case of a NS. Equation (5) at γ ∼ 2 approximately
models the behavior of other, more physical equations of state (e. g., BSk26 [26]) for NS matter in the region
of abrupt mass variation for an almost constant radius in the mass–radius diagram. We added Eq. (5) into
the PHANTOM code.

The motion of SPH particles in the PHANTOM simulation is given by the equation

dv

dt
= −∇P

ρ
+Πshock + a(r, t), (6)

and the internal energy, by the first law of thermodynamics,

dE

dt
= −P

ρ
(∇ · v) + Λ shock. (7)

Here, v is the speed of the SPH particle, a(r, t) is its acceleration at a point with radius vector r at the
time t, caused by self-gravity or given external forces, E is the internal energy per unit mass, and the
terms Πshock and Λ shock describe the motion and energy variation due to dissipation, which are necessary
for correct allowance for entropy increase at the front of shock or acoustic waves. Unlike the grid methods,
where the numerical viscosity appears in schemes in a natural way, in the SPH method, artificial viscosity
terms should explicitly be added, since the numerical viscosity does not arise in it during the sampling
because of the Hamiltonian nature of this method. Taking into account viscosity also prevents mutual
penetration of particles into each other [43–45]. We use a description based on the concept of artificial
viscosity (see [43, Eqs. (39) and (42)]). Allowance for Λ shock in Eq. (7) and thermal part in Eq. (5) makes
it possible to exclude non-physical oscillations of the star as a whole. In this case, such oscillations should
be damped. In principle, in Eq. (5) one could use the true pressure versus temperature dependence in the
equation of state of degenerate matter [46]. But in this case, the purpose of introducing this additive was
only to “remove” acoustic mechanical oscillations of the star and pumping of their energy into the thermal
part. Since the energy of this part is much less than the energy of degenerate matter, the form of the additive
is not so important and we dwell on the simplest option.

In the SPH method, in the case of neglecting dissipation and external forces, the Hamiltonian of the
system is preserved along the solution. For problems of motion along Kepler orbits, it is convenient to use
symplectic, symmetric integration schemes (e. g., the Störmer–Verlet scheme of second-order accuracy), which
preserve the Hamiltonian close to the true one along the approximate solution (the so-called constrained
Hamiltonian). However, when taking into account dissipative terms and the work of external forces, the
Hamiltonian will no longer be preserved, the system itself will cease to be Hamiltonian, and the acceleration
of particles will depend on their speed. In PHANTOM, for this case, a modification of the Störmer–Verlet
scheme is used, in which iterations are added to correctly solve the implicit numerical scheme with the
dependence of acceleration on speed. To take into account external forces in PHANTOM, additional iterative
substeps are added into the scheme by using the method of splitting into physical processes. This algorithm
is called reversible reference system propagator algorithm (RESPA). It is also worth adding that with a
variable integration step, even in the case of a pure Hamiltonian system, the constrained Hamiltonian will
not be an integral and the boundedness of error in the deviation of the constrained Hamiltonian from the
true one is not guaranteed [47]. To use symplectic methods effectively it is necessary to perform integration
with a constant step. In the PHANTOM code, the time step is variable. In the general case with a variable
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step and taking into account dissipation it is possible to achieve convergence between the first and second
order.

The total internal energy per unit mass is expressed by the equation

E = Epoly + Etherm, (8)

where the energies of the polytropic part and ideal gas part per unit mass are written as

Epoly = K
ργ−1

γ − 1
, (9)

Etherm =
3

2

RT

μ
. (10)

Since it is common for all SPH particles that Epoly � Etherm, the direct numerical solution of (7) leads
to an erroneous estimate of temperature. We employed a different approach. Instead of (7), the equation for
temperature is directly solved:

3

2

R
μ

dT

dt
= −RT

μ
(∇ · v) + Λ shock. (11)

Determining the temperature numerically from Eq. (11), finding Epoly analytically from Eq. (9), and using
(10) and (8), we obtain the desired total internal energy.

We now consider the following formulation of the problem. We take two polytropes with n = 1
(adiabatic exponent of matter γ = 2), which model two stars with masses M1 = 1.4M� and M2 = 0.5M�
and identical radii R1 = R2 = 10 km. In the PHANTOM code, all SPH particles are taken to have identical
masses. We used 105 SPH particles for the star M1 and 3.5 · 104 SPH particles for the star M2. The flow
will start at a distance between the components of the binary system (see Eq. (3)) ac = R2/f(q) ≈ 34 km.
Naturally, one should remember the approximate nature of this expression derived in the limit of two point
bodies. Assume that the distance a0 between the components is 30 km. We place them in circular Kepler
orbits and simulate in PHANTOM taking into account the correction (11) for the energy equation. The
result is shown in Fig. 3.

The panels of the figure represent projections of what is happening onto the x, y plane (top view) for
four moments of time t. It is seen that this is a typical merging process, preceded by the tidal disruption of
a low-mass companion.

