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RESONANT INTERACTION OF ENERGETIC ELECTRONS WITH RADIO
EMISSION IN THE MAGNETOSPHERES OF EXOPLANETS

V. S. Grach∗ and A. G. Demekhov UDC 533.9

We analyze the resonant interaction of energetic electrons with radio emission in the magne-
tospheres of exoplanets using the planet Tau Bootis b as an example. The conditions of this
interaction and its impact on the parameters of electrons are considered for the radio emission
which is detectable on the Earth. Specific features of the interaction are studied in comparison
with the interaction of energetic electrons with auroral kilometric radiation in the Earth’s mag-
netosphere. It is shown that for the considered parameters of the magnetosphere of Tau Bootis b
and radio emission in it, the resonant interaction of electrons with radio emission is strongly non-
linear. For a wave packet of finite duration, the interaction can cause a significant acceleration
of particles in a wide range of energies (from tens to hundreds of kiloelectronvolts).

1. INTRODUCTION

One of the topical problems of modern astronomy is the discovery and exploration of planets outside
the solar system, namely, exoplanets [1]. The discovery of more than 4500 of exoplanets have been confirmed
to date [2], most of which have been detected in the last decade. Interest in various methods of studying the
properties of exoplanets and their envelopes is steadily growing.

Planets with a strong magnetic field and a fairly dense atmosphere make up a special group. First
of all, these are the so-called hot Jupiters, or planets with masses of the order of 1–10 Jupiter masses and
located at a distance of the order of 0.05 a. u. from their star [3–10]. It is known from the results of
studying the planets of the solar system that several types of radiation generated by plasma instabilities can
be characteristic of the magnetospheres of such planets [11–18]. Such signals can have large amplitudes due
to the stimulated nature of the radiation. Therefore, on the one hand, some of them are suitable candidates
for detection by ground- and satellite-based tools [5, 10], and on the other hand, these emissions can strongly
affect the energetic component of the circumplanetary plasma. Energetic charged particles, in turn, can
cause both the heating of the planetary atmosphere (due to precipitation) [19] and intense auroral radiation,
which affects the total radiation balance in the ionosphere.

In the magnetospheres of planets, radiation is generated due mainly to resonance effects, in particular,
cyclotron–resonance ones; the effect of this radiation on charged particles is of the same nature [13, 15, 17,
20–22]. The Earth’s magnetosphere research shows that the cyclotron interaction mechanism is effective both
for waves not leaving the magnetosphere (whistler-mode [23–27] and ion–cyclotron waves [28–33]) and for
waves forming the radio emission [13, 14, 34–38], among which a fast extraordinary wave (X mode) stands
out. Such a resonant interaction appears to be most efficient in the case of quasi-monochromatic signals, for
which it becomes strongly nonlinear for a fairly large wave amplitude [31, 32, 39-43].
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The magnetospheres of exoplanets may be very different from the Earth’s and Jupiter’s magneto-
spheres by their properties. Radio emission from exoplanets that can be detected on the Earth corresponds
to high magnetic fields in the exoplanet magnetospheres and high wave amplitudes. Simulation of reso-
nant interaction with radio emission in the exoplanet environment will permit one to follow how nonlinear
interaction processes are modified under such conditions.

This work is devoted to the study of the resonant interaction of electrons with radio emission (X
mode) in a plasma with parameters corresponding to modern ideas about the magnetosphere of the planet
Tau Bootis b (tau boo b, Tau Bootes b), for which conceivable signatures of radio emission were found for the
first time [10]. The main purpose of this study is to identify new features of such interaction, which are due to
the characteristic parameters of plasma and radiation, and clarify the possibility of efficient energy exchange
between charged particles and radiation. It is shown that under the considered conditions the resonant
interaction is essentially nonlinear. For a finite duration of the wave packet, it can lead to a significant
acceleration of particles with lower energies and a decrease in the energy of particles with higher energies.

This paper is organized as follows. Section 2 gives estimates of the parameters of the magnetosphere
and radio emission. Section 3 describes the wave-packet model and analyzes the possibility of resonant
interaction in the obtained ranges of parameters. The system of equations describing the interaction of radio
emission with energetic electrons is given in Sec. 4. The results of calculating the interaction of the model
packet with energetic electrons are given in Sec. 5. Section 6 formulates the main results of the work.

2. ESTIMATES OF THE POSSIBLE PARAMETERS OF THE PLANET’S MAGNETOSPHERE
AND RADIO EMISSION

The parameters of the planetary magnetic field and the properties of the atmosphere have been
estimated for many hot Jupiters [3–9]. Herein, the radio emission generated during cyclotron radiation of
charged particles can escape from the planet’s magnetosphere, according to estimates [9], for the supermassive
hot Jupiter Tau Bootis b. Signatures of radio emission from this planet have also been found on the
Earth [10]. Therefore, in this paper, the possible resonant interaction of radio emission with energetic
electrons is analyzed for Tau Bootis b.

2.1. Parameters of the planet’s magnetosphere

According to estimates [4], the planet has a radius Rp = 1.06RJ and a magnetic moment M = 0.76MJ,
where RJ and MJ are the radius and magnetic moment of Jupiter, respectively. Based on other papers, the
magnetic moment of the planet can amount to 2.8MJ [5] or 7.5MJ [6].

According to [9], the magnetospheric plasma density at a distance of 0.10–0.15Rp from the planet
surface (in the exobase region) is 106 cm−3. No data are given on the plasma-density profile above the
exobase, but it is assumed that this profile is similar to that in the Jovian magnetosphere, i. e., the plasma
density continues to decrease fairly rapidly to less than 104 cm−3. Thus, the dense plasma region in the
magnetosphere is relatively small in size.

