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ON THE INFLUENCE OF MICROBUBBLES ON THE TURBULENCE INDUCED
BY A SURFACE WAVE

O. A.Druzhinin∗ UDC 551.465

We use the direct numerical simulation (DNS) method to study the vortex structure of the near-
surface water layer, which is saturated with air bubbles, in the presence of a stationary surface
wave. A wave with a wavelength of 15 cm and a steepness of 0.2 (an amplitude of about 0.5 cm)
and bubbles 400 μm in diameter (microbubbles) are considered. Complete three-dimensional fluid
motion equations (Navier–Stokes equations) are solved by the DNS method simultaneously with
the equations of motion of individual bubbles with allowance for their influence on the carrier flow.
Under the influence of the surface wave, the flow in the near-surface layer becomes turbulent and
characterized by the presence of vortex structures stretched along the wave propagation direction.
To analyze the vortex structure of the flow, the instantaneous velocity gradient tensor is calculated,
and its complex eigenvalues, whose imaginary part characterizes the local vorticity of the flow,
are calculated, while filtering out the contribution of the purely shear component (vortex sheet).
Average profiles of the eigenvalues and the fluctuations, which are obtained at the stage of the
statistically stationary flow, show that the influence of the bubbles lead to intensification of small-
scale vortices and turbulent pulsations in water.

1. INTRODUCTION

Small-scale processes occurring near a water surface play the determining part in the exchange of the
momentum, heat, and moisture between the atmosphere and the hydrosphere. Thorough understanding of
the physical mechanisms of these processes is of utmost importance for their accurate parametrization in
large-scale prognostic models [1, 2]. The presence of air (gas) bubbles in the near-surface water layer is one
of the many factors which should be allowed for when developing the exchange models.

Breaking (or microbreaking) of surface waves is one of major sources of air bubbles in the near-
surface water layer [3, 4]. Another source of gas bubbles, which has intensely been studied recently, is the
bottom release of methane (see, e.g., [5]). The observations in laboratory and full-scale experiments [3, 6–8],
as well as in the numerical experiment [9], show that bubbles about hundreds of micrometers in diameter
(microbubbles) make the main contribution to the volumetric fraction of the air phase and the typical
distribution with respect to the diameters of the suspended bubbles. According to the data of full-scale
observations, the volumetric fraction of microbubbles in the top layer of the ocean can reach significant
values (about 10−5) even in a relatively weak wind (about several meters per second) [10–14]. Therefore,
studying and modeling of the dispersion of microbubbles, as well as assessing of their influence on small-scale
turbulence in the near-surface layer of the hydrosphere are rather important issues.

The influence of bubbles on the near-surface turbulence was studied using the direct numerical sim-
ulation (DNS) method in [15, 16]. Complete three-dimensional equations of fluid motion (Navier–Stokes
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equations) were solved within the Eulerian formulation simultaneously with the Lagrangian equations of the
bubble motion with allowance for their influence on the carrier phase. Within the DNS method, the bubble
diameters were specified in the range from 200 μm to 400 μm, which allowed us to neglect deformations of the
bubbles. The results of these calculations show that the main part in the bubble dynamics is played by the
forces of buoyancy, viscous friction, and Lagrangian acceleration, whereas the lift force, which is determined
by the vorticity of the carrier phase and the relative bubble velocity, remains negligibly small. It is also
shown that the horizontal transfer of the bubbles is controlled by the velocity of the Stokes drift, whereas
the vertical flow is determined by the velocity of up-floating of the bubbles in water at rest. Based on the
data obtained in [15, 16], parametrizations of the vertical and horizontal flows of the volumetric fraction of
the air phase in the near-surface water layer were proposed. However, the influence of the bubbles on vortex
structures has not been studied thoroughly yet.

The purpose of this work is to study the influence of the bubbles on vortex structures and the
turbulence induced by a non-breaking surface wave. We use the algorithms developed in [15, 16] to calculate
the dynamics of the water environment bounded by a wavy surface (including allowance for the surface drift
induced by the shear wind stress) and saturated with air microbubbles. In order to evaluate quantitatively
the influence of the bubbles on the dynamics of coherent vortex structures, we apply the algorithm used to
calculate the field of eigenvalues of the instantaneous velocity gradient tensor in the air boundary layer [17].
Section 2 describes briefly the DNS procedure and presents the technique of statistical processing of the results
and the method used to calculate the eigenvalues of the instantaneous velocity gradient tensor. Section 3
describes and analyzes the calculation results. The conclusions are drawn in Sec. 4.