But what happens if at the initial moment the components are spaced further apart?
Our numerical experiments have shown that if we start with a0 = 36 km, then the result will be a

stable flow of matter (see Fig. 4). This plot shows only two moments in time, corresponding to the beginning
and end of the simulation. It can be seen that stripping continues steadily for 20 revolutions (i. e., four times
longer than the simulation in Fig. 3). We stopped the simulation because on such long times, numerous
effects that are missing in our simple model should already be taken into account. First of all, these are the
energy loss of the system due to gravitational radiation and a more realistic equation of state of the stars.

However, our goal has been achieved: a significant dependence of simulation results on the initial
data has been demonstrated. In this regard, our conclusions coincide with the conclusions of the important
paper [48], which considered the problem of correctly describing the fate of the white dwarfs binaries.

In addition, the stable flow regime we demonstrated numerically even in the case of polytropic equa-
tions of state contradicts the pessimistic conclusion of [16] and inspires some confidence.

We have also numerically studied the cases with other, not such extreme mass ratios in the NS binary
system, namely, M1 = 2.0M� and M2 = 1.0M�. The existence of a stable mass exchange regime has also
been demonstrated for them with a distance a0 = 33 km between the components.

However, moving to a detailed analysis of calculations on longer times should be done with caution
due to the problem detected in the PHANTOM code.
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4.2. Center of mass displacement

As a result of working with the PHANTOM code,
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Fig. 5. Center of mass displacement for the same
system as in Fig. 4.

we detected an inherent error, namely, the center of mass
displacement. Figure 5 shows the coordinates of the cen-
ter of mass as functions of time for the system given in
Fig. 4. We observed the same problem even when solving
the relaxation problem for an individual NS. The center of
mass of an NS with a mass of 0.5M�, consisting of 3.5·104
SPH particles, over long periods of time (about 104utime),
comparable to the duration of 20 revolutions of the sys-
tems considered above, shifts by a distance of about 1 km
in the relaxation process!

The error is due to the incorrect allowance for
self-gravity forces in PHANTOM. Solution of the Poisson
equation ∇2Φ = 4πGρ(r) for gravity in PHANTOM is ob-
tained by dividing the total acceleration aselfgrav = −∇Φ
into two parts, short- and long-range acceleration:

apselfgrav = apshort + aplong.

Above, Φ is the gravitational potential, ρ is the matter density calculated via SPH, and p is the index of the
SPH particle. This division is dictated by considerations of speeding up calculations.

Short-range acceleration apshort is calculated by direct summation over the neighbor particles. To
calculate the long-range acceleration components aplong, the following procedure is used. All particles are
hierarchically grouped into cells of the k-d tree. A tree leaf contains a maximum of 10 SPH particles. The
components of gravitational acceleration of a particular chosen cell n, due to the attraction of all cells m,
are obtained by multipole expansion of acceleration in powers of 1/r2:

ain =
∑
m

[
−GMm

r3
ri +

1

r4

(
r̂kQm

ik −
5

2
r̂ir̂kr̂jQm

jk

)]
.

Here, ri is the ith component of the vector of the distance between the cells n and m, r̂i is the corresponding
ith component of the unit vector, Mm is the total mass of the cell m, and Qm

ik is the component of the
quadrupole moment of the cell m. The components of the gravitational acceleration of a specific SPH
particle a in the chosen cell n are obtained by expanding ain into a Taylor series to the second order:

ailong,p = ain +Δxj
∂ain
∂rj

+
1

2
ΔxjΔxk

∂2ain
∂rj∂rk

,

where Δxj is the relative distance of the particle p to the center of the cell n. This approach in PHANTOM
is presented as a significant advantage compared to methods where multipole expansion is performed for each
particle, skipping the Taylor expansion (see, e. g., [49]). However, it contains a key error. It can be shown
that a non-physical uncompensated force arises, acting on each particle, while the total force fcom acting on
the center of mass of the system will behave as

fcom ∝ 1

h2
∝ n2/3

p ,

where h is the average dimensionless smoothing length of SPH and np is the average concentration of
SPH particles. Increasing the number of particles for a more accurate description of density profiles, we
simultaneously increase the imbalance of non-physical self-gravity.
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During the calculation, such a random uncompensated force will act on the system as a whole at each
counting step, shifting its center of mass from the initial position. The system ceases to be conservative, and
we lose one of the main advantages of the SPH approach compared to the grid approach.

We are currently working to resolve this issue. The corresponding changes are being made to the
PHANTOM code, and publication is being prepared.

5. DISCUSSION

Since the stripping model has received much less attention than the merging model, many of its
aspects require further development. In this section, we will try to list and briefly discuss what remains to
be done to ensure that the predictions of the stripping model have a reliable basis.

The first problem (which, by the way, is common for both models), is that of the true equation of state
of a NS. Many predicted parameters of the model indirectly depend on this, in particular, the stripping time
tstr. For our model, an additional complexity is that the region of low NS masses (M � M�), the description
of which, as a rule, does not attract the attention of theorists (see, however, [50]), is also important here.