2.2. The parameters of radio emission

Based on estimates [10], radio emission is observed in the range 14–30 MHz, and the radiation flux is
higher in the range 14–21 MHz.

Wave amplitude in the planet’s magnetosphere can be estimated as follows. The minimum radiation
flux measured with most ground-based telescopes is 10 mJ, i. e., the radiation flux from Tau Bootis b can
be written as

Jτb = α · 10 mJy = α · 10−25 cgs. (1)

According to the results in [10], the coefficient α is equal to 1–100.
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The relation between the amplitude of the wave electric field E at the output of the generation region
and the radiation flux at the telescope has the form

E2[cgs]

8π
=

Jτb[cgs]f [Hz]
c[cm/s]

(
Lsource

Rsource

)2

. (2)

Here, Lsource is the distance to the source, Rsource is the conditional source size, f is the radiation frequency,
and c is the speed of light in empty space. For the planet Tau Bootis b, Lsource = 15.6 pc (distance to
the corresponding star), Rsource can be estimated as Rsource = βRp = 1.06 βRJ and the frequency f , as
f = δ · 10 MHz. Here, the coefficients β and δ are of the order of unity.

For the values mentioned above, we have

E[V/m] ≈ 5

√
αδ

β
. (3)

As was mentioned in the Introduction, nonlinear interaction with discrete signals, i. e., quasi-mono-
chromatic wave packets of finite duration, can be most efficient. Observation of the fine structure of the
auroral kilometric radio emission (AKR) in the Earth’s magnetosphere were analyzed in [44–47]. According
to [47], the duration of AKR packets with frequencies of up to 400 kHz ranges from 0.2 to 4 s. To estimate the
possible duration of radio emission pulses in the magnetospheres of other planets, we will use the conclusions
of the discrete-signal generation theory developed in the most detailed way for chorus emissions in the
Earth’s magnetosphere. According to theoretical estimates confirmed by the satellite data analysis [48–50],
the minimum packet duration τmin is equal to the inverse of the electron oscillation frequency in the wave
field near the minimum of the effective potential of the wave (trapping frequency ftr = Ωtr/(2π)),

Ω2
tr = |1− 1/(n2 cos2 χ)|eωn

2 cos2 χV⊥|E|
mc2γ

. (4)

Here, ω = 2πf , χ, and n are the angular frequency, the wave-normal angle, and the refractive index of the
wave, respectively, e > 0 is the elementary charge, and m, γ, and V⊥ are the electron rest mass, Lorentz
factor, and velocity transverse to the external magnetic field, respectively.

Assume that the ratio between the wave packet duration and the frequency ftr (τmin ∼ f−1
tr ) is also

fulfilled for AKR. Since the dependence of ftr on the frequency amd amplitude of the wave field for the
Z mode is the same as for whistler-mode waves (4), it can be assumed that in this case τ−1

min ∝ √
fE (we

suppose that for AKR n2 ∼ 1). Then, if, according to [47], we believe that a wave packet with a frequency of
about 300 kHz has a duration of 0.2–2.0 s and estimate the AKR amplitude as 0.5 V/m, then the minimum
duration of such a packet in the magnetosphere of Tau Bootis b will amount to

τmin[s] =
(0.008–0.08)β1/2

α1/4δ3/4
, (5)

where the coefficients α, β, and δ are the same as in Eq. (3).

3. CHOOSING PARAMETER VALUES FROM THE POINT OF VIEW OF THE RESONANT
INTERACTION EFFICIENCY

3.1. Features of the resonant interaction

Under the conditions of the Earth’s magnetosphere, the AKR generation region is located at high
geomagnetic latitudes and altitudes of 5000–15000 km. In this region, the geomagnetic field can approxi-
mately be considered as dipole. By analogy with papers [37, 38], we also assume that the magnetic field of
the planet Tau Bootis b is dipole in the region of resonant interaction of electrons with radio emission.
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For convenience, in the further analysis the position of particles and waves in space will be denoted by
the distance h from the surface of the planet along its magnetic field B0; in the region under consideration,
the field B0 decreases monotonically as h increases.

Following the existing ideas about the generation of radio emission in the magnetospheres of the Earth
and Jupiter, we assume that radio emission with a frequency ω is a fast extraordinary wave (X mode) and
is generated in the vicinity of the point where the angular frequency ω = 2πf of the wave coincides with the
local cutoff frequency ΩX. Correspondingly, the X mode can only propagate in the region ω > ΩX, i. e., from
the planet. In a cold plasma,

ΩX =
Ωc

2

⎛
⎝1 +

√
1 +

Ω2
p

Ω2
c

⎞
⎠ > Ωc. (6)

Here, Ωp and Ωc are the plasma frequency and gyrofrequency of electrons, respectively. The difference
between ΩX and Ωc is small, i. e., it can be assumed that the highest possible frequency of the considered
wave is determined by the gyrofrequency of electrons near the surface of the planet.

In our previous works [37, 38], the wave-normal angle χ was considered constant during the wave
propagation. In this paper, we consider a more realistic model taking refraction into account. We neglect
the transverse inhomogeneity of the medium and displacement of the beam across the magnetic field. In this
case, where the inhomogeneity of the medium is smooth and one-dimensional, Snell’s law is fulfilled during
the wave propagation: n(χ) sinχ = const = sinχc, where χc is the wave-normal angle in the region n → 1.
Such a wave can exist in the region h > h90 > hX, where n(h90) = sinχc, and the quantity hX characterizes
the point where the condition ω = ΩX is fulfilled (hereafter, the cutoff point).