2. MATHEMATICAL MODEL

The general scheme of the numerical experiment is

Fig. 1. Scheme of the numerical experiment.

shown in Fig. 1.
We consider an infinitely deep calculation area with

the upper boundary coinciding with the water surface. A
two-dimensional stationary wave having the amplitude a,
the wavelength λ (wave number k = 2π/λ), and the wave
steepness ka = 2πa/λ propagates along this surface. The
values λ = 15 cm and ka = 0.2 (the amplitude a ≈ 0.5 cm)
are specified within the DNS method. For the specified
wavelength, the phase velocity determined by the linear
dispersion relation [1] is c ≈ 49 cm/s. Thus, the Reynolds

number determined by c and λ is Re ≈ 73019. In what follows, we consider the dimensionless variables
normalized to c and λ. At each time instant t under consideration, the DNS method uses a conformal map of
the Cartesian coordinates in the vertical plane, which converts an infinitely deep area with the wave-shaped
upper boundary into an area bounded by the upper and lower plane boundaries (at η = 0 and −1). In this
case, the shape of the water surface is specified implicitly and coincides with the solution for the Stokes wave
with accuracy up to the second-order infinitesimal terms with respect to ka [15]. All the fields are periodic
with respect to the horizontal coordinates. On the water surface, the conditions for the water velocity are
specified in accordance with the potential solution for the surface wave, both with and without allowance
for the wind surface drift. The known parametrization is used for the velocity of the surface drift in terms
of the parameters of the surface wave [1, 18]. At the lower boundary, the condition of the absence of normal
gradients (the Neumann condition) is specified.

The system of Navier–Stokes equations for water is solved numerically in the Eulerian formulation
simultaneously with the equations for the Lagrangian dynamics of individual bubbles with allowance for the
phase interaction (see a more detailed discussion of the DNS procedure in, e.g., [15]). At the initial stage of
the calculations, a random three-dimensional field of the water velocity is specified with a small amplitude
(about 0.1% of the amplitude of the wave velocity field). At the upper boundary, at each time instant a
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Fig. 2. Instantaneous vorticity modulus field in the presence of a surface drift flow without bubbles in different
planes: side view (y = 0) (a), top view (η = −0.05) (b), and profile (x = 3) (c).

two-dimensional velocity field is specified, which is determined by the potential solution of the second-order
accuracy for the Stokes wave on deep water [1]. The bubbles are injected randomly in the bulk of water with
spatial probability distribution, which decreases exponentially with increasing depth, and the velocity equal
to the instantaneous velocity of the water environment. The bubbles that reach the surface are reinjected,
so that the total number of bubbles is kept constant during the entire duration of the calculations.

To estimate quantitatively the influence of bubbles on the dynamics of coherent vortex structures, we
use an algorithm for calculating the field of eigenvalues of the instantaneous velocity gradient tensor [18, 19].
The squared imaginary part of the complex eigenvalues is determined by the formula

γ2c =
3

4

[
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, (1)
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and Ûi (i = x, y, z) is the water velocity field minus the phase-averaged component [17]. The phase-averaged
flow fields are determined, as the stationary regime becomes stable (at times of about 200 wave periods),
by the averaging with respect to the time and the transverse coordinate, as well as the “window” averaging
with respect to the wave phase. The time averaging is performed over instantaneous fields at sequential
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Fig. 3. Same as in Fig. 2 but in the presence of the bubbles.

time instants, at which the surface-wave phase differs by 2π. The vertical profiles are determined by the
additional averaging of the field with respect to the wavelength.

3. MODIFICATION OF THE WAVE-INDUCED TURBULENCE BY BUBBLES

The DNS calculations were performed for one given wavelength (λ = 15 cm) and the steepness
ka = 0.2 of the surface wave for the single- and double-phase cases, both in the presence and absence of
the surface drift. We considered a monodispersed suspension of bubbles 400 μm in diameter, whose total
number was maintained at a constant level (Nd = 1.26 · 105).