The second problem has already been discussed above when describing the modeling in PHANTOM.
This is the sensitivity of the results obtained to the initial data. The problem, in fact, is divided into two
parts. The first is that the initial configurations of the stars should be well relaxed in any case [37, 48]. If
unperturbed stellar configurations are placed in the orbit at the initial moment of time, this can lead to
various phenomena (oscillations, etc.) that are absent in reality and distort the simulation results. The
second part of the problem concerns the correct accounting of losses due to gravitational radiation. As a
rule, the impact of these losses is taken into account very approximately. For example, in PHANTOM the
reaction force of gravitational wave radiation acting on each SPH particle is considered the same within one
star [43], while in some models such a force is completely neglected [51].

For a strongly nonlinear stage of merging, lasting, as a rule, no more than several revolutions, such an
approach can be justified, but for the stripping stage this is not at all the case. Actually, it is exactly losses
due to gravitational radiation that determine the rate of the mass exchange process. Numerical accounting
of these losses in a complex, dynamic binary system of non-point bodies with variable masses is a serious
challenge to researchers.

The next important aspect of the mass exchange process in the stripping mechanism was identified
as a result of our numerical experiments in PHANTOM, described in [29]. Mass exchange in a binary NS
system leads to a significant spin-up of the massive companion. Thus, part of the orbital angular momentum
is converted into its own spin M1. Our preliminary calculations show that this effect can lead to a drastic
reduction of the stripping time tstr and should be taken into account, in particular, for correct comparison
with observational data (see also Figs. 1 and 2).

At the end of this section, we present a far from complete list of questions, requiring detailed study
within the framework of the stripping mechanism. First, this is the fate of a massive NS (M1) that increases
its mass as a result of mass exchange. Does it remain a neutron star with rapid rotation, does it accelerate
to critical rotation due to the spin-up effect discussed above, after which matter starts to flow out, or does it
collapse into a black hole? And how do these processes affect, in fact, the stripping procedure itself? Related
questions are as follows. What happens to the accreting material? What is the luminosity during accretion?
Does an accretion disk form and, if so, can a jet of matter form?

Processes occurring in the low-mass component M2 may also be important. While filling its Roche
lobe, it is subject to tidal heating due to interactions in the binary system. Its matter also experiences a
smooth decompression due to a decrease in its density, which can lead to additional heating. A low-mass
neutron star has a specific structure [22], namely, a small core and an extended shell. Even relatively weak
heating of this shell can greatly affect its structure, and hence the rate of mass transfer. In addition, the
structure of the “hot” star M2 when it reaches the minimum mass Mmin may differ from the cold case, which
will lead to a difference in the parameters of its explosion, and therefore, in those of the accompanying GRB
as well.
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Another important aspect still missing in the stripping model is comparison with optical observations
of the kilonova at2017gfo [52]. From general considerations, it is clear that the explosion of a low-mass NS
and the accompanying explosive decompression of approximately Mmin ∼ 0.1M� of strongly neutronized
matter should be accompanied by significant radiation powered by the radioactive decay of the elements
generated in the explosion. It will be extremely interesting to find out whether the stripping scenario has
any characteristic differences from merging in this aspect as well. We plan to perform the corresponding
modeling in the near future. This modeling should be facilitated by the fact that, thanks to the geometry of
the explosion of a low-mass NS, we can do it using the author’s spherically symmetric code stella [53–56].

6. CONCLUSIONS

The presented review of the stripping model contains a discussion of many, although not all of its
aspects. This model experienced a revival after a joint discovery of the gravitational wave signal GW170817
and the accompanying gamma-ray burst GRB170817A. Many of its parameters still need clarification and
development. An extremely topical issue, for example, is the margin between merging/stripping scenarios.
The answer to this question will determine the share of the stripping mechanism in the general population of
short gamma-ray bursts. It should be emphasized that, in our opinion, both scenarios are not in an either/or
antagonistic relationship. Rather, they complement each other: some conditions are good for merging and
other conditions, for stripping.

Predictions of the stripping mechanism are quite certain: this is low energy, close to the spherical
geometry of the explosion, and so on [22]. This compares favorably with the merging mechanism, within
which there is a lot of uncertainties and adjustable parameters: by varying the direction of a jet, its opening
angle [57], structure [58], parameters of the surrounding substance (cocoon, a choked jet [59]), and so on,
one can explain any observational data. The stripping model is free of such arbitrariness. Of course, in both
mechanisms there is a significant number of ambiguities, such as an unknown equation of state of superdense
matter, complexity and inevitable simplifications in three-dimensional modeling of hydrodynamic phenomena
in the general theory of relativity, and so on.

Even if the share of the stripping mechanism in the general GRB population is small, its influence can
be significant in some respects. It should be remembered that the mass of ejected matter here is, in order
of magnitude, equal to the minimum NS mass Mmin ∼ 0.1M�, which is high (see, e. g., [52]). Preliminary
calculations of nucleosynthesis [60,61], accompanying the M2 explosion look very promising, which, combined
with the large amount of ejected mass, gives a hope for a large contribution of the stripping mechanism to
the cosmic process of the formation of heavy elements.
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