Since the refractive index for the X mode monotonically increases with increasing distance from the
cutoff point, then the smaller χc, the closer to the cutoff point the wave generation can start. In this case,
as the wave propagates towards the larger values of n, the wave-normal angle χ decreases, while χ = 90◦

at the point h90. Allowance for refraction does not qualitatively affect the resonant-interaction properties
considered in [37, 38].

The relativistic condition for the fundamental cyclotron resonance is written as

Δ = ω − ωn cosχV||/c− Ωc/γ = 0, (7)

where V‖ is the electron velocity component along the external magnetic field. Since for the X mode ω >
ΩX > Ωc, condition (7) can only be fulfilled for co-moving electrons in a limited energy range and in a certain
vicinity of the cutoff point.

A distinctive feature of the resonant interaction with the X mode is a nonmonotonic dependence of
the detuning Δ on the magnitude of the external magnetic field when the particle moves in the direction
of its decrease [37]. As a consequence, there are two resonance points. In what follows, the first point will
be called the point which is located closer to the cutoff point (and, accordingly, the surface of the planet).
Depending on the parameters of the wave and the electron, the vicinities of these two points can represent
both one common resonant interaction area and two independent ones.

3.2. Analysis of the possibility of resonant interaction

We now analyze the possibility of resonant interaction for various values of the magnetic moment of
the planet and the plasma density in the magnetosphere (Sec. 2.1). For definiteness, we confine ourselves to
the geomagnetic latitude 70◦.

For the lowest magnetic moment M1 = 0.76MJ, the wave frequency f < 10 MHz, i. e., in this case, the
radio emission cannot be detected on the Earth’s surface; so, in what follows we analyze only the magnetic
moments M2 = 2.8MJ [5] and M3 = 7.5MJ [6]. We also consider three electron-density models, in which
Ne = 106 cm−3 per 0.1Rp [9] and then decreases proportionally to the magnetic field and Ne = 105 cm−3 or
104 cm−3 per 0.2Rp and then decreases proportionally to the magnetic field.
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Fig. 1. Position of the resonance points as a function of the electron energy W0 and pitch angle θX for different
values of the angle χc. The angle θX = 33◦ corresponds to the opening angle of the loss cone. The black line
shows the position of the cutoff point hX.

Test calculations show the following. Resonant interaction of electrons with X-mode wave is possible if
the wave frequency exceeds a certain minimum frequency fmin, and the wave-normal angle in the interaction
region is less than some maximum angle χmax. Herein, fmin increases with increasing magnetic moment M
and electron density Ne, while χmax increases with increasing M and decreases with increasing Ne. In the
case of the highest density Ne = 106 cm−3, the resonant interaction is possible only for M = M3.

For the further analysis, we choose the case where M = M2 and Ne = 105 cm−3. Relying on the data
in [10], we choose the wave frequency f = 20 MHz.

3.3. Resonant values of the electron parameters

Let us analyze the range of resonant values of the electron parameters (energy and pitch angle) for the
specified parameters of the magnetosphere at f = 20 MHz and various values of the limiting wave-normal
angle χc (corresponding to the region n ≈ 1). With allowance for refraction, the interaction is possible for
wave-normal angles χc ≤ 50◦.

Figure 1 shows the dependences of the positions of both resonance points hR on the electron energy
W0 and the pitch angle at the cutoff point θX for three angles χc.

Qualitatively, the dependences hR(W0, θX), χc)) look similar to the case of AKR in the Earth’s magne-
tosphere [37]. For a fixed θX, the resonance points merge at the boundaries of the resonant-energy range; the
largest distance between them corresponds to the middle of this range. The distance to the first resonance
point has a minimum and the distance to the second point, a maximum, depending on the energy (for a
fixed θX). Herein, the resonance point for the maximum resonant energy is located farther from the cutoff
point than the resonance point for the minimum resonant energy.

As θX increases, the distance between resonance points decreases and the resonant-energy range be-
comes narrower (the minimum resonant energy slightly increases and the maximum resonant energy decreases
significantly). As the wave-normal angle χc increases, the range of resonant values of the electron parameters
also reduces, that is, the maximum resonant pitch angle decreases, the minimum resonant energy slightly
increases, and the maximum resonant energy reduces significantly. In addition, as χc increases, the dis-
tance between resonance points decreases and the distance from the cutoff point to the first resonance point
increases.
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It should be noted that the maximum distance between resonance points for the considered parameters
is about 3 · 104 km ≈ 2 · 106c/f . For the AKP parameters considered in [37, 38], the maximum distance
between resonance points was approximately 3 · 103 km ≈ 6 · 104c/f . Thus, under the conditions of the Tau
Bootis b magnetosphere, the distance between the resonance areas in units of wavelength is much larger than
in the Earth’s magnetosphere.

3.4. Interaction with wave packets of finite duration

As in [37, 38], we consider interaction with a wave packet of finite duration. The propagation of a
packet is calculated in the geometrical-optics approximation. Let at the initial time t = 0 the trailing edge of
the packet has some coordinate hgen along the planetary magnetic field line, and the leading edge is located
at a distance Lp from it (along the planetary magnetic field line).

When calculating the propagation of a wave packet, the group velocity of each element along the
planetary magnetic field is determined by solving the dispersion relation for cold plasma corresponding to a
fast extraordinary wave, while the components of the electric and magnetic fields are interconnected by the
corresponding polarization relations. We believe that in the region n ≈ 1 the condition χ = χc = const is
fulfilled. It follows that n sinχ = const = sinχc for all points of the packet at any instant of time.