Figures 2 and 3 present the instantaneous fields of the vorticity modulus ω, which is determined
according to the equalities

ω=(ωiωi)
1/2, ωi=εijk∂Ui/∂xj , i, j=x, y, z, (3)

where εijk is the Levi–Civita symbol, at the stage of the statistically stationary flow in the presence of the
surface drift in the single- and double-phase cases, respectively. In the absence of the surface drift, the
vorticity fields look similar qualitatively. It is seen in the figures that in both cases, the flow is characterized
by the presence of vortex structures stretched along the propagation direction of the surface wave. This
flow pattern agrees qualitatively with the results of the numerical experiment [20], in which similar vortex
structures were also observed in the surface-wave field. Figure 3 also shows that up-floating bubbles produce
disturbances in the form of vortex structures stretched vertically. The corresponding trajectories of individual
bubbles are shown in Fig. 4.
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For all the cases under consideration (single- or

Fig. 4. Trajectories of individual bubbles in the ab-
sence (a) and presence (b) of the surface drift.

two-phase and with or without the drift flow), we cal-
culated the average profiles of r.m.s. fluctuations of the
velocity components:

U ′
i = [U2

i ]− [Ui]
2, i = x, y, z, (4)

and the squared imaginary part [γ2c ] of the complex eigen-
values of the velocity gradient tensor of water, where the
square brackets denote averaging with respect to the hor-
izontal coordinates and the time. Then, we calculated the
relative variations in these quantities, which were affected
by the air phase, according to the expressions

ΔU ′
i =

U ′
i,2w − U ′

i,1w

max{U ′
i,1w}

, Δγ =
[γ2c ]2w − [γ2c ]1w
max{[γ2c ]1w}

, (5)

where the subscripts 1w and 2w correspond to the single-
and two-phase flows, respectively. Figure 5 shows the ver-
tical profiles (5) obtained in the absence and presence of
the drift flow.

One can see in Fig. 5 that in both cases (i.e., in
the absence and presence of the surface drift), the verti-
cal component of the water velocity having the maximum
ΔU ′

z ≈ 1.7 at the depth of about the wavelength of the surface wave experiences the maximum relative
change. However, the maximum variation takes place in the vertical velocity component sufficiently close
to the surface, at the depth of about 0.01λ, (ΔU ′

z ≈ 0.8 in the absence of the drift and ΔU ′
z ≈ 1.3 in the

presence of the surface drift). At the same depth, the maximum value of Δγ is observed (about 0.2 in the
absence of the drift and 0.8 in the presence of the surface drift).

The data for the modification of the turbulence in Fig. 5 agree qualitatively with instantaneous dis-
tributions of the vorticity and bubble trajectories (see Figs. 3 and 4). One can see in these figures that the
bubble trajectories are almost rectilinear at a sufficient distance from the surface, since the influence of wave
motions and the near-surface turbulence that they induce is exponentially small here. Therefore, the main
influence of the air phase in this region mainly influences the vertical component of the water velocity, which
leads to an increase in the fluctuation of this component (see Fig. 5). As the bubbles approach the surface,
their trajectories take the form of unwinding helices. This leads to an increase in their influence on the other
components of the water velocity, which results in stronger fluctuations and vortivity of the local turbulent
vortices (qualitatively, it is manifested in the modification of dispersion of ΔU ′

i and Δγ; see Fig. 5).

4. CONCLUSIONS

Direct numerical simulation of the near-surface water layer saturated with air bubbles in the pres-
ence of a stationary surface wave has been performed. Complete three-dimensional water motion equations
(Navier–Stokes equations) are solved within the Eulerian formulation simultaneously with the Lagrangian
motion equations of the bubbles with allowance for their influence on the carrier phase.

The results show that under the influence of the surface wave, the flow in the near-surface layer
becomes turbulent and is characterized by the presence of vortex structures stretched along the wave prop-
agation direction. In order to analyze the vortex structure of the flow, the instantaneous velocity gradient
tensor is calculated and its complex eigenvalues are determined. The imaginary part of the eigenvalues
characterizes local vorticity of the flow, filtering out the contribution of the purely shear component (the
vortex sheet). The average profiles of the eigenvalues and fluctuations, which are obtained at the stage of the
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Fig. 5. Vertical profiles of the differences ΔU ′
i of the r.m.s. fluctuations (black, blue, and red lines refer to

i = x, y, and z, respectively) and the differences Δγ (violet lines) of the squared imaginary part of eigenvalues
of the water velocity gradient tensor, calculated according to Eq. (5) in the double- and single-phase cases in
the absence (a) and presence (b) of the surface drift.)

statistically stationary flow, show that under the influence of the bubbles, small-scale vortices and turbulent
pulsations in water become stronger.

It should be noted that the surface wave is assumed given in this work. The self-consistent problem
with allowance for the modification of the surface wave by the near-surface turbulence and bubbles remains
to be considered in future studies.

The development of the numerical algorithms, as well as the processing and theoretical analysis of the
results obtained were supported by the Russian Foundation for Basic Research (project No. 21–55–52005).
The computer calculations were performed on the computing cluster of the Institute of Applied Physics
(state assignment No. 0030–2022–0005).
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