According to the widespread ideas about the AKR generation [34, 51], the wave-normal angles are
fairly high in the generation region. We assume that the point hgen corresponds to the wave-normal angle
χgen = 89◦. A decrease in χgen will reduce the range of electron parameters for which efficient interaction is
possible, but for χgen ≥ 80◦ this effect is not significant.

One of the reasons why the finite length and evolution of the wave packet edges are important factors
in the interaction with energetic electrons is that the group velocity of the X mode is comparable with
the velocity of resonant electrons in the interaction region. This means that the electrons should be in the
interaction region in a small time interval relative to the wave packet generation time. Namely, if the electron
flies through the resonance region too early, there will be no packet in it yet and if it is too late, the wave
packet will already have moved beyond the resonance region. Also, a case is possible where the electron is
in the packet only in the vicinity of the first resonance point (the packet is too short or the electron has an
“early start”) or only the second one (the electron has a “late start”).

In the model considered, the wave packet with a lower wave-normal angle χc leaves the resonant-
interaction region faster and will have a shorter duration for a fixed length Lp at the initial instant of time.
This is due to the fact that the initial position of the trailing edge of the packet (generation point) for a
fixed χgen is determined by the value of χc. For higher angles χc, the generation point is located farther from
the cutoff point, i. e., in the region of a higher refractive index and a higher group velocity. The situation
is reverse in the refractionless model considered in [37, 38] under the condition that the wave packets are
generated at one point: the packets with a higher angle χ have a longer duration and are slower to leave the
resonant-interaction region.

For the χc values considered in Sec. 3.3, we have the following estimates of the wave packet duration
from the point of view of the efficiency of resonant interaction. For the wave-normal angle χc = 15◦, the
interaction in both zones of resonance is possible for electrons with energies in most of the range indicated
in Fig. 1 if the packet duration exceeds τfull = 0.45 s. The minimum wave packet duration with which
interaction is possible in the vicinity of at least one resonance point for a wide range of resonant energies is
τmin = 0.25 s. In this case, the packet leaves the first resonance zone over the time Δt(1) = 0.45 s and the
second zone, over the time Δt(2) = 0.65 s. The time scales are τfull = 0.3 s, τmin = 0.15 s, Δt(1) = 0.3 s, and
Δt(2) = 0.42 s for χc = 30◦ and τfull = 0.11 s, τmin = 0.08 s, Δt(1) = 0.11 s, and Δt(2) = 0.14 s for χc = 50◦.

Note that for the Earth’s magnetosphere, wave packets with a duration of 0.2 to 2.0 s [47] are “long”
from the point of view of efficient resonant interaction, i. e., they cover the entire zone of resonant interaction
for the entire range of resonant energies and pitch angles of electrons [37] (as was noted in the previous section,
the distance between resonance points in units of wavelengths under conditions of the magnetosphere of Tau
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Bootis b is much greater than in the Earth’s magnetosphere).
Another important difference between wave packets of finite duration and a monochromatic wave is

the possibility of a frequency drift and complex amplitude profile in such wave packets. When studying
the Earth’s magnetosphere, it was shown that frequency drift plays a significant role in the interaction of
electrons with discrete signals of chorus emission [42, 52] or wave packets of electromagnetic ion–cyclotron
waves [43, 53]. The results of observations of the fine structure in the AKR [47] also show the presence of a
frequency drift in wave packets, but, according to quantitative estimates [37], this drift does not significantly
affect the characteristics of the resonant interaction. Therefore, as in [37, 38], we restrict ourselves to wave
packets with a constant frequency. Wave-packets with a constant amplitude were analyzed in [37, 38]. Here,
we consider a more realistic Gaussian amplitude profile.

4. PROBLEM FORMULATION

4.1. Resonant interaction model

Basic equations and some reference information on interaction regimes were discussed in detail in our
previous papers [37, 43] and are given here for the reader’s convenience.

The system of equations describing the motion of an electron in a given electromagnetic wave field Ew,
Bw in the presence of an external magnetic field B0, consists of the law of conservation of electron energy
W , equations for the first adiabatic invariant I⊥ = p2⊥/(mB0) and gyration phase ϕ, and the law of motion
of the Larmor center [37, system (1)–(4)]. For analysis of resonant effects in the electron–wave interaction,
this system can be transformed by using the expansion of the electromagnetic field near the center of the
Larmor circle [54, 55]. As in [37, 38], we consider interaction only at the fundamental cyclotron resonance.
In this case, the position of the particle in the phase space is determined by z,W, I⊥, and Ψ, where z is the
coordinate along the field B0, Ψ = − ∫

ωdt+ϕ+
∫
k|| dz+φ is the phase of the particle relative to the wave

(ω and k|| are the frequency and longitudinal wave number of the wave, respectively, and φ is the constant):

dW

dt
= e

p⊥
mγ

[
Ex − Ey

2
J0(κ) +

Ex + Ey

2
J2(κ)

]
sinΨ + e

p||
mγ

EzJ1(κ) sinΨ, (8)

dI⊥
dt

= − ep⊥
mB0

[(
Ex − Ey

2
+

p‖
mγc

Bx −By

2

)
J0(κ) +

(
Ex + Ey

2
− p‖

mγc

Bx +By

2

)
J2(κ)

]
sinΨ, (9)

dΨ

dt
= −Δ+ e

[(
Ex − Ey

2
+

p||
mγc

Bx −By

2

)
J0(κ) −

(
Ex +Ey

2
− p||

mγc

Bx +By

2

)
J2(κ)

+
p⊥
mγc

BzJ1(κ)

]
cosΨ

p⊥
, (10)

dz

dt
=

p‖
mγ

. (11)

Here, m and p are the electron rest mass and momentum, respectively, the indices || and ⊥ denote projec-

tions onto the direction along and across the geomagnetic field B0, respectively, γ =
√

1 + [p/(mc)]2 =

= W/(mc2) + 1, Ωc = eB0/(mc) is the nonrelativistic gyrofrequency, Ej , Bj (j = x, y, z) are compo-
nents of the slowly varying complex amplitude of the electromagnetic wave field, which are connected
by local polarization relations, the x axis is directed along k⊥, k is the wave vector, Jq(κ) is a Bessel
function of order q, κ = ωn sinχp⊥/Ωc, n = kc/ω is the refractive index, χ is the wave-normal angle,
Δ = ω − ωn cosχV||/c − Ωc/γ is the detuning from resonance, and V = p/γ is the electron velocity. Note
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that in system (8)–(11) the quantities B0 and Ωc and the characteristics of the wave depend on the spa-
tial coordinate z, and the components of the wave field also depend on the time t. When deriving system
(8)–(11), the following assumptions are used: the inhomogeneity of the external field is smooth, the wave
amplitude is small (Bw 
 B0), and wave characteristics in time and space change slowly compared to scales
2π/Ωc and 2π/k, respectively.

The regime of the resonant interaction is determined by the effective inhomogeneity parameter R =
σRR, where σR = ±1 determines the sign of the effective inhomogeneity, while

R =
|dΔ/dt|
Ω2
tr

. (12)

Here, d/dt = ∂/∂t + V||∂/∂z, where differentiation is performed only for the functions z and t, excluding
W and I⊥, Ω2

tr is the squared electron oscillation frequency in the wave field near the minimum of the
effective potential of the electron in the wave field (4). Under real conditions, the parameter R varies both
in time and space. Moreover, these variations are due not only to the inhomogeneity of the medium and the
variation in frequency and amplitude of the wave packet, but also to a nonlinear variation in the parameters
of the particles under the action of the wave. However, the main features of the motion can be classified
proceeding from the magnitude of R calculated in the resonance region in the linear approximation. Herein,
the characteristics of possible interaction regimes are determined both by the value of R and the sign of σR.

In the case R < 1, the effective potential of a particle in the wave field has a minimum [39]. Herein,
trapping of particles by the wave is possible.

In the case R � 1, the motion of a particle can be considered linear. Integral variation in energy
and adiabatic invariant of an electron over the of the resonance region is determined by the phase at the
resonance point, which, in turn, depends linearly on the initial phase. For an ensemble of particles, uniformly
distributed over the initial phase, the average variation in W and I⊥ is zero, but there is diffusion in the
phase space [37, 40, 41, 56].

For R < 1, a nonlinear regime takes place, which is characterized by the phase bunching of electrons
and non-zero average variation in W and I⊥, both for particles trapped by the wave field and for untrapped
particles. In the case R 
 1, a bunching regime occurs for untrapped electrons, in which the variation in
energy (and/or adiabatic invariant) is small, almost does not depend on the initial phase of the particle,
and has a sign opposite to the sign of energy variation in the trapping regime [40, 41, 43]. Variation of the
electron parameters in the trapping regime can be quite significant [40–43].

For interaction with the X mode at the fundamental cyclotron resonance, we have [37]

R(1) > 0,R(2) < 0. (13)

At the boundaries of the resonant-energy range (with a fixed pitch angle) R(1) ≈ R(2) → 0. For a constant
wave amplitude, the absolute values of R(1) and R(2) have a maximum approximately in the middle of the
range of resonant energies and R(1) < R(2).

In the bunching regime, particles lose energy in the first resonance zone and are accelerated in the
second one. In the trapping regime, accordingly, the energy picks up in the first zone and decreases in the
second one. Herein, at a constant amplitude, as was shown in [37], particle trapping always occurs in the
first resonance region and the exit from trapping takes place after passing the second region. For close values
of R(1) and R(2), the resulting energy variation is small.

For the indicated parameters of the magnetosphere of Tau Bootis b and the wave with a frequency
of 20 MHz and a limiting wave-normal angle χc = 30◦, the condition R(1), R(2) < 1 will be satisfied for the
entire range of resonant values of W0 and ΘX for the electric-field amplitude E ≥ 0.5 V/m at the resonance
points.

The considered interaction partially or completely occurs in the radio emission generation region. If
we assume that the radio emission in the magnetosphere of Tau Bootis b is generated as a result of cyclotron
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instability (this is an AKR generation mechanism, as is commonly accepted), then the non-self-consistent
consideration of resonant interaction, which does not take into account the effect of electrons on the wave
profile, is only a zero approximation. However, such an approach reveals the expected maximum effects of
resonant interaction of energetic electrons with radio emission.

4.2. Simulation parameters

Based on the estimates in Secs. 1 and 2, for a detailed analysis of interaction regimes we have chosen
a wave packet with the limiting wave-normal angle χc = 30◦, a duration of 0.15 s and a Gaussian amplitude
profile with the maximum value 5 V/m. In this case, efficient resonant interaction is possible in a wide range
of electron energies, and the indicated values of duration and amplitude seem realistic (see Eqs. (3) and (5)).
With this amplitude profile, except for cases where the resonance points are located in a small vicinity of
one of the packet edges, the conditions R(1) 
 1 and R(2) 
 1 will also be satisfied.

System (8)–(11) was solved numerically for one value of the pitch angle ΘX = 44◦ (which roughly
corresponds to the middle of the ΘX resonant range) and 8 energy values. It was assumed that the ensemble
of electrons is located at the point hgen corresponding to the initial position of the trailing edge of the wave
packet, at the time t0 ≥ 0, i. e., the electrons start moving at the same time with the packet or later (recall
that the considered resonant interaction is possible only for co-moving electrons). For each energy value, we
have also chosen from 5 to 7 values of t0 in the interval 0 ≤ t0 < Δt2 = 0.42 s. For fixed values of W0, ΘX,
and t0, 900 values of the initial phase Ψ0 uniformly distributed in the interval [0, 2π) were specified.

The chosen values of W0, ΘX, and t0 permit one to show all possible regimes of nonlinear interaction
that lead to a significant change in electron energy.

5. THE EFFECT OF INTERACTION ON ELECTRON CHARACTERISTICS (THE RESULTS
OF SIMULATION BY THE TEST PARTICLE METHOD)

5.1. Interaction regimes

Analysis of the performed simulation shows that the range of resonant energies (about 3–330 keV
for ΘX = 44◦) can be divided into four intervals corresponding to qualitatively different characteristics of
the interaction. The approximate boundaries of these intervals can be estimated from the dependences of
the position of the resonance points h

(1)
R and h

(2)
R on the energy W0 (for the considered parameters, the

green curve in Fig. 1b). The first interval corresponds to low energies in the region where h
(2)
R increases with

increasing energy (h(1)R ≈ hX), the second interval, to the region where h
(2)
R ≈ const (h(1)R ≈ hX), and the

third interval, to the section in which h
(2)
R starts to decrease with increasing energy and h

(1)
R increases, but

remains close enough to hX (hX determines the position of the cutoff point). The last interval corresponds to
a small neighborhood of the right-hand boundary of the resonance energy range where the resonance points
are fairly close to each other and away from the cutoff point.

As the energy increases, the range of t0 values corresponding to the efficient resonant interaction (the
one that results in a notable change in particle energy) shifts towards the region of greater t0.

5.1.1. Low energies

Low energies (in a range of approximately 3–70 keV for ΘX = 44◦) correspond to the case where the resonance
points are relatively close to each other, the first point being near the cutoff point. In this case (see Fig. 2),
there are two regimes of efficient resonant interaction.

For short t0 (t0 ≤ 0.02 s at W0 = 50 keV), the first resonance point is closer to the trailing edge of
the wave packet and the second one is outside it (see the red curve in Fig. 2c). As a result of the interaction,
the untrapped particles lose little energy (bunching in the first resonance region, the red color in Figs. 2a
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Fig. 2. Interaction regimes as functions of the particle start time t0 for W0 = 50 keV and ΘX = 44◦. Examples
of time dependences of the energy for untrapped (a) and trapped (b) particles, the corresponding trajectories
of particles (c) (the markers show the resonance points), and energy variations for untrapped (d) and trapped
(e) particles as functions of the initial phase.

and 2d), while the untrapped particles (red color in Figs. 2b and 2d) are accelerated in the first zone and exit
from trapping before entering the second zone.

For intermediate values of t0 (0.02 < t0 < 0.15 s at W0 = 50 keV), both points are located either
outside the packet or close to the corresponding edges (the first, to the trailing edge and the second, to the
leading edge), i. e., there is a linear interaction with a very small standard deviation (blue color in Figs. 2a,
2c, and 2d).

For long t0 (t0 ≈ 0.15 s at W0 = 50 keV), the first resonance point is located either outside the packet
or close to its trailing edge, and the second point is located in the vicinity of the middle of the packet (see
the green curve in Figs. 2a and 2d). There are no trapped particles in this case, and the energy of untrapped
particles increases (green color in Figs. 2a and 2d). With the increase in t0 > 0.15 s, the second resonance
point approaches the trailing edge of the wave packet, which leads first to a smaller acceleration due to
bunching and then to a linear interaction with a small standard deviation.

5.1.2. Intermediate energies

Intermediate energies (in a range of approximately 70–200 keV for ΘX = 44◦) correspond to the maximum
distance between the resonance points and the maximum (at a constant amplitude) values of the parameters
R(1) and R(2). In this case (see Fig. 3), there exists three regimes of efficient resonant interaction.

For short t0, the first resonance point is closer to the leading edge of the packet and the second one
is outside it. Since in this case the amplitude at the resonance point is not maximum and decreases as the
particle moves, there are no trapped particles. The energy of the untrapped particles decreases (red color
in Figs. 3a, 3c, and 3d). As t0 increases, regimes similar to those for low energies described in the previous
subsection take place.
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Fig. 3. Interaction regimes as functions of the particle start time t0 for W0 = 150 keV and ΘX = 44◦. Examples
of time dependences of the energy for untrapped (a) and trapped (b) particles, the corresponding trajectories
of particles (c) (the markers show the resonance points), and energy variations for untrapped (d) and trapped
(e) particles as functions of the initial phase.

5.1.3. High energies

High energies (in a range of about 250 keV for ΘX = 44◦) correspond to a short distance between resonance
points, while the point of the first resonance is farther from the cutoff point than in the case of low energies
(Fig. 4). In this case, for intermediate values of t0, there are no cases where both resonance points are outside
the packet or near its edges. For any tmin < t0 < tmax (tmin and tmax are, respectively, the minimum and
maximum values of t0 for which efficient resonant interaction is possible), at least one of the resonance points
is located in the packet and far enough from its edges.

At t0 ≈ 0.16 s, the second resonance point is located close to the leading edge (green curve in Fig. 4c).
For untrapped particles, interaction in the second resonance zone is linear with a small standard deviation
(green color in Figs. 4a and 4d); the trapped particles exit from trapping after the second resonance zone,
but the effect of the latter is small, i. e., the trapping results in acceleration. Quantitatively, this regime
differs only slightly from the regime where the second resonance point is outside the packet (blue color); the
decrease in the energy of untrapped particles in this case will be smaller, while the acceleration of trapped
particles will be greater.

For t0 ≈ 0.17 s, both resonance points are far enough from the wave packet edges (blue color) and
the result of the interaction is close to the case of a long rectangular packet. Untrapped particles have a
bunching in both resonance zones, but acceleration in the second zone is more efficient; the particles are
trapped in the first zone and exit from trapping in the second one, but the effect of the second zone prevails,
i. e., the particle energy decreases.

As t0 further increases, interaction in the first resonance zone becomes linear, the trapping of particles
is absent, and bunching of untrapped particles, which leads to their acceleration (purple), occurs in the second
zone. For t0 > 0.22 s the first resonance point is outside the wave packet and the second one is closer to its
trailing edge (yellow curve in Fig. 4c). In this case, the acceleration of untrapped particles due to bunching
in the second resonance zone is less effective (yellow color in Figs. 4a and 4d).
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Fig. 4. Interaction regimes as functions of the particle start time t0 for W0 = 250 keV and ΘX = 44◦. Examples
of time dependences of the energy for untrapped (a) and trapped (b) particles, the corresponding trajectories
of untrapped particles (c) (the markers show the resonance points), and the energy variations for untrapped
(d) and trapped (e) particles as functions of the initial phase.

5.1.4. High energies near the boundary of the resonance range

The vicinity of the right-hand boundary of the resonance energy range is characterized by a short distance
between the resonance points and the greatest distance of the first resonance point from the cutoff point (see
Fig. 5). The results for this case are presented in Fig. 5.

In the case where both resonance points are inside the packet, but one of them is located near the
corresponding edge, the interaction regimes at W0 = 300 keV qualitatively differ from similar regimes for
W = 250 keV. At W0 = 300 keV, for a certain fraction of particles, trapping takes place in one of the resonant
interaction zone and linear interaction occurs in the other zone (blue and purple colors in Figs. 5b and 5d,
close-ups are shown on the inserts in Fig. 5b). For shorter t0, the particles trapped in the first resonance zone
have time to exit from trapping (due to the decrease in amplitude) before they reach the second resonance
zone. For longer t0, after the linear interaction with a small standard deviation at the first resonance point
the particles turn out to be trapped in the second zone. Accordingly, the particles are accelerated in the first
case and lose energy in the second case.

In the case where the particles become trapped in the first resonance zone and exit from trapping
after passing the second one, the effect of the second zone prevails, while the decrease in energy can be much
more significant than at lower energies (light blue in Figs. 5b and 5d). Recall that at a constant amplitude
the parameters R(1) and R(2) decrease as the boundaries of the resonant energy range are approached.

Due to the short distance between resonance points, two regimes that take place for lower energies
are absent. They are the trapping of particles in the case where only the first resonance point is located in
the packet and a significant acceleration of untrapped particles in the absence of trapping, when only the
second resonance point is located in the packet. Trapping in the first resonance zone is possible only for the
t0 values at which both resonance points are in the wave packet. In the case where only the second resonance
point is located in the packet, as it approaches the trailing edge of the latter (with increasing t0), the result
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Fig. 5. Interaction regimes as functions of the particle start time t0 for W0 = 300 keV and ΘX = 44◦. Examples
of time dependences of the energy for untrapped (a) and trapped (b) particles, the corresponding trajectories
of untrapped particles (c) (the markers show the resonance points), and energy variations for untrapped (d)
and trapped (e) particles as functions of the initial phase.

of interaction for untrapped particles is close to linear even in the presence of a small fraction of trapped
particles.

Comparison of results for different t0 and constant energy W0 permit one to conclude that in the
case of a long wave packet covering entirely both zones of resonant interaction, the effects of the resonance
zones with opposite signs of effective inhomogeneity counterbalance each other, which leads to a very small
final energy variation, both for a single particle and for their ensemble.1 This is due to the fact that for the
considered values of the amplitudes, except for the vicinities of the packet edges, the interaction is strongly
nonlinear in both zones.

5.2. Integral characteristics of the interaction

Phase-averaged energy variation 〈ΔW 〉 and the standard energy deviation σW (for the entire ensemble
of particles with fixed W0 and t0 and separately for untrapped and trapped particles) as functions of the
initial energy W0 and the start time t0 are presented in Fig. 6. The energy variation averaged over phases
and time t0 and the standard deviation are shown in Fig. 7.

For untrapped particles (Fig. 6a) at short t0 the value of 〈ΔW 〉unt is negative and has a minimum,
then, as t0 increases, it increases and passes to the range of positive values, reaches a maximum and then
decreases. Herein, for energies W0 < 100 keV, there is a sufficiently large interval of intermediate values of
t0, where 〈ΔW 〉unt ≈ 0 and σunt

W < 0.2 keV. For a fixed energy W0, the increase in the untrapped-particle
energy for longer t0 slightly exceeds the decrease in energy for shorter t0. Also, |〈ΔW 〉unt| generally increases
with increasing energy.

The interval of t0 values, in which particles can be trapped by the wave field, exceeds 0.02 s only for
high energies W0 ≥ 200 keV. For these energy values, 〈ΔW 〉tr > 0 for shorter t0 and 〈ΔW 〉tr < 0 for longer

1This conclusion was confirmed by test calculations, the results of which are not shown in this paper for brevity’s sake.
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Fig. 6. Mean (a, c, and e) and r.m. s. (b, d and f) energy variations for untrapped particles (a and b), trapped
particles (c and d), and the entire ensemble (d and f). ΘX = 44◦.

Fig. 7. Energy variation averaged over phases and time t0 (a) and the corresponding standard deviation (b) as
functions of the initial energy. ΘX = 44◦.

t0. Particles with initial energies W0 ≤ 200 keV can only be accelerated as a result of the trapping.
In the presence of trapping, in most cases, the sign of the mean energy variation 〈ΔW 〉 for the entire

ensemble of particles is determined by trapped particles, but since their fraction is small, the absolute value
|〈ΔW 〉| is also small, namely, |〈ΔW 〉| ≤ 15 keV.

For the initial energies W0 ≤ 250 keV, the energy variation averaged over phases and start time
t0 (〈ΔW 〉t0) fluctuates in the range 1.5–3.5 keV and the corresponding standard deviation σWt0 smoothly
increases from 0 to 20 keV. For W0 = 300 keV, we have 〈ΔW 〉t0 ≈ −2.0 keV and σWt0 ≈ 30 keV.

On the whole, the performed simulation of the interaction of energetic electrons with a wave packet
of radio emission (X mode) of finite duration in the magnetosphere of Tau Bootis b shows the following. In
a wide range of initial particle energies W0 for untrapped particles, the energy of a particle either increases
or decreases slightly (up to 5%), depending on its initial position with respect to the wave packet edge. The
decrease takes place if the particle is in the packet in the vicinity of the first resonance zone and overtakes
the packet before the beginning of the second resonance zone and the increase occurs if the particle catches
up with the packet after the latter has left the first resonant-interaction zone and is located in the packet in
the vicinity of the second resonant zone. For trapped particles in a wide range of W0, the energy increases
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significantly (from 10 to 100%) if these particles are in the packet in the vicinity of the first resonance
zones and overtake the packet before the beginning of the second resonance zone. For high values of W0, a
significant decrease in the energy of particles is also possible as a result of their trapping by the wave field
with the predominant effect of the second resonance zone.

For an ensemble of fixed-energy particles distributed in space in the region of resonant interaction, for
most of the range of resonant energies, the acceleration of particles will be more efficient than the decrease
in their energy. The ensemble of particles with energies in the vicinity of the right-hand boundary of the
resonant-energy range, for which the energy decrease will be more efficient, is the exception.

For the considered value of the electron pitch angle at the cutoff point ΘX = 44◦ their significant
acceleration is possible in the initial-energy range 10–300 keV. From Fig. 1b it follows that this range will
decrease, shifting towards the smaller W0 as ΘX increases, and will increase (expanding towards the larger
W0) as ΘX decreases. For the angle ΘX = 33◦ corresponding to the opening angle of the loss cone, significant
acceleration is possible for particles with initial energies of up to about 500 keV.

6. DISCUSSION AND CONCLUSIONS

The revealed important properties of the resonant interactions of charged particles (electrons) with ra-
dio emission in the magnetospheres of exoplanets are due primarily to a significant difference of the parameters
of the magnetic field, plasma, and radio emission from the corresponding parameters in the magnetospheres
of the Earth and the planets of the solar system. In particular, the planet Tau Bootis b has a much stronger
magnetic field compared with the Earth’s magnetosphere, resulting in a higher radio frequency. In this case,
the plasma density in the region of radio emission generation is also quite high, i. e., the ratio Ωp/Ωc is
close in value to a similar parameter in the Earth’s magnetosphere. The amplitude of radio emission in
the magnetosphere of Tau Bootis b can significantly (by an order of magnitude or more) exceed the AKR
amplitude in the Earth’s magnetosphere if, in accordance with [10], this radio emission is assumed to be
detectable on the Earth with available tools.

These differences lead to the following features of the resonant interaction. First, the distance between
resonance points (both in absolute units and in units of wavelength) in the magnetosphere of Tau Bootis b is
much greater than in the Earth’s magnetosphere. This implies that the wave packets of a realistic duration
in the magnetosphere of Tau Bootis b, in contrast to the Earth’s magnetosphere [37], cover only one zone
of resonant interaction for most of the resonant energies. Secondly, the interaction in both resonance zones
will be essentially nonlinear due to the high amplitude for most of the resonant energies (recall that in the
Earth’s magnetosphere a strong nonlinearity is possible only in the second resonance zone).

Strong nonlinearity, in turn, leads to a more important role of the effects of trapping of particles by
the wave field. When interacting with short packets, the trapping effects can lead to a drastic (from 10 to
100%) acceleration of particles in a wide energy range from tens to hundreds of kiloelectronvolts.

This is exactly a case that takes place for the plasma and magnetic-field parameters corresponding
to modern ideas about the magnetosphere of the exoplanet Tau Bootis b. Thus, in this paper, we have
demonstrated the possibility of nonlinear acceleration of energetic (with energies of the order 10–500 keV)
electrons in the magnetosphere of this exoplanet by the field of its radio emission with the energy gain
reaching up to 100% with respect to the initial energy.

Note that the considered interaction occurs, partially or completely, in the region of radio emission
generation. If it is assumed that radio emission in the magnetosphere of Tau Bootis b is generated as a
result of cyclotron instability, then in the process of generation part of the ensemble of energetic electrons
gives energy to the wave and the shape of the wave packet changes. For a correct assessment of the total
energy balance in the system, it is necessary to analyze the evolution of the electron distribution function,
and in prospect it is needed to consider a self-consistent problem with allowance for the evolution of the
wave packet in the generation region.